Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Apr 24;66(Pt 5):o1139. doi: 10.1107/S1600536810014364

(E)-1-(2,5-Dichloro-3-thien­yl)-3-[4-(dimethyl­amino)phen­yl]prop-2-en-1-one

Grzegorz Dutkiewicz a,*, C S Chidan Kumar b, H S Yathirajan b, B Narayana c, Maciej Kubicki a
PMCID: PMC2979294  PMID: 21579187

Abstract

In the title compound, C15H13Cl2NOS, the benzene and thio­phene rings make a dihedral angle of 10.8 (1)°. The dimethyl­amino substituent and the α,β-unsaturated carbonyl group are almost coplanar with respect to the aromatic ring, forming dihedral angles of 4.73 (3)° and 5.0 (2)°, respectively. In the crystal structure, mol­ecules are connected into two-dimensional layers by weak C—H⋯Cl hydrogen bonds and C—Cl⋯O [Cl⋯O = 3.073 (2) Å] inter­actions. These layers are stacked with short C(meth­yl)–H⋯π contacts betweeen the layers.

Related literature

For applications of chalcone derivatives, see: Indira et al. (2002); Sarojini et al. (2006); Tomar et al. (2007).graphic file with name e-66-o1139-scheme1.jpg

Experimental

Crystal data

  • C15H13Cl2NOS

  • M r = 326.22

  • Triclinic, Inline graphic

  • a = 7.2637 (9) Å

  • b = 8.1136 (9) Å

  • c = 13.478 (2) Å

  • α = 89.011 (9)°

  • β = 79.71 (1)°

  • γ = 73.07 (1)°

  • V = 747.2 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 295 K

  • 0.6 × 0.3 × 0.3 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with an Eos detector

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.785, T max = 1.000

  • 8710 measured reflections

  • 3152 independent reflections

  • 2403 reflections with I > 2σ(I)

  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.109

  • S = 1.10

  • 3152 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: Stereochemical Workstation Operation Manual (Siemens, 1989) and SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810014364/im2193sup1.cif

e-66-o1139-sup1.cif (18.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810014364/im2193Isup2.hkl

e-66-o1139-Isup2.hkl (151.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16B⋯Cl5i 0.96 2.72 3.664 (2) 168
C16—H16ACgii 0.96 3.01 3.899 (3) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

CSC thanks the University of Mysore for research facilities.

supplementary crystallographic information

Comment

Chalcones derivatives are known for their interesting pharmacological activities. Radical quenching properties of the phenolic groups present in many chalcones have raised interest in using the compounds themselves or chalcone rich plant extracts as drugs or food preservatives. Apart from being biologically important compounds, chalcone derivatives show non-linear optical properties with excellent blue light transmittance and good crystallizability (Indira et al., 2002; Sarojini et al., 2006). They provide a necessary configuration to show NLO property with two planar rings connected by a conjugated double bond. Synthesis and antimicrobial evaluation of new chalcones containing a 2,5-dichlorothiophene moiety is reported (Tomar et al., 2007). Here, we report the synthesis and crystal structure of the new chalcone derivative, (2E)-1-(2,5-dichlorothiophen-3-yl)-3-(4-dimethylamino-phenyl)prop-2-en-1-one (I, Scheme 1) .

The molecule as a whole does not deviate significantly from planarity (Fig. 1). Dihedral angles between the constituent planar fragments are relatively small. The two ring planes of the phenyl and thiophene groups make a dihedral angle of 10.8 (1)°. The dimethylamino substituent and the α,β-unsaturated carbonyl moeity are inclined with respect to the phenyl ring plane by 4.73 (3)° and 5.0 (2)°, respectively. The bond lengths pattern within the C(=O)—C=C- fragment shows significant conjugation with shorter formal single bonds compared to formal double bonds that are longer than typical values.

In the crystal structure an intermolecular C–H···Cl hydrogen bond (H···Cl distance 2.72 Å, C–H···Cl angle 168°) and C—Cl···O interactions connect the molecules into approximately planar layers parallel to (101) (Fig. 2). The chlorine oxygen interaction also is almost linear (C2–Cl2···O6 angle of 167.6 (8)°) and relatively short (Cl2···O6 3.073 (2) Å). These layers are stacked on each other showing additional intermolecular C–H···π interactions with H16A···Cg distance of 3.01Å (Cg is the centroid of the phenyl ring).

Experimental

1-(2,5-Dichlorothiophen-3-yl)ethanone (1.95 g, 0.01 mol) was mixed with 4-dimethylamino)-benzaldehyde (1.49 g, 0.01 mol) and dissolved in ethanol (30 ml). 3 ml of KOH (50%) was added to this solution. The reaction mixture was stirred for 6 hours. The resulting crude solid was filtered, washed successively with distilled water and finally recrystallized from ethanol (95%) to give the pure chalcone. Crystals suitable for x-ray diffraction studies were grown by slow evaporation of solution in toluene (M.P.: 358 K).

Refinement

H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C–H = 0.93 Å and Uiso(H) = 1.2 Ueq(C) for phenyl hydrogen and olefinic CH groups and with 0.96 Å and Uiso(H) = 1.5 Ueq(C) for CH3 groups.

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

Crystal packing of (I) viewed along the b axis. C–H···Cl hydrogen bonds and C—Cl···O interactions are shown as dashed lines.

Fig. 3.

Fig. 3.

C–H···π interactions in the stack of molecules (I).

Crystal data

C15H13Cl2NOS Z = 2
Mr = 326.22 F(000) = 336
Triclinic, P1 Dx = 1.450 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.2637 (9) Å Cell parameters from 5611 reflections
b = 8.1136 (9) Å θ = 2.6–28.2°
c = 13.478 (2) Å µ = 0.57 mm1
α = 89.011 (9)° T = 295 K
β = 79.71 (1)° Block, yellow
γ = 73.07 (1)° 0.6 × 0.3 × 0.3 mm
V = 747.2 (2) Å3

Data collection

Oxford Diffraction Xcalibur diffractometer with an Eos detector 3152 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2403 reflections with I > 2σ(I)
graphite Rint = 0.018
Detector resolution: 16.1544 pixels mm-1 θmax = 28.3°, θmin = 2.6°
ω scan h = −9→9
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) k = −10→10
Tmin = 0.785, Tmax = 1.000 l = −17→17
8710 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0546P)2 + 0.1725P] where P = (Fo2 + 2Fc2)/3
3152 reflections (Δ/σ)max = 0.001
184 parameters Δρmax = 0.37 e Å3
0 restraints Δρmin = −0.40 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.67788 (8) 0.11979 (8) 1.11606 (4) 0.05238 (18)
Cl2 0.49256 (8) 0.25700 (9) 0.94627 (4) 0.0620 (2)
C2 0.6887 (3) 0.2294 (3) 1.00611 (14) 0.0407 (4)
C3 0.8555 (3) 0.2780 (2) 0.98033 (14) 0.0383 (4)
C4 0.9777 (3) 0.2234 (3) 1.05438 (15) 0.0431 (5)
H4A 1.0980 0.2443 1.0507 0.052*
Cl5 1.00237 (10) 0.05512 (9) 1.23148 (4) 0.0699 (2)
C5 0.9014 (3) 0.1398 (3) 1.12908 (15) 0.0454 (5)
C6 0.9255 (3) 0.3667 (3) 0.89011 (15) 0.0432 (5)
O6 1.0970 (2) 0.3669 (2) 0.87491 (13) 0.0636 (5)
C7 0.7927 (3) 0.4499 (3) 0.82226 (16) 0.0473 (5)
H7A 0.6621 0.4519 0.8378 0.057*
C8 0.8548 (3) 0.5232 (3) 0.73845 (16) 0.0456 (5)
H8A 0.9845 0.5242 0.7283 0.055*
C9 0.7452 (3) 0.6010 (2) 0.66156 (15) 0.0412 (4)
C10 0.5490 (3) 0.6086 (3) 0.66361 (15) 0.0435 (5)
H10A 0.4820 0.5665 0.7188 0.052*
C11 0.4534 (3) 0.6765 (3) 0.58656 (15) 0.0435 (5)
H11A 0.3233 0.6795 0.5908 0.052*
C12 0.5478 (3) 0.7420 (2) 0.50101 (14) 0.0399 (4)
C13 0.7440 (3) 0.7332 (3) 0.49862 (16) 0.0489 (5)
H13A 0.8125 0.7735 0.4432 0.059*
C14 0.8364 (3) 0.6662 (3) 0.57683 (16) 0.0500 (5)
H14A 0.9662 0.6641 0.5731 0.060*
N15 0.4527 (3) 0.8088 (2) 0.42422 (14) 0.0527 (5)
C16 0.2469 (4) 0.8283 (3) 0.4313 (2) 0.0669 (7)
H16A 0.2267 0.7165 0.4308 0.100*
H16B 0.2015 0.8906 0.3749 0.100*
H16C 0.1756 0.8906 0.4929 0.100*
C17 0.5519 (4) 0.8642 (4) 0.33356 (17) 0.0657 (7)
H17A 0.5962 0.9594 0.3497 0.098*
H17B 0.4636 0.8996 0.2868 0.098*
H17C 0.6623 0.7707 0.3037 0.098*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0501 (3) 0.0691 (4) 0.0431 (3) −0.0253 (3) −0.0097 (2) 0.0124 (3)
Cl2 0.0468 (3) 0.0961 (5) 0.0581 (4) −0.0360 (3) −0.0242 (3) 0.0189 (3)
C2 0.0371 (10) 0.0488 (11) 0.0378 (10) −0.0123 (9) −0.0117 (8) 0.0027 (8)
C3 0.0376 (10) 0.0399 (10) 0.0387 (10) −0.0103 (8) −0.0124 (8) 0.0024 (8)
C4 0.0383 (10) 0.0475 (12) 0.0464 (11) −0.0125 (9) −0.0160 (9) 0.0042 (9)
Cl5 0.0750 (4) 0.0881 (5) 0.0490 (3) −0.0178 (3) −0.0300 (3) 0.0209 (3)
C5 0.0479 (11) 0.0516 (12) 0.0372 (10) −0.0104 (9) −0.0162 (9) 0.0060 (9)
C6 0.0400 (10) 0.0458 (11) 0.0467 (11) −0.0139 (9) −0.0138 (9) 0.0059 (9)
O6 0.0461 (9) 0.0881 (12) 0.0681 (11) −0.0317 (8) −0.0226 (8) 0.0325 (9)
C7 0.0437 (11) 0.0525 (12) 0.0500 (12) −0.0165 (10) −0.0170 (9) 0.0138 (10)
C8 0.0436 (11) 0.0482 (12) 0.0490 (12) −0.0165 (9) −0.0139 (9) 0.0072 (9)
C9 0.0448 (11) 0.0398 (11) 0.0408 (10) −0.0144 (9) −0.0091 (8) 0.0057 (8)
C10 0.0447 (11) 0.0474 (12) 0.0389 (10) −0.0165 (9) −0.0046 (8) 0.0086 (9)
C11 0.0382 (10) 0.0496 (12) 0.0436 (11) −0.0148 (9) −0.0078 (8) 0.0083 (9)
C12 0.0451 (11) 0.0370 (10) 0.0379 (10) −0.0119 (8) −0.0085 (8) 0.0044 (8)
C13 0.0474 (12) 0.0568 (13) 0.0456 (12) −0.0226 (10) −0.0054 (9) 0.0145 (10)
C14 0.0404 (11) 0.0612 (14) 0.0528 (13) −0.0217 (10) −0.0098 (9) 0.0138 (10)
N15 0.0540 (11) 0.0618 (12) 0.0466 (10) −0.0205 (9) −0.0163 (8) 0.0205 (8)
C16 0.0601 (15) 0.0778 (17) 0.0707 (16) −0.0228 (13) −0.0302 (13) 0.0236 (13)
C17 0.0734 (17) 0.0800 (17) 0.0454 (13) −0.0247 (14) −0.0132 (12) 0.0191 (12)

Geometric parameters (Å, °)

S1—C2 1.717 (2) C10—C11 1.371 (3)
S1—C5 1.717 (2) C10—H10A 0.9300
Cl2—C2 1.7175 (19) C11—C12 1.411 (3)
C2—C3 1.366 (3) C11—H11A 0.9300
C3—C4 1.433 (3) C12—N15 1.364 (3)
C3—C6 1.489 (3) C12—C13 1.401 (3)
C4—C5 1.333 (3) C13—C14 1.371 (3)
C4—H4A 0.9300 C13—H13A 0.9300
Cl5—C5 1.718 (2) C14—H14A 0.9300
C6—O6 1.226 (2) N15—C17 1.439 (3)
C6—C7 1.462 (3) N15—C16 1.443 (3)
C7—C8 1.335 (3) C16—H16A 0.9600
C7—H7A 0.9300 C16—H16B 0.9600
C8—C9 1.444 (3) C16—H16C 0.9600
C8—H8A 0.9300 C17—H17A 0.9600
C9—C14 1.391 (3) C17—H17B 0.9600
C9—C10 1.403 (3) C17—H17C 0.9600
C2—S1—C5 89.86 (10) C10—C11—C12 121.54 (19)
C3—C2—S1 113.70 (14) C10—C11—H11A 119.2
C3—C2—Cl2 130.86 (16) C12—C11—H11A 119.2
S1—C2—Cl2 115.43 (11) N15—C12—C13 121.88 (18)
C2—C3—C4 110.04 (18) N15—C12—C11 121.47 (19)
C2—C3—C6 130.73 (17) C13—C12—C11 116.65 (18)
C4—C3—C6 119.18 (17) C14—C13—C12 120.89 (19)
C5—C4—C3 113.12 (18) C14—C13—H13A 119.6
C5—C4—H4A 123.4 C12—C13—H13A 119.6
C3—C4—H4A 123.4 C13—C14—C9 123.04 (19)
C4—C5—S1 113.29 (15) C13—C14—H14A 118.5
C4—C5—Cl5 127.12 (17) C9—C14—H14A 118.5
S1—C5—Cl5 119.59 (13) C12—N15—C17 121.73 (19)
O6—C6—C7 121.58 (19) C12—N15—C16 121.05 (19)
O6—C6—C3 117.89 (17) C17—N15—C16 117.22 (19)
C7—C6—C3 120.54 (17) N15—C16—H16A 109.5
C8—C7—C6 121.49 (19) N15—C16—H16B 109.5
C8—C7—H7A 119.3 H16A—C16—H16B 109.5
C6—C7—H7A 119.3 N15—C16—H16C 109.5
C7—C8—C9 127.96 (19) H16A—C16—H16C 109.5
C7—C8—H8A 116.0 H16B—C16—H16C 109.5
C9—C8—H8A 116.0 N15—C17—H17A 109.5
C14—C9—C10 116.05 (18) N15—C17—H17B 109.5
C14—C9—C8 120.06 (18) H17A—C17—H17B 109.5
C10—C9—C8 123.80 (18) N15—C17—H17C 109.5
C11—C10—C9 121.81 (18) H17A—C17—H17C 109.5
C11—C10—H10A 119.1 H17B—C17—H17C 109.5
C9—C10—H10A 119.1
C5—S1—C2—C3 0.36 (17) C6—C7—C8—C9 176.1 (2)
C5—S1—C2—Cl2 179.45 (13) C7—C8—C9—C14 −177.7 (2)
S1—C2—C3—C4 −0.3 (2) C7—C8—C9—C10 −1.0 (4)
Cl2—C2—C3—C4 −179.25 (16) C14—C9—C10—C11 0.0 (3)
S1—C2—C3—C6 176.89 (17) C8—C9—C10—C11 −176.8 (2)
Cl2—C2—C3—C6 −2.0 (4) C9—C10—C11—C12 0.1 (3)
C2—C3—C4—C5 0.1 (3) C10—C11—C12—N15 179.72 (19)
C6—C3—C4—C5 −177.47 (18) C10—C11—C12—C13 0.3 (3)
C3—C4—C5—S1 0.1 (2) N15—C12—C13—C14 179.7 (2)
C3—C4—C5—Cl5 −179.88 (15) C11—C12—C13—C14 −0.9 (3)
C2—S1—C5—C4 −0.28 (18) C12—C13—C14—C9 1.0 (4)
C2—S1—C5—Cl5 179.74 (14) C10—C9—C14—C13 −0.5 (3)
C2—C3—C6—O6 −166.3 (2) C8—C9—C14—C13 176.4 (2)
C4—C3—C6—O6 10.7 (3) C13—C12—N15—C17 4.0 (3)
C2—C3—C6—C7 13.5 (3) C11—C12—N15—C17 −175.4 (2)
C4—C3—C6—C7 −169.47 (18) C13—C12—N15—C16 −175.5 (2)
O6—C6—C7—C8 3.0 (3) C11—C12—N15—C16 5.2 (3)
C3—C6—C7—C8 −176.8 (2)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the phenyl ring.
D—H···A D—H H···A D···A D—H···A
C16—H16B···Cl5i 0.96 2.72 3.664 (2) 168
C16—H16A···Cgii 0.96 3.01 3.899 (3) 155

Symmetry codes: (i) x−1, y+1, z−1; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2193).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst 26, 343–350.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Indira, J., Karat, P. P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209–214.
  4. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst.41, 466–470.
  5. Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  6. Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54–59.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Siemens (1989). Stereochemical Workstation Operation Manual Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  9. Tomar, V., Bhattacharjee, G., Kamaluddin & Kumar, A. (2007). Bioorg. Med. Chem. Lett.17, 5321–5324. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810014364/im2193sup1.cif

e-66-o1139-sup1.cif (18.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810014364/im2193Isup2.hkl

e-66-o1139-Isup2.hkl (151.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES