Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Apr 14;66(Pt 5):o1058. doi: 10.1107/S1600536810012341

2-Hydroxy­amino-2-oxoacetohydrazide

Oleksandra S Trofymchuk a,*, Svetlana V Pavlova a, Vladimir Bon b, Alexander N Boyko b, Vasily Pekhnyo b
PMCID: PMC2979297  PMID: 21579115

Abstract

In the title compound, C2H5N3O3, the hydroxamic group adopts an anti orientation with respect to the hydrazide group. In the crystal, mol­ecules are connected by N—H⋯O and O—H⋯N hydrogen bonds into zigzag chains along the c axis.

Related literature

For hydroxamic acids in biological chemistry, see: Kaczka et al. (1962); Komatsu et al. (2001). For the use of hydroxamic acids as strong chelating agents, see: Dobosz et al. (1999); Świątek-Kozłowska et al. (2000). For hydroxamic acids as the basis for the synthesis of metallacrowns compounds, see: Bodwin et al. (2001); Gumienna-Kontecka et al. (2007). For related structures, see: Sliva et al. (1997a ,b ); Mokhir et al. (2002); Fritsky et al. (2006); Moroz et al. (2008).graphic file with name e-66-o1058-scheme1.jpg

Experimental

Crystal data

  • C2H5N3O3

  • M r = 119.09

  • Monoclinic, Inline graphic

  • a = 9.3968 (7) Å

  • b = 3.6728 (2) Å

  • c = 12.7510 (8) Å

  • β = 95.598 (5)°

  • V = 437.97 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 77 K

  • 0.12 × 0.10 × 0.07 mm

Data collection

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008) T min = 0.980, T max = 0.988

  • 1149 measured reflections

  • 445 independent reflections

  • 404 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.077

  • S = 1.06

  • 445 reflections

  • 74 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810012341/jh2142sup1.cif

e-66-o1058-sup1.cif (13.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012341/jh2142Isup2.hkl

e-66-o1058-Isup2.hkl (22KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O3i 0.88 2.02 2.813 (5) 149
O1—H1O1⋯N3ii 0.95 1.83 2.740 (4) 161
O1—H1O1⋯N3ii 0.95 1.83 2.740 (4) 161
N3—H1N3⋯O1iii 0.90 2.29 3.013 (3) 137
N3—H2N3⋯O1iv 0.93 2.44 3.024 (4) 121

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors thank the Ministry of Education and Science of Ukraine for financial support (grant No. F28/241–2009). We are grateful to Professor Igor O. Fritsky and Dr Yurii S. Moroz for helpful discussions.

supplementary crystallographic information

Comment

Hydroxamic acids represent an important class of chelating agents and recently have been used for synthesis of metallocrown compounds (Dobosz et al., 1999; Świątek-Kozłowska et al., 2000; Bodwin et al., 2001; Gumienna-Kontecka et al., 2007). Besides, it is known that hydroxamic acids can act as inhibitors of enzymes as well as promising antitumor agents (Kaczka et al.,1962; Komatsu et al., 2001). Therefore, study of new hydroxamic acids is timely and important research topic. As a part of our on-going work, we report the structure of the title compound (1), which comprises several groups capable to form hydrogen bond interactions.

The molecular structure of (1) is shown in Fig. 1. The hydroxamic group is in anti-position with respect to the hydrazide group. The carbonyl groups are in trans-position with respect to each other, and the NH2 group is cis with respect to the hydrazide carbonyl and the OH group is cis with respect to the hydroxamic carbonyl. The C1—N1 , N1—O1 , C1—O2, C2—O3, C2—N2, N2—N3 bond lengths are 1.319 (5) Å, 1.381 (5) Å, 1.242 (6) Å, 1.220 (5) Å, 1.321 (4) Å and 1.422 (6) Å respectively, adopt typical values to the hydroxamic and hydrazide groups (Sliva et al., 1997a, b); Mokhir et al., 2002; Fritsky et al., 2006; Moroz et al., 2008).

In the crystal the molecules are connected by N—H···O, O—H···N hydrogen bonds (Table 1, Fig. 2) into supramolecular zig-zag chains along the c-axis.

Experimental

Compound (1) was synthesized as a white powder precipitate by addition of 1 equiv. of N2H4. H2O to cooled ethanol solution of ethyl- 2-(hydroxyamino)-2-oxoacetate (250 mmol) following by recrystallization of the resulting product from water. Single crystals suitable for X-ray structure analysis were obtained by slow evaporation of aqueous solution at room temperature. 1H NMR (400 MHz, DMSO-d6, δ): 4.482 (s, 2H, NH2); 9.193 (br s, 1H, NH); 9.991(s, 1H, NH); 11.435 (br s, 1H, OH) ppm. 13C NMR (CDCl3, 100 MHz, δ): 162.07, 163.219 ppm.

Refinement

The hydrogen atoms were located from the difference Fourier map and were constrained to ride on their parent atoms with Uĩso = 1.2–1.5 Ueq(parent atom). The highest peak is located 0.77 Å from atom C1 and the deepest hole is located 0.81 Å from atom N2. In the absence of significant anomalous scattering effects, 150 Friedel pairs were averaged in the final refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (1), with 40% probability displacement ellipsoids showing the atom-numbering scheme employed.

Fig. 2.

Fig. 2.

A packing diagram for (1) compound. Hydrogen bonds are indicated by dashed lines.

Crystal data

C2H5N3O3 F(000) = 248
Mr = 119.09 Dx = 1.806 Mg m3
Monoclinic, Cc Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2yc Cell parameters from 1149 reflections
a = 9.3968 (7) Å θ = 3.2–26.5°
b = 3.6728 (2) Å µ = 0.17 mm1
c = 12.7510 (8) Å T = 77 K
β = 95.598 (5)° Block, colourless
V = 437.97 (5) Å3 0.12 × 0.10 × 0.07 mm
Z = 4

Data collection

Bruker APEXII diffractometer 445 independent reflections
Radiation source: fine-focus sealed tube 404 reflections with I > 2σ(I)
horizontally mounted graphite crystal Rint = 0.021
Detector resolution: 9 pixels mm-1 θmax = 26.5°, θmin = 3.2°
φ scans and ω scans with κ offset h = −10→11
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) k = −4→4
Tmin = 0.980, Tmax = 0.988 l = −15→15
1149 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0363P)2 + 0.3945P] where P = (Fo2 + 2Fc2)/3
445 reflections (Δ/σ)max < 0.001
74 parameters Δρmax = 0.19 e Å3
3 restraints Δρmin = −0.20 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.4570 (5) 0.6710 (10) 0.8492 (3) 0.0187 (10)
C2 0.4385 (4) 0.8528 (9) 0.7408 (3) 0.0149 (9)
N1 0.3439 (4) 0.7171 (8) 0.9018 (3) 0.0185 (8)
H1N1 0.2695 0.8396 0.8732 0.022*
N2 0.5546 (4) 0.8238 (9) 0.6907 (3) 0.0199 (8)
H1N2 0.6295 0.7036 0.7194 0.024*
N3 0.5578 (4) 0.9881 (9) 0.5899 (3) 0.0215 (9)
H1N3 0.6479 1.0696 0.5880 0.032*
H2N3 0.5534 0.8113 0.5371 0.032*
O1 0.3428 (3) 0.5725 (8) 1.0016 (2) 0.0249 (8)
H1O1 0.4139 0.6969 1.0456 0.037*
O2 0.5674 (3) 0.5033 (7) 0.8820 (2) 0.0236 (8)
O3 0.3288 (3) 1.0094 (7) 0.7077 (2) 0.0248 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.016 (3) 0.0199 (18) 0.020 (2) 0.0004 (15) 0.0007 (17) −0.0040 (15)
C2 0.016 (2) 0.0162 (16) 0.013 (2) 0.0003 (14) 0.0037 (17) −0.0026 (14)
N1 0.0142 (17) 0.0252 (17) 0.0162 (19) 0.0030 (13) 0.0019 (14) 0.0015 (14)
N2 0.0194 (19) 0.0256 (16) 0.015 (2) 0.0059 (14) 0.0050 (14) 0.0019 (14)
N3 0.020 (2) 0.0287 (16) 0.017 (2) 0.0034 (13) 0.0093 (15) 0.0020 (14)
O1 0.0266 (19) 0.0337 (15) 0.0150 (17) −0.0005 (13) 0.0048 (13) 0.0048 (14)
O2 0.018 (2) 0.0294 (17) 0.024 (2) 0.0081 (12) 0.0057 (16) 0.0060 (12)
O3 0.020 (2) 0.0373 (18) 0.0173 (19) 0.0095 (12) 0.0025 (16) 0.0031 (12)

Geometric parameters (Å, °)

C1—O2 1.243 (6) N1—H1N1 0.8800
C1—N1 1.322 (4) N2—N3 1.422 (6)
C1—C2 1.530 (4) N2—H1N2 0.8800
C2—O3 1.220 (5) N3—H1N3 0.9009
C2—N2 1.321 (4) N3—H2N3 0.9332
N1—O1 1.380 (5) O1—H1O1 0.9468
O2—C1—N1 125.4 (4) O1—N1—H1N1 120.1
O2—C1—C2 122.5 (3) C2—N2—N3 119.6 (4)
N1—C1—C2 112.1 (3) C2—N2—H1N2 120.2
O3—C2—N2 125.5 (4) N3—N2—H1N2 120.2
O3—C2—C1 122.4 (3) N2—N3—H1N3 105.5
N2—C2—C1 112.1 (3) N2—N3—H2N3 110.6
C1—N1—O1 119.8 (4) H1N3—N3—H2N3 100.8
C1—N1—H1N1 120.1 N1—O1—H1O1 107.0
O2—C1—C2—O3 178.1 (5) O2—C1—N1—O1 0.0 (6)
N1—C1—C2—O3 −2.3 (4) C2—C1—N1—O1 −179.6 (3)
O2—C1—C2—N2 −3.1 (4) O3—C2—N2—N3 0.8 (6)
N1—C1—C2—N2 176.5 (4) C1—C2—N2—N3 −178.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H1N2···O3i 0.88 2.02 2.813 (5) 149
O1—H1O1···N3ii 0.95 1.83 2.740 (4) 161
O1—H1O1···N3ii 0.95 1.83 2.740 (4) 161
N3—H1N3···O1iii 0.90 2.29 3.013 (3) 137
N3—H2N3···O1iv 0.93 2.44 3.024 (4) 121

Symmetry codes: (i) x+1/2, y−1/2, z; (ii) x, −y+2, z+1/2; (iii) x+1/2, −y+3/2, z−1/2; (iv) x, −y+1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2142).

References

  1. Bodwin, J. J., Cutland, A. D., Malkani, R. G. & Pecoraro, V. L. (2001). Coord. Chem. Rev 216–217, 489–512.
  2. Bruker (2007). APEX2, SAINT and SADABS Bruker AXS Inc, Madison, Wisconsin, USA.
  3. Dobosz, A., Dudarenko, N. M., Fritsky, I. O., Glowiak, T., Karaczyn, A., Kozłowski, H., Sliva, T. Yu. & Świątek-Kozłowska, J. (1999). J. Chem. Soc. Dalton Trans. pp. 743–749.
  4. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  5. Fritsky, I. O., Kozlowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun pp. 4125–4127. [DOI] [PubMed]
  6. Gumienna-Kontecka, E., Golenya, I. A., Dudarenko, N. M., Dobosz, A., Haukka, M., Fritsky, I. O. & Światek-Kozłowska, J. (2007). New J. Chem.31, 1798–1805.
  7. Kaczka, E. A., Gitterman, C. O., Dulaney, E. L. & Folkers, K. (1962). Biochemistry, 1, 340–343. [DOI] [PubMed]
  8. Komatsu, Y., Tomizaki, K., Tsukamoto, M., Kato, T., Nishino, N., Sato, S., Yamori, T., Tsuruo, T., Furumai, R., Yoshida, M., Horinouchi, S. & Hayashi, H. (2001). Cancer Res.61, 4459–4466. [PubMed]
  9. Mokhir, A. A., Gumienna-Kontecka, E., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113–121.
  10. Moroz, Yu. S., Kulon, K., Haukka, M., Gumienna-Kontecka, E., Kozlowski, H., Meyer, F. & Fritsky, I. O. (2008). Inorg. Chem.47, 5656–5665. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sliva, T. Yu., Duda, A. M., Glowiak, T., Fritsky, I. O., Amirkhanov, V. M., Mokhir, A. A. & Kozlowski, H. (1997a). J. Chem. Soc. Dalton Trans. pp. 273–276.
  13. Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Glowiak, T., Onindo, C. O., Fritsky, I. O. & Kozlowski, H. (1997b). J. Inorg. Biochem. 65, 287–294.
  14. Świątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans pp. 4064–4068.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810012341/jh2142sup1.cif

e-66-o1058-sup1.cif (13.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012341/jh2142Isup2.hkl

e-66-o1058-Isup2.hkl (22KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES