Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Apr 24;66(Pt 5):o1141. doi: 10.1107/S1600536810013966

1-[(2-Chloro-3-quinol­yl)meth­yl]indoline-2,3-dione

F Nawaz Khan a, S Mohana Roopan a, Sriramakrishnaswamy Kone a, Venkatesha R Hathwar b, M Khawar Rauf c,*
PMCID: PMC2979291  PMID: 21579189

Abstract

In the title compound, C18H11ClN2O2, the isatin and 2-chloro-3-methyl­quinoline units are both almost planar, with r.m.s. deviations of 0.0075 and 0.0086 Å, respectively, and the dihedral angle between the mean planes of the two units is 83.13 (7)°. In the crystal, a weak inter­molecular C—H⋯ O inter­action links the mol­ecules into chains along the c axis.

Related literature

For background to the use of N-substituted indole-2,3-diones as inter­mediates and synthetic precursors for the preparation of heterocyclic compounds, see: Silaicheva et al. (2009). For the biological activity of N-substituted indole-2,3-diones, see: Vine et al. (2007). For reference bond lengths, see: Allen et al. (1987).graphic file with name e-66-o1141-scheme1.jpg

Experimental

Crystal data

  • C18H11ClN2O2

  • M r = 322.74

  • Monoclinic, Inline graphic

  • a = 21.4984 (8) Å

  • b = 5.3061 (2) Å

  • c = 13.0356 (4) Å

  • β = 99.718 (3)°

  • V = 1465.67 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 K

  • 0.33 × 0.30 × 0.27 mm

Data collection

  • Oxford Diffraction Excalibur diffractometer

  • 17920 measured reflections

  • 2724 independent reflections

  • 1731 reflections with I > 2σ(I)

  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.085

  • S = 0.90

  • 2724 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810013966/pv2276sup1.cif

e-66-o1141-sup1.cif (19KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810013966/pv2276Isup2.hkl

e-66-o1141-Isup2.hkl (133.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯O2i 0.93 2.48 3.367 (3) 160

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank the Department of Science and Technology, India, for use of the CCD facility set up under the FIST–DST program at SSCU, IISc. We also thank Professor T. N. Guru Row, IISc, Bangalore, for his help with the data collection. FNK thanks the DST for Fast Track Proposal funding.

supplementary crystallographic information

Comment

N-substituted indole-2,3-diones have been frequently used as intermediates and synthetic precursors for the preparation of a wide variety of heterocyclic compounds (Silaicheva et al., 2009). In addition, they possess different biological activities such as cytotoxicity, antiviral activity and selective caspase inhibitions, etc. (Vine et al., 2007). We have synthesized a novel isatin derivative and determined its crystal structure which is presented in this article.

In the title molecule, the atoms (C11—C18/N2/O1/O2) of the isatin moiety and 2-chloro-3-methylquinoline group (C1—C8/N1/Cl1) are individually planar with maximum r.m.s. deviations of 0.0075 and 0.0086 Å, respectively, from their mean-planes. The dihedral angle between the two ring systems is 83.13 (7)°. The bond distances and angles in the title compound are as expected (Allen et al., 1987). There is a weak intermolecular interaction C17—H17··· O2 linking the molecules into chains along the c-axis.

Experimental

2-Chloro-3-chloromethylquinoline (210 mg, 1 mmol), KOtBu (112 mg, 1 mmol) and isatin (147 mg, 1 mmol) in tetrahydrofuran (10 ml) were taken in a round bottemed flask and the mixture was refluxed at 70 W for 3 min. Ethylacetate (30 ml) was poured into the reaction mixture and filtered off. The filtrate was subjected to column chromatography packed with silica and ethyl acetate/petroleum ether was used as the eluant (4:1). Crystals of suitable quality were grown by slow evaporation from a solution of the title compound in dichloromethane.

Refinement

Hydrogen atoms were placed in calculated positions at C—H = 0.93 and 0.97 Å, for aryl and methylene type H atoms, respectively, and were included in the refinement in riding model approximation, with Uiso(H) set to 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Perspective view of the molecular packing of the title compound in the unit cell down the b-axis.

Crystal data

C18H11ClN2O2 F(000) = 664
Mr = 322.74 Dx = 1.463 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2724 reflections
a = 21.4984 (8) Å θ = 2.9–25.5°
b = 5.3061 (2) Å µ = 0.27 mm1
c = 13.0356 (4) Å T = 293 K
β = 99.718 (3)° Block, orange
V = 1465.67 (9) Å3 0.33 × 0.30 × 0.27 mm
Z = 4

Data collection

Oxford Diffraction Excalibur diffractometer 1731 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.050
graphite θmax = 25.5°, θmin = 2.9°
Detector resolution: 0 pixels mm-1 h = −26→26
ω scans k = −6→6
17920 measured reflections l = −15→15
2724 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085 H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.0447P)2] where P = (Fo2 + 2Fc2)/3
2724 reflections (Δ/σ)max < 0.001
208 parameters Δρmax = 0.21 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.32510 (3) 1.40527 (10) 0.51979 (4) 0.0614 (2)
N1 0.38948 (7) 1.0493 (3) 0.45048 (11) 0.0458 (4)
C2 0.28707 (8) 1.1294 (3) 0.34507 (13) 0.0360 (4)
C3 0.29797 (8) 0.9460 (3) 0.27719 (13) 0.0379 (4)
H3 0.2675 0.9121 0.2192 0.046*
N2 0.18214 (7) 1.2157 (3) 0.24049 (11) 0.0398 (4)
C13 0.10081 (8) 1.0002 (3) 0.13973 (13) 0.0376 (4)
C1 0.33623 (9) 1.1692 (3) 0.43088 (13) 0.0406 (5)
C14 0.13853 (8) 1.0147 (3) 0.23746 (14) 0.0377 (4)
C8 0.39988 (8) 0.8632 (3) 0.38138 (14) 0.0407 (5)
O1 0.20473 (6) 1.5156 (3) 0.12348 (11) 0.0579 (4)
C4 0.36754 (9) 0.6131 (3) 0.22547 (15) 0.0481 (5)
H4 0.3382 0.5751 0.1666 0.058*
O2 0.10171 (7) 1.2586 (3) −0.01339 (11) 0.0635 (4)
C10 0.22789 (9) 1.2877 (3) 0.33140 (14) 0.0463 (5)
H10A 0.2085 1.2717 0.3931 0.056*
H10B 0.2392 1.4632 0.3249 0.056*
C9 0.35465 (8) 0.8066 (3) 0.29322 (13) 0.0375 (4)
C15 0.05482 (9) 0.8170 (4) 0.11805 (15) 0.0477 (5)
H15 0.0300 0.8064 0.0525 0.057*
C12 0.12083 (8) 1.1985 (3) 0.07592 (15) 0.0423 (5)
C7 0.45672 (9) 0.7252 (4) 0.39988 (16) 0.0547 (6)
H7 0.4871 0.7616 0.4576 0.066*
C5 0.42260 (10) 0.4820 (4) 0.24572 (18) 0.0587 (6)
H5 0.4306 0.3541 0.2010 0.070*
C11 0.17522 (9) 1.3370 (4) 0.14680 (15) 0.0418 (5)
C6 0.46691 (10) 0.5389 (4) 0.33319 (19) 0.0588 (6)
H6 0.5043 0.4475 0.3463 0.071*
C18 0.13105 (9) 0.8492 (4) 0.31574 (15) 0.0476 (5)
H18 0.1561 0.8586 0.3812 0.057*
C16 0.04657 (9) 0.6503 (4) 0.19561 (18) 0.0542 (6)
H16 0.0156 0.5264 0.1829 0.065*
C17 0.08426 (10) 0.6670 (4) 0.29230 (18) 0.0552 (6)
H17 0.0781 0.5524 0.3436 0.066*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0765 (4) 0.0609 (4) 0.0442 (3) −0.0082 (3) 0.0028 (3) −0.0161 (2)
N1 0.0427 (10) 0.0504 (10) 0.0406 (9) −0.0072 (8) −0.0039 (8) 0.0046 (8)
C2 0.0363 (10) 0.0362 (10) 0.0346 (10) −0.0046 (9) 0.0038 (8) −0.0006 (8)
C3 0.0337 (10) 0.0422 (11) 0.0359 (10) −0.0036 (9) 0.0000 (8) 0.0003 (9)
N2 0.0341 (9) 0.0400 (9) 0.0425 (10) 0.0007 (7) −0.0016 (7) −0.0043 (7)
C13 0.0320 (10) 0.0364 (10) 0.0436 (12) 0.0019 (9) 0.0040 (9) 0.0000 (9)
C1 0.0460 (12) 0.0415 (11) 0.0335 (11) −0.0096 (10) 0.0042 (9) −0.0009 (9)
C14 0.0340 (11) 0.0335 (10) 0.0461 (12) 0.0066 (9) 0.0078 (9) −0.0017 (9)
C8 0.0319 (11) 0.0430 (11) 0.0457 (12) −0.0052 (9) 0.0027 (9) 0.0079 (9)
O1 0.0489 (9) 0.0526 (9) 0.0719 (10) −0.0123 (7) 0.0092 (7) 0.0042 (7)
C4 0.0427 (12) 0.0496 (12) 0.0520 (13) 0.0032 (10) 0.0078 (10) −0.0040 (10)
O2 0.0690 (10) 0.0721 (10) 0.0457 (9) −0.0133 (8) −0.0013 (8) 0.0077 (7)
C10 0.0439 (12) 0.0458 (11) 0.0465 (12) 0.0017 (10) 0.0004 (10) −0.0106 (9)
C9 0.0326 (11) 0.0405 (10) 0.0388 (11) −0.0039 (9) 0.0045 (9) 0.0038 (9)
C15 0.0394 (12) 0.0460 (11) 0.0554 (13) −0.0005 (10) 0.0008 (10) −0.0040 (10)
C12 0.0402 (12) 0.0448 (11) 0.0410 (12) 0.0026 (9) 0.0045 (10) −0.0006 (10)
C7 0.0337 (12) 0.0623 (14) 0.0632 (14) −0.0041 (11) −0.0062 (10) 0.0136 (12)
C5 0.0492 (14) 0.0546 (13) 0.0741 (16) 0.0050 (11) 0.0160 (12) −0.0028 (11)
C11 0.0330 (11) 0.0405 (11) 0.0516 (13) 0.0026 (10) 0.0069 (9) 0.0001 (10)
C6 0.0395 (13) 0.0548 (14) 0.0824 (17) 0.0074 (11) 0.0107 (12) 0.0099 (12)
C18 0.0476 (13) 0.0477 (12) 0.0477 (12) 0.0142 (11) 0.0087 (10) 0.0045 (10)
C16 0.0413 (13) 0.0421 (12) 0.0810 (17) −0.0023 (10) 0.0155 (12) −0.0007 (12)
C17 0.0576 (14) 0.0415 (12) 0.0726 (16) 0.0104 (11) 0.0282 (13) 0.0122 (11)

Geometric parameters (Å, °)

Cl1—C1 1.7503 (18) C4—C9 1.412 (2)
N1—C1 1.297 (2) C4—H4 0.9300
N1—C8 1.380 (2) O2—C12 1.210 (2)
C2—C3 1.362 (2) C10—H10A 0.9700
C2—C1 1.419 (3) C10—H10B 0.9700
C2—C10 1.510 (2) C15—C16 1.377 (3)
C3—C9 1.411 (2) C15—H15 0.9300
C3—H3 0.9300 C12—C11 1.548 (3)
N2—C11 1.366 (2) C7—C6 1.358 (3)
N2—C14 1.416 (2) C7—H7 0.9300
N2—C10 1.457 (2) C5—C6 1.390 (3)
C13—C15 1.381 (2) C5—H5 0.9300
C13—C14 1.392 (2) C6—H6 0.9300
C13—C12 1.451 (3) C18—C17 1.391 (3)
C14—C18 1.376 (2) C18—H18 0.9300
C8—C9 1.407 (2) C16—C17 1.381 (3)
C8—C7 1.410 (3) C16—H16 0.9300
O1—C11 1.208 (2) C17—H17 0.9300
C4—C5 1.360 (3)
C1—N1—C8 117.22 (16) C8—C9—C3 118.02 (17)
C3—C2—C1 115.56 (17) C8—C9—C4 118.98 (17)
C3—C2—C10 123.70 (16) C3—C9—C4 123.00 (17)
C1—C2—C10 120.73 (16) C16—C15—C13 118.58 (18)
C2—C3—C9 121.17 (17) C16—C15—H15 120.7
C2—C3—H3 119.4 C13—C15—H15 120.7
C9—C3—H3 119.4 O2—C12—C13 131.09 (18)
C11—N2—C14 110.98 (15) O2—C12—C11 123.28 (17)
C11—N2—C10 124.07 (15) C13—C12—C11 105.62 (16)
C14—N2—C10 124.94 (15) C6—C7—C8 119.8 (2)
C15—C13—C14 120.82 (16) C6—C7—H7 120.1
C15—C13—C12 131.64 (17) C8—C7—H7 120.1
C14—C13—C12 107.54 (16) C4—C5—C6 120.1 (2)
N1—C1—C2 126.69 (17) C4—C5—H5 119.9
N1—C1—Cl1 115.82 (14) C6—C5—H5 119.9
C2—C1—Cl1 117.49 (15) O1—C11—N2 127.74 (18)
C18—C14—C13 121.36 (17) O1—C11—C12 126.75 (18)
C18—C14—N2 128.29 (17) N2—C11—C12 105.50 (16)
C13—C14—N2 110.35 (15) C7—C6—C5 121.4 (2)
N1—C8—C9 121.33 (17) C7—C6—H6 119.3
N1—C8—C7 119.42 (18) C5—C6—H6 119.3
C9—C8—C7 119.24 (18) C14—C18—C17 116.82 (19)
C5—C4—C9 120.46 (19) C14—C18—H18 121.6
C5—C4—H4 119.8 C17—C18—H18 121.6
C9—C4—H4 119.8 C15—C16—C17 120.00 (19)
N2—C10—C2 112.95 (14) C15—C16—H16 120.0
N2—C10—H10A 109.0 C17—C16—H16 120.0
C2—C10—H10A 109.0 C16—C17—C18 122.42 (19)
N2—C10—H10B 109.0 C16—C17—H17 118.8
C2—C10—H10B 109.0 C18—C17—H17 118.8
H10A—C10—H10B 107.8
C1—C2—C3—C9 0.3 (2) C2—C3—C9—C4 179.27 (16)
C10—C2—C3—C9 179.03 (16) C5—C4—C9—C8 0.6 (3)
C8—N1—C1—C2 −0.1 (3) C5—C4—C9—C3 −178.91 (17)
C8—N1—C1—Cl1 −179.53 (12) C14—C13—C15—C16 0.7 (3)
C3—C2—C1—N1 −0.2 (3) C12—C13—C15—C16 179.68 (17)
C10—C2—C1—N1 −178.90 (17) C15—C13—C12—O2 1.3 (3)
C3—C2—C1—Cl1 179.28 (12) C14—C13—C12—O2 −179.6 (2)
C10—C2—C1—Cl1 0.5 (2) C15—C13—C12—C11 −179.36 (18)
C15—C13—C14—C18 −0.5 (3) C14—C13—C12—C11 −0.28 (18)
C12—C13—C14—C18 −179.71 (16) N1—C8—C7—C6 178.92 (17)
C15—C13—C14—N2 179.64 (15) C9—C8—C7—C6 −0.5 (3)
C12—C13—C14—N2 0.45 (19) C9—C4—C5—C6 −0.4 (3)
C11—N2—C14—C18 179.71 (17) C14—N2—C11—O1 179.81 (17)
C10—N2—C14—C18 −1.1 (3) C10—N2—C11—O1 0.6 (3)
C11—N2—C14—C13 −0.46 (19) C14—N2—C11—C12 0.25 (18)
C10—N2—C14—C13 178.72 (15) C10—N2—C11—C12 −178.93 (15)
C1—N1—C8—C9 0.2 (3) O2—C12—C11—O1 −0.2 (3)
C1—N1—C8—C7 −179.23 (16) C13—C12—C11—O1 −179.55 (17)
C11—N2—C10—C2 −98.40 (18) O2—C12—C11—N2 179.41 (17)
C14—N2—C10—C2 82.5 (2) C13—C12—C11—N2 0.02 (18)
C3—C2—C10—N2 2.8 (2) C8—C7—C6—C5 0.7 (3)
C1—C2—C10—N2 −178.58 (16) C4—C5—C6—C7 −0.2 (3)
N1—C8—C9—C3 0.0 (3) C13—C14—C18—C17 0.2 (3)
C7—C8—C9—C3 179.40 (16) N2—C14—C18—C17 180.00 (16)
N1—C8—C9—C4 −179.55 (15) C13—C15—C16—C17 −0.6 (3)
C7—C8—C9—C4 −0.2 (3) C15—C16—C17—C18 0.3 (3)
C2—C3—C9—C8 −0.3 (2) C14—C18—C17—C16 −0.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3···N2 0.93 2.49 2.842 (2) 102
C17—H17···O2i 0.93 2.48 3.367 (3) 160

Symmetry codes: (i) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2276).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  4. Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Silaicheva, P. S., Alievb, Z. G. & Maslivetsa, A. N. (2009). Russ. J. Org. Chem.45, 126–130.
  7. Vine, K. L., Locke, J. M., Ranson, M., Pyne, S. G. & Bremner, J. B. (2007). J. Med. Chem.50, 5109–5117. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810013966/pv2276sup1.cif

e-66-o1141-sup1.cif (19KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810013966/pv2276Isup2.hkl

e-66-o1141-Isup2.hkl (133.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES