Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Apr 10;66(Pt 5):o1028. doi: 10.1107/S1600536810012006

Methyl 2-(1,1,3-trioxo-2,3-dihydro-1,2-benzothia­zol-2-yl)acetate: a monoclinic polymorph

Muhammad Zia-ur-Rehman a,*, Muhammad Nadeem Arshad b, Shafaq Mubarak a, Islam Ullah Khan b
PMCID: PMC2979295  PMID: 21579092

Abstract

In the title compound, C10H9NO5S, the fused ring system and the planar (r.m.s. deviation = 0.0037 Å) methoxy­carbonyl­methyl side chain form a dihedral angle of 84.67 (10)°. The crystal structure is stabilized by inter­molecular C—H⋯O hydrogen bonds. A triclinic polymorph of the title compound is already known [Siddiqui et al. (2008). Acta Cryst. E64, o859].

Related literature

For the synthesis and biological activity of related compounds, see: Ahmad et al. (2010); Zia-ur-Rehman et al. (2005, 2006, 2007). For a related structure, see: Arshad et al. (2009). For the triclinic polymorph, see: Siddiqui et al. (2008).graphic file with name e-66-o1028-scheme1.jpg

Experimental

Crystal data

  • C10H9NO5S

  • M r = 255.24

  • Monoclinic, Inline graphic

  • a = 8.9418 (4) Å

  • b = 12.7595 (6) Å

  • c = 10.3145 (5) Å

  • β = 107.300 (1)°

  • V = 1123.57 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 296 K

  • 0.43 × 0.41 × 0.13 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.883, T max = 0.962

  • 12621 measured reflections

  • 2796 independent reflections

  • 2022 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.115

  • S = 1.03

  • 2796 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810012006/bt5235sup1.cif

e-66-o1028-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012006/bt5235Isup2.hkl

e-66-o1028-Isup2.hkl (134.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯O1i 0.97 2.46 3.371 (3) 156
C2—H2⋯O4ii 0.93 2.59 3.455 (3) 155
C3—H3⋯O2ii 0.93 2.50 3.331 (3) 148
C10—H10C⋯O2iii 0.96 2.52 3.419 (3) 156

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors are grateful to PCSIR Laboratories Complex, Lahore, Pakistan, for the provision of necessary chemicals and to the Higher Education Commission of Pakistan for a grant for the purchase of the diffractometer.

supplementary crystallographic information

Comment

A triclinic polymorph (Siddiqui et al., 2008) of the title compound, methyl (1,1-dioxido-3-oxo-1,2-benzisothiazol-2(3H)-yl)acetate (I), has already been reported. In continuation of our work on the synthesis (Zia-ur-Rehman et al., 2006; Ahmad et al., 2010), and crystal structures (Zia-ur-Rehman et al., 2007; Arshad et al., 2009) of various 1,2-benzothiazine-1,1-dioxides, we have been able to crystallize a monoclinic polymorph of the title compound. The methoxycarbonylmethyl side chain is oriented at a dihedral angle of 84.67 (10)° with respect to the fused ring system. The molecules are connected by intermolecular C–H···O interactions giving rise to a three dimentional network.

Experimental

The title compound was prepared following the procedure reported earlier (Zia-ur-Rehman et al., 2005). Crystals suitable for X-ray crystallography were grown in chloroform by slow evaporation at 313 K.

Refinement

H-atoms were included in the refinement at geometrically idealized positions with aryl, methylene and methyl C—H distances 0.95, 0.99 and 0.98 Å, respectively, and U(H) = 1.2 times Ueq(C).

Figures

Fig. 1.

Fig. 1.

The title molecule with the displacement ellipsoids plotted at 50% probability level.

Crystal data

C10H9NO5S F(000) = 528
Mr = 255.24 Dx = 1.509 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 4707 reflections
a = 8.9418 (4) Å θ = 2.7–26.7°
b = 12.7595 (6) Å µ = 0.30 mm1
c = 10.3145 (5) Å T = 296 K
β = 107.300 (1)° Needles, colourless
V = 1123.57 (9) Å3 0.43 × 0.41 × 0.13 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 2796 independent reflections
Radiation source: fine-focus sealed tube 2022 reflections with I > 2σ(I)
graphite Rint = 0.025
phi and ω scans θmax = 28.4°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −11→11
Tmin = 0.883, Tmax = 0.962 k = −16→17
12621 measured reflections l = −13→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0523P)2 + 0.2836P] where P = (Fo2 + 2Fc2)/3
2796 reflections (Δ/σ)max < 0.001
155 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.32 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.38220 (5) 0.08616 (4) 0.63435 (4) 0.05841 (18)
O1 0.16399 (18) 0.16167 (11) 0.27984 (13) 0.0700 (4)
O2 0.33381 (18) 0.13244 (13) 0.74048 (13) 0.0744 (4)
O3 0.54303 (16) 0.05974 (16) 0.66339 (16) 0.0892 (5)
O4 0.17124 (19) 0.34008 (12) 0.54605 (16) 0.0776 (4)
O5 0.33001 (19) 0.44091 (12) 0.46863 (15) 0.0729 (4)
N1 0.3269 (2) 0.16078 (13) 0.49608 (15) 0.0602 (4)
C1 0.25915 (19) −0.01610 (14) 0.55496 (17) 0.0491 (4)
C2 0.2399 (3) −0.11272 (17) 0.6095 (2) 0.0649 (5)
H2 0.2951 −0.1303 0.6984 0.078*
C3 0.1358 (3) −0.18129 (17) 0.5268 (2) 0.0720 (6)
H3 0.1196 −0.2466 0.5605 0.086*
C4 0.0549 (3) −0.15539 (16) 0.3951 (2) 0.0681 (6)
H4 −0.0144 −0.2036 0.3413 0.082*
C5 0.0746 (2) −0.05929 (15) 0.3415 (2) 0.0556 (4)
H5 0.0201 −0.0423 0.2523 0.067*
C6 0.17697 (18) 0.01082 (13) 0.42324 (16) 0.0449 (4)
C7 0.2156 (2) 0.11722 (15) 0.38655 (17) 0.0508 (4)
C8 0.3914 (3) 0.26501 (17) 0.4912 (2) 0.0697 (6)
H8A 0.4143 0.2735 0.4056 0.084*
H8B 0.4892 0.2714 0.5636 0.084*
C9 0.2822 (2) 0.35100 (16) 0.50537 (18) 0.0603 (5)
C10 0.2369 (3) 0.53266 (18) 0.4757 (2) 0.0805 (7)
H10A 0.1314 0.5223 0.4189 0.121*
H10B 0.2809 0.5930 0.4450 0.121*
H10C 0.2368 0.5433 0.5678 0.121*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0530 (3) 0.0830 (4) 0.0369 (2) 0.0002 (2) 0.00972 (18) −0.0025 (2)
O1 0.0958 (11) 0.0643 (9) 0.0439 (7) 0.0047 (7) 0.0117 (7) 0.0109 (6)
O2 0.0837 (10) 0.0975 (11) 0.0418 (7) −0.0028 (8) 0.0183 (7) −0.0136 (7)
O3 0.0478 (8) 0.1463 (16) 0.0655 (10) 0.0058 (9) 0.0046 (7) −0.0070 (10)
O4 0.0842 (10) 0.0759 (10) 0.0847 (11) −0.0175 (8) 0.0436 (9) 0.0019 (8)
O5 0.0924 (11) 0.0655 (9) 0.0701 (9) −0.0261 (8) 0.0383 (8) −0.0062 (7)
N1 0.0750 (10) 0.0620 (10) 0.0416 (8) −0.0159 (8) 0.0140 (7) −0.0033 (7)
C1 0.0490 (9) 0.0595 (10) 0.0414 (8) 0.0098 (8) 0.0176 (7) 0.0036 (7)
C2 0.0748 (13) 0.0683 (13) 0.0589 (12) 0.0215 (10) 0.0312 (10) 0.0200 (10)
C3 0.0869 (15) 0.0536 (12) 0.0892 (16) 0.0044 (11) 0.0471 (13) 0.0101 (11)
C4 0.0695 (13) 0.0585 (12) 0.0837 (15) −0.0092 (10) 0.0340 (11) −0.0112 (11)
C5 0.0519 (10) 0.0594 (11) 0.0543 (10) 0.0007 (8) 0.0139 (8) −0.0039 (8)
C6 0.0437 (8) 0.0503 (9) 0.0416 (8) 0.0061 (7) 0.0140 (7) 0.0016 (7)
C7 0.0589 (10) 0.0548 (10) 0.0387 (9) 0.0022 (8) 0.0146 (8) −0.0011 (7)
C8 0.0799 (14) 0.0725 (14) 0.0637 (12) −0.0248 (11) 0.0319 (11) −0.0117 (10)
C9 0.0734 (13) 0.0662 (12) 0.0434 (10) −0.0248 (10) 0.0203 (9) −0.0088 (8)
C10 0.1110 (19) 0.0673 (14) 0.0676 (14) −0.0142 (13) 0.0335 (13) −0.0033 (11)

Geometric parameters (Å, °)

S1—O3 1.4196 (15) C3—C4 1.376 (3)
S1—O2 1.4199 (14) C3—H3 0.9300
S1—N1 1.6630 (16) C4—C5 1.378 (3)
S1—C1 1.7457 (19) C4—H4 0.9300
O1—C7 1.202 (2) C5—C6 1.375 (2)
O4—C9 1.194 (2) C5—H5 0.9300
O5—C9 1.319 (2) C6—C7 1.478 (3)
O5—C10 1.451 (3) C8—C9 1.505 (3)
N1—C7 1.381 (2) C8—H8A 0.9700
N1—C8 1.456 (3) C8—H8B 0.9700
C1—C6 1.382 (2) C10—H10A 0.9600
C1—C2 1.387 (3) C10—H10B 0.9600
C2—C3 1.374 (3) C10—H10C 0.9600
C2—H2 0.9300
O3—S1—O2 117.25 (9) C6—C5—H5 120.8
O3—S1—N1 109.94 (10) C4—C5—H5 120.8
O2—S1—N1 110.00 (10) C5—C6—C1 120.23 (17)
O3—S1—C1 112.28 (10) C5—C6—C7 127.21 (16)
O2—S1—C1 112.24 (9) C1—C6—C7 112.55 (15)
N1—S1—C1 92.32 (8) O1—C7—N1 123.13 (17)
C9—O5—C10 116.58 (17) O1—C7—C6 127.78 (17)
C7—N1—C8 122.39 (16) N1—C7—C6 109.08 (15)
C7—N1—S1 115.42 (13) N1—C8—C9 112.79 (16)
C8—N1—S1 122.19 (14) N1—C8—H8A 109.0
C6—C1—C2 121.73 (18) C9—C8—H8A 109.0
C6—C1—S1 110.62 (13) N1—C8—H8B 109.0
C2—C1—S1 127.65 (15) C9—C8—H8B 109.0
C3—C2—C1 117.17 (19) H8A—C8—H8B 107.8
C3—C2—H2 121.4 O4—C9—O5 125.2 (2)
C1—C2—H2 121.4 O4—C9—C8 125.44 (19)
C2—C3—C4 121.4 (2) O5—C9—C8 109.32 (17)
C2—C3—H3 119.3 O5—C10—H10A 109.5
C4—C3—H3 119.3 O5—C10—H10B 109.5
C3—C4—C5 121.2 (2) H10A—C10—H10B 109.5
C3—C4—H4 119.4 O5—C10—H10C 109.5
C5—C4—H4 119.4 H10A—C10—H10C 109.5
C6—C5—C4 118.33 (19) H10B—C10—H10C 109.5
O3—S1—N1—C7 115.77 (16) C2—C1—C6—C5 −1.0 (3)
O2—S1—N1—C7 −113.66 (15) S1—C1—C6—C5 179.06 (13)
C1—S1—N1—C7 1.03 (15) C2—C1—C6—C7 179.97 (16)
O3—S1—N1—C8 −64.37 (18) S1—C1—C6—C7 0.06 (18)
O2—S1—N1—C8 66.20 (18) C8—N1—C7—O1 0.0 (3)
C1—S1—N1—C8 −179.10 (16) S1—N1—C7—O1 179.84 (15)
O3—S1—C1—C6 −113.27 (13) C8—N1—C7—C6 179.00 (16)
O2—S1—C1—C6 112.14 (13) S1—N1—C7—C6 −1.14 (19)
N1—S1—C1—C6 −0.60 (13) C5—C6—C7—O1 0.7 (3)
O3—S1—C1—C2 66.84 (19) C1—C6—C7—O1 179.61 (18)
O2—S1—C1—C2 −67.76 (18) C5—C6—C7—N1 −178.26 (17)
N1—S1—C1—C2 179.51 (17) C1—C6—C7—N1 0.6 (2)
C6—C1—C2—C3 0.3 (3) C7—N1—C8—C9 77.7 (2)
S1—C1—C2—C3 −179.82 (14) S1—N1—C8—C9 −102.1 (2)
C1—C2—C3—C4 0.4 (3) C10—O5—C9—O4 −1.6 (3)
C2—C3—C4—C5 −0.4 (3) C10—O5—C9—C8 179.77 (17)
C3—C4—C5—C6 −0.4 (3) N1—C8—C9—O4 16.0 (3)
C4—C5—C6—C1 1.0 (3) N1—C8—C9—O5 −165.36 (16)
C4—C5—C6—C7 179.88 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C8—H8B···O1i 0.97 2.46 3.371 (3) 156
C2—H2···O4ii 0.93 2.59 3.455 (3) 155
C3—H3···O2ii 0.93 2.50 3.331 (3) 148
C10—H10C···O2iii 0.96 2.52 3.419 (3) 156

Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) −x+1/2, y−1/2, −z+3/2; (iii) −x+1/2, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5235).

References

  1. Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem.45, 698–704. [DOI] [PubMed]
  2. Arshad, M. N., Zia-ur-Rehman, M. & Khan, I. U. (2009). Acta Cryst. E65, o2596. [DOI] [PMC free article] [PubMed]
  3. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  5. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Parvez, M. & Rashid, R. (2008). Acta Cryst. E64, o859. [DOI] [PMC free article] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Zia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc 26, 1171–1175.
  10. Zia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull.54, 1175–1178. [DOI] [PubMed]
  11. Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Ahmad, S. (2007). Acta Cryst. E63, o900–o901.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810012006/bt5235sup1.cif

e-66-o1028-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012006/bt5235Isup2.hkl

e-66-o1028-Isup2.hkl (134.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES