Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Apr 30;66(Pt 5):o1224. doi: 10.1107/S1600536810015035

4-[3,5-Bis(ethoxy­carbon­yl)-2,6-dimethyl-4-pyrid­yl]pyridinium nitrate

Yumei Li a,*
PMCID: PMC2979292  PMID: 21579250

Abstract

In the title mol­ecular salt, C18H21N2O4 +·NO3 , the dihedral angle between the two pyridine rings is 61.24 (8)°. In the crystal, the cation and anion are linked by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For general background to metal-organic frameworks, see: Zhang et al. (2003).graphic file with name e-66-o1224-scheme1.jpg

Experimental

Crystal data

  • C18H21N2O4 +·NO3

  • M r = 391.38

  • Orthorhombic, Inline graphic

  • a = 9.075 (9) Å

  • b = 15.496 (15) Å

  • c = 14.125 (13) Å

  • V = 1987 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.37 × 0.33 × 0.24 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.963, T max = 0.975

  • 9196 measured reflections

  • 3395 independent reflections

  • 2877 reflections with I > 2σ(I)

  • R int = 0.156

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.115

  • S = 1.00

  • 3395 reflections

  • 258 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810015035/hb5413sup1.cif

e-66-o1224-sup1.cif (20.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015035/hb5413Isup2.hkl

e-66-o1224-Isup2.hkl (166.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O5i 0.86 1.90 2.752 (3) 171

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

In recent years, the design and construction of metal-organic frameworks through the coordination of metal ions with multifunctional organic ligands have received extensive attention due to their impressive structural diversities in architectures and their potential applications as functional materials (Zhang et al., 2003). Whereas, it is more important to design the novel organic ligand. Here, we describe the recystallization and structural characterization of the title compound.

The molecular structure is shown in Fig 1. The dihedral angle between the two pyridine rings is 61.24 (8) °. N—H···O and N—H···N hydrogen bonding between the cations and anions leads to a consolidation of the structure (Fig. 2; Table 1).

Experimental

A mixture of 2,6-dimethyl-4-(4-pyridyl)pyridine-3,5-dicarboxylate (1 mmol, 0.39 g) and ammonium nitrate (2 mmol, 0.16 g) in 20 ml ethanol was refluxed for half an hour. The obtained filtrate was evaporated in one open flask at room temperature. One week later, yellow blocks of (I) were obained. Anal. C20H22NO7: C, 55.61; H, 5.41; N, 7.21 %. Found: C, 55.56; H, 5.33; N, 7.10 %.

Refinement

The absolute structure of (I) is indeterminate based on the present model. All hydrogen atoms bound to aromatic carbon atoms were refined in calculated positions using a riding model with a C—H distance of 0.93 Å and Uiso = 1.2Ueq(C). Hydrogen atoms attached to aromatic N atoms were refined with a N—H distance of 0.86 Å and Uiso = 1.2Ueq(N).

Figures

Fig. 1.

Fig. 1.

The moleular structure of (I) with displacement ellipsoids drawn at the 30% probability level; H atoms are given as spheres of arbitrary radius.

Crystal data

C18H21N2O4+·NO3 F(000) = 824
Mr = 391.38 Dx = 1.309 Mg m3
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 3948 reflections
a = 9.075 (9) Å θ = 2.2–25.9°
b = 15.496 (15) Å µ = 0.10 mm1
c = 14.125 (13) Å T = 296 K
V = 1987 (3) Å3 Block, yellow
Z = 4 0.37 × 0.33 × 0.24 mm

Data collection

Bruker APEXII CCD diffractometer 3395 independent reflections
Radiation source: fine-focus sealed tube 2877 reflections with I > 2σ(I)
graphite Rint = 0.156
phi and ω scans θmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −10→10
Tmin = 0.963, Tmax = 0.975 k = −18→10
9196 measured reflections l = −15→16

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043 H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.069P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max = 0.001
3395 reflections Δρmax = 0.17 e Å3
258 parameters Δρmin = −0.20 e Å3
1 restraint Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0134 (12)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.10369 (19) 1.05766 (11) 0.20140 (17) 0.0498 (5)
H1 −0.2022 1.0738 0.1979 0.060*
C2 −0.06618 (18) 0.97534 (10) 0.22947 (15) 0.0460 (5)
H2 −0.1393 0.9361 0.2460 0.055*
C3 0.08043 (17) 0.95128 (10) 0.23295 (14) 0.0372 (4)
C4 0.18687 (19) 1.01225 (10) 0.20996 (15) 0.0476 (5)
H4 0.2863 0.9980 0.2128 0.057*
C5 0.14389 (18) 1.09410 (11) 0.18284 (16) 0.0496 (5)
H5 0.2145 1.1352 0.1671 0.060*
C6 0.12219 (17) 0.86086 (9) 0.26006 (13) 0.0352 (4)
C7 0.20576 (18) 0.84398 (10) 0.34073 (13) 0.0389 (4)
C8 0.24140 (19) 0.75802 (10) 0.36386 (14) 0.0420 (4)
C9 0.10982 (18) 0.70663 (10) 0.23457 (14) 0.0404 (4)
C10 0.07328 (16) 0.79095 (9) 0.20499 (13) 0.0365 (4)
C11 0.0619 (2) 0.62888 (10) 0.1782 (2) 0.0585 (6)
H11A 0.0733 0.5778 0.2161 0.088*
H11B 0.1214 0.6241 0.1223 0.088*
H11C −0.0397 0.6352 0.1605 0.088*
C12 0.3328 (3) 0.73555 (13) 0.44732 (18) 0.0596 (6)
H12A 0.3463 0.6742 0.4498 0.089*
H12B 0.2842 0.7546 0.5039 0.089*
H12C 0.4270 0.7633 0.4422 0.089*
C13 −0.00568 (19) 0.80402 (10) 0.11383 (15) 0.0428 (5)
C14 0.0243 (3) 0.85562 (17) −0.0438 (2) 0.0784 (7)
H14A 0.0605 0.9081 −0.0731 0.094*
H14B −0.0825 0.8571 −0.0447 0.094*
C15 0.0777 (6) 0.77990 (19) −0.0969 (3) 0.1235 (14)
H15A 0.1834 0.7783 −0.0949 0.185*
H15B 0.0455 0.7838 −0.1615 0.185*
H15C 0.0388 0.7282 −0.0689 0.185*
C16 0.2496 (2) 0.91621 (11) 0.40602 (15) 0.0482 (5)
C17 0.4449 (3) 1.00763 (16) 0.4561 (2) 0.0846 (8)
H17A 0.3935 1.0611 0.4428 0.102*
H17B 0.4291 0.9931 0.5221 0.102*
C18 0.5981 (3) 1.0179 (2) 0.4383 (3) 0.1241 (13)
H18A 0.6478 0.9642 0.4494 0.186*
H18B 0.6373 1.0613 0.4798 0.186*
H18C 0.6126 1.0352 0.3737 0.186*
N3 0.53347 (15) 0.16998 (8) 0.17481 (14) 0.0488 (4)
N1 0.19326 (16) 0.69168 (8) 0.31060 (12) 0.0440 (4)
N2 0.00187 (16) 1.11408 (8) 0.17919 (14) 0.0484 (4)
H2A −0.0231 1.1652 0.1619 0.058*
O1 −0.12303 (17) 0.77548 (12) 0.09504 (13) 0.0770 (5)
O2 0.07701 (15) 0.85022 (8) 0.05417 (12) 0.0595 (4)
O3 0.38730 (15) 0.93821 (9) 0.39511 (13) 0.0643 (4)
O4 0.16624 (19) 0.94931 (12) 0.46120 (15) 0.0888 (6)
O5 0.43298 (14) 0.21643 (8) 0.14155 (13) 0.0615 (4)
O6 0.64708 (15) 0.20368 (9) 0.20110 (18) 0.0856 (6)
O7 0.51772 (17) 0.09067 (8) 0.17934 (19) 0.0873 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0446 (8) 0.0371 (9) 0.0676 (15) 0.0042 (7) −0.0064 (9) −0.0048 (9)
C2 0.0444 (8) 0.0322 (8) 0.0613 (13) −0.0021 (7) 0.0003 (9) −0.0025 (9)
C3 0.0448 (8) 0.0281 (7) 0.0388 (10) −0.0001 (6) −0.0026 (7) −0.0020 (7)
C4 0.0435 (8) 0.0332 (8) 0.0660 (14) −0.0010 (6) 0.0001 (9) 0.0057 (8)
C5 0.0494 (8) 0.0338 (8) 0.0657 (14) −0.0061 (7) 0.0023 (10) 0.0049 (9)
C6 0.0384 (7) 0.0260 (7) 0.0411 (11) 0.0003 (6) 0.0040 (7) −0.0009 (7)
C7 0.0420 (8) 0.0316 (7) 0.0429 (11) 0.0000 (6) 0.0031 (8) −0.0030 (7)
C8 0.0477 (8) 0.0370 (8) 0.0414 (11) 0.0053 (7) 0.0047 (8) 0.0016 (8)
C9 0.0439 (8) 0.0279 (7) 0.0495 (12) −0.0014 (6) 0.0080 (8) −0.0044 (7)
C10 0.0386 (7) 0.0275 (7) 0.0434 (11) −0.0017 (6) 0.0034 (7) −0.0042 (7)
C11 0.0677 (11) 0.0310 (8) 0.0768 (16) −0.0052 (7) −0.0037 (12) −0.0144 (9)
C12 0.0761 (13) 0.0506 (11) 0.0519 (14) 0.0082 (9) −0.0100 (11) 0.0058 (10)
C13 0.0418 (8) 0.0355 (8) 0.0513 (12) 0.0007 (7) −0.0003 (8) −0.0081 (8)
C14 0.0979 (16) 0.0791 (14) 0.0582 (17) −0.0109 (13) −0.0182 (13) 0.0275 (13)
C15 0.211 (4) 0.095 (2) 0.064 (2) 0.013 (2) −0.011 (3) 0.0004 (19)
C16 0.0559 (10) 0.0384 (8) 0.0502 (12) 0.0046 (7) −0.0052 (9) −0.0088 (9)
C17 0.0961 (17) 0.0685 (13) 0.089 (2) −0.0206 (13) −0.0115 (15) −0.0356 (13)
C18 0.0940 (18) 0.126 (2) 0.153 (3) −0.0447 (18) 0.001 (2) −0.069 (2)
N3 0.0451 (7) 0.0320 (6) 0.0694 (12) −0.0002 (6) 0.0099 (8) −0.0050 (8)
N1 0.0547 (8) 0.0281 (6) 0.0493 (10) 0.0016 (6) 0.0050 (7) 0.0034 (7)
N2 0.0615 (9) 0.0258 (6) 0.0578 (11) 0.0058 (6) −0.0071 (8) 0.0018 (7)
O1 0.0578 (8) 0.1056 (12) 0.0677 (12) −0.0226 (8) −0.0104 (8) −0.0015 (9)
O2 0.0662 (8) 0.0590 (7) 0.0533 (10) −0.0079 (7) −0.0060 (7) 0.0137 (7)
O3 0.0663 (8) 0.0602 (7) 0.0664 (11) −0.0137 (6) −0.0004 (8) −0.0270 (8)
O4 0.0803 (10) 0.0871 (10) 0.0990 (14) 0.0011 (8) 0.0135 (10) −0.0543 (10)
O5 0.0521 (7) 0.0398 (6) 0.0925 (13) 0.0035 (5) −0.0088 (7) −0.0036 (7)
O6 0.0535 (7) 0.0432 (7) 0.1601 (19) −0.0011 (6) −0.0234 (10) 0.0018 (10)
O7 0.0748 (8) 0.0284 (6) 0.159 (2) −0.0030 (6) 0.0012 (12) 0.0025 (9)

Geometric parameters (Å, °)

C1—N2 1.334 (2) C12—H12B 0.9600
C1—C2 1.379 (3) C12—H12C 0.9600
C1—H1 0.9300 C13—O1 1.183 (2)
C2—C3 1.383 (3) C13—O2 1.336 (2)
C2—H2 0.9300 C14—O2 1.466 (3)
C3—C4 1.390 (2) C14—C15 1.474 (5)
C3—C6 1.501 (2) C14—H14A 0.9700
C4—C5 1.381 (3) C14—H14B 0.9700
C4—H4 0.9300 C15—H15A 0.9600
C5—N2 1.327 (3) C15—H15B 0.9600
C5—H5 0.9300 C15—H15C 0.9600
C6—C7 1.394 (3) C16—O4 1.201 (3)
C6—C10 1.406 (2) C16—O3 1.304 (3)
C7—C8 1.409 (3) C17—C18 1.422 (4)
C7—C16 1.504 (3) C17—O3 1.474 (3)
C8—N1 1.347 (2) C17—H17A 0.9700
C8—C12 1.483 (3) C17—H17B 0.9700
C9—N1 1.334 (3) C18—H18A 0.9600
C9—C10 1.411 (2) C18—H18B 0.9600
C9—C11 1.508 (3) C18—H18C 0.9600
C10—C13 1.488 (3) N3—O6 1.214 (2)
C11—H11A 0.9600 N3—O7 1.239 (2)
C11—H11B 0.9600 N3—O5 1.253 (2)
C11—H11C 0.9600 N2—H2A 0.8600
C12—H12A 0.9600
N2—C1—C2 119.78 (16) H12B—C12—H12C 109.5
N2—C1—H1 120.1 O1—C13—O2 124.4 (2)
C2—C1—H1 120.1 O1—C13—C10 125.22 (19)
C1—C2—C3 119.82 (16) O2—C13—C10 110.38 (15)
C1—C2—H2 120.1 O2—C14—C15 109.1 (2)
C3—C2—H2 120.1 O2—C14—H14A 109.9
C2—C3—C4 118.51 (16) C15—C14—H14A 109.9
C2—C3—C6 120.24 (14) O2—C14—H14B 109.9
C4—C3—C6 121.24 (15) C15—C14—H14B 109.9
C5—C4—C3 119.53 (16) H14A—C14—H14B 108.3
C5—C4—H4 120.2 C14—C15—H15A 109.5
C3—C4—H4 120.2 C14—C15—H15B 109.5
N2—C5—C4 119.97 (15) H15A—C15—H15B 109.5
N2—C5—H5 120.0 C14—C15—H15C 109.5
C4—C5—H5 120.0 H15A—C15—H15C 109.5
C7—C6—C10 118.67 (14) H15B—C15—H15C 109.5
C7—C6—C3 121.41 (14) O4—C16—O3 124.64 (19)
C10—C6—C3 119.90 (16) O4—C16—C7 123.29 (18)
C6—C7—C8 119.46 (15) O3—C16—C7 112.07 (16)
C6—C7—C16 120.38 (15) C18—C17—O3 109.0 (2)
C8—C7—C16 120.04 (17) C18—C17—H17A 109.9
N1—C8—C7 121.18 (18) O3—C17—H17A 109.9
N1—C8—C12 116.50 (16) C18—C17—H17B 109.9
C7—C8—C12 122.32 (17) O3—C17—H17B 109.9
N1—C9—C10 122.17 (15) H17A—C17—H17B 108.3
N1—C9—C11 116.72 (16) C17—C18—H18A 109.5
C10—C9—C11 121.04 (18) C17—C18—H18B 109.5
C6—C10—C9 118.39 (17) H18A—C18—H18B 109.5
C6—C10—C13 121.75 (15) C17—C18—H18C 109.5
C9—C10—C13 119.71 (15) H18A—C18—H18C 109.5
C9—C11—H11A 109.5 H18B—C18—H18C 109.5
C9—C11—H11B 109.5 O6—N3—O7 120.59 (16)
H11A—C11—H11B 109.5 O6—N3—O5 119.06 (15)
C9—C11—H11C 109.5 O7—N3—O5 120.34 (16)
H11A—C11—H11C 109.5 C9—N1—C8 120.07 (14)
H11B—C11—H11C 109.5 C5—N2—C1 122.38 (15)
C8—C12—H12A 109.5 C5—N2—H2A 118.8
C8—C12—H12B 109.5 C1—N2—H2A 118.8
H12A—C12—H12B 109.5 C13—O2—C14 116.27 (18)
C8—C12—H12C 109.5 C16—O3—C17 117.49 (18)
H12A—C12—H12C 109.5
N2—C1—C2—C3 −1.1 (3) C11—C9—C10—C6 −179.48 (17)
C1—C2—C3—C4 1.6 (3) N1—C9—C10—C13 173.11 (15)
C1—C2—C3—C6 −177.80 (19) C11—C9—C10—C13 −3.8 (2)
C2—C3—C4—C5 −1.1 (3) C6—C10—C13—O1 −124.4 (2)
C6—C3—C4—C5 178.22 (19) C9—C10—C13—O1 60.1 (3)
C3—C4—C5—N2 0.2 (3) C6—C10—C13—O2 57.8 (2)
C2—C3—C6—C7 −117.5 (2) C9—C10—C13—O2 −117.67 (17)
C4—C3—C6—C7 63.1 (3) C6—C7—C16—O4 76.4 (3)
C2—C3—C6—C10 60.7 (3) C8—C7—C16—O4 −99.8 (2)
C4—C3—C6—C10 −118.7 (2) C6—C7—C16—O3 −103.4 (2)
C10—C6—C7—C8 1.3 (2) C8—C7—C16—O3 80.4 (2)
C3—C6—C7—C8 179.50 (16) C10—C9—N1—C8 2.3 (3)
C10—C6—C7—C16 −174.90 (16) C11—C9—N1—C8 179.39 (17)
C3—C6—C7—C16 3.3 (2) C7—C8—N1—C9 −0.2 (3)
C6—C7—C8—N1 −1.6 (3) C12—C8—N1—C9 179.67 (17)
C16—C7—C8—N1 174.62 (16) C4—C5—N2—C1 0.3 (3)
C6—C7—C8—C12 178.55 (17) C2—C1—N2—C5 0.1 (3)
C16—C7—C8—C12 −5.3 (3) O1—C13—O2—C14 −7.9 (3)
C7—C6—C10—C9 0.7 (2) C10—C13—O2—C14 169.90 (17)
C3—C6—C10—C9 −177.59 (15) C15—C14—O2—C13 −85.5 (3)
C7—C6—C10—C13 −174.87 (15) O4—C16—O3—C17 1.1 (3)
C3—C6—C10—C13 6.9 (2) C7—C16—O3—C17 −179.12 (19)
N1—C9—C10—C6 −2.5 (2) C18—C17—O3—C16 176.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2A···O5i 0.86 1.90 2.752 (3) 171

Symmetry codes: (i) x−1/2, −y+3/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5413).

References

  1. Bruker (2001). SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Zhang, X. T., Lu, C. Z., Zhang, Q. Z., Lu, S. F., Yang, W. B., Liu, J. C. & Zhuang, H. H. (2003). Eur. J. Inorg. Chem. pp. 1181–1185.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810015035/hb5413sup1.cif

e-66-o1224-sup1.cif (20.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015035/hb5413Isup2.hkl

e-66-o1224-Isup2.hkl (166.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES