Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 May 19;66(Pt 6):o1381. doi: 10.1107/S1600536810017368

4-Chloro-N-[3-methyl-1-(5-thioxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)but­yl]benzamide

Yu-Gang Yan a, Guo-Gang Tu a, Ling-Dong Wang a, Jian Liu a, Shao-Hua Li a,*
PMCID: PMC2979360  PMID: 21579462

Abstract

In the title compound, C14H16ClN3O2S, the dihedral angle between the 4-chloro­phenyl and 1,3,4-oxadiazole rings is 67.1 (1)° and the orientation of the amide N—H and C=O bonds is anti. In the crystal, mol­ecules are linked by N—H⋯O and N—H⋯S hydrogen bonds.

Related literature

For the biological properties of thia­diazo­les, see: Tu et al. (2008). For details of the synthesis, see: Ginzel et al. (1989); Boland et al. (2006); Havaldar & Patil (2009); Shriner & Furrow (1955). For related structures, see: Du et al. (2004); Ziyaev et al. (1992); Zareef et al. (2006).graphic file with name e-66-o1381-scheme1.jpg

Experimental

Crystal data

  • C14H16ClN3O2S

  • M r = 325.81

  • Orthorhombic, Inline graphic

  • a = 6.0171 (6) Å

  • b = 15.3120 (15) Å

  • c = 18.1493 (17) Å

  • V = 1672.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 298 K

  • 0.42 × 0.22 × 0.18 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.864, T max = 0.938

  • 7892 measured reflections

  • 2951 independent reflections

  • 1447 reflections with I > 2σ(I)

  • R int = 0.056

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.108

  • S = 1.10

  • 2951 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.32 e Å−3

  • Absolute structure: Flack (1983), 1219 Friedel pairs

  • Flack parameter: −0.09 (14)

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810017368/hb5439sup1.cif

e-66-o1381-sup1.cif (18.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810017368/hb5439Isup2.hkl

e-66-o1381-Isup2.hkl (144.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 1.87 2.720 (6) 171
N3—H3⋯S1ii 0.86 2.78 3.495 (4) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The work was supported by the Key Technologies R & D Program of JiangXi (grant No. 20061B0100400), the Key Science & Technology Program of JiangXi (grant No. 2009BSA14100) and the Scientific Research Fund of NanChang University.

supplementary crystallographic information

Comment

The present oxadiazole derivate is in continuation to our previous work of the thiadiazole scaffold compounds and their biological activity (Tu et al., 2008). The title compound (Figure 1) was synthesized according to literature procedures (Ginzel et al., 1989; Boland et al., 2006; Havaldar & Patil 2009). Here, we report the structure of the title compound.

The oxadiazole ring is essentially planar and is inclined at 67.1 (1)° with respect to the p-cholobenzene ring. The N2=C2 and S1=C1 double bonds agree with the corresponding distances in three structures containing similar systems (Du et al., 2004; Ziyaev et al., 1992; Zareef et al., 2006). The conformations of the N—H and C=O bonds are anti with respect to each other. The structure is stabilized by a network of intermolecular hydrogen bonds of the type N—H···S (Table 1, Figure 2).

Experimental

To a stirred solution of DL-leucine methyl ester hydrochloride (0.03 mol) in CH2Cl2 (20 ml) was added triethylamine (0.06 mol) at 273 K. After 0.5 h, a solution of p-chlorobenzoic acid chloride (0.03 mol) in CH2Cl2 (10 ml) was added. The mixture was stirred for 2 h at 273 K, then allowed to warm to r.t. for 24 h. Washed with 10% HCl, 1 N NaOH and water. The organic layer was evaporated in vacuo and the residue was recrystallized from methanol to give corresponding amides as a white solid.

A mixture of the amides (0.02 mol) and 80% hydrazine monohydrate (0.04 mol) in absolute methanol (20 ml) was heated under reflux over night. After cooling, a white solid was separated and recrystallized from methanol to give corresponding hydrazide.

A mixture of the hydrazide (0.01 mol), KOH (0.01 mol), CS2 (0.05 mol), and ethanol (70 ml) was heated under reflux with stirring for 12 h. Ethanol was distilled off under reduced pressure and the residue was dissolved in water and then acidified with 10% HCl. The resulting precipitate was filtered, washed with water, and recrystallized from ethanol. Colourless blocks of (I) precipitated after several days.

Refinement

H atoms were positioned geometrically and refined using a riding model using SHELXL97 default values (Uiso(H) = 1.2 Ueq(C) for CH and CH2 groups and Uiso(H) = 1.5 Ueq(C) for CH3).

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The crystal packing of (I), viewed along the a axis with hydrogen bonds drawn as dashed lines.

Crystal data

C14H16ClN3O2S F(000) = 680
Mr = 325.81 Dx = 1.294 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 2117 reflections
a = 6.0171 (6) Å θ = 2.6–21.7°
b = 15.3120 (15) Å µ = 0.36 mm1
c = 18.1493 (17) Å T = 298 K
V = 1672.2 (3) Å3 Block, colourless
Z = 4 0.42 × 0.22 × 0.18 mm

Data collection

Bruker SMART CCD diffractometer 2951 independent reflections
Radiation source: fine-focus sealed tube 1447 reflections with I > 2σ(I)
graphite Rint = 0.056
ω scans θmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −7→7
Tmin = 0.864, Tmax = 0.938 k = −18→11
7892 measured reflections l = −21→16

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.050 w = 1/[σ2(Fo2) + (0.0147P)2 + 1.0529P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.108 (Δ/σ)max < 0.001
S = 1.10 Δρmax = 0.31 e Å3
2951 reflections Δρmin = −0.32 e Å3
193 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0034 (7)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 1219 Friedel pairs
Secondary atom site location: difference Fourier map Flack parameter: −0.09 (14)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 1.2875 (3) 0.07537 (10) −0.04447 (8) 0.1082 (7)
N1 0.4961 (8) 0.5638 (3) 0.2486 (2) 0.0653 (12)
H1 0.4553 0.6175 0.2515 0.078*
N2 0.6705 (8) 0.5299 (2) 0.2891 (2) 0.0679 (12)
N3 0.9177 (6) 0.3351 (2) 0.22952 (19) 0.0530 (10)
H3 1.0323 0.3577 0.2086 0.064*
O1 0.5141 (6) 0.4303 (2) 0.21792 (16) 0.0650 (10)
O2 0.6632 (6) 0.22820 (19) 0.23058 (17) 0.0672 (10)
S1 0.1860 (3) 0.51382 (10) 0.14928 (8) 0.0902 (5)
C1 0.3976 (8) 0.5066 (3) 0.2049 (2) 0.0601 (13)
C2 0.6745 (10) 0.4498 (3) 0.2683 (2) 0.0555 (13)
C3 0.8216 (9) 0.3780 (3) 0.2935 (2) 0.0572 (13)
H3A 0.7295 0.3352 0.3195 0.069*
C4 0.9999 (9) 0.4102 (3) 0.3469 (2) 0.0628 (14)
H4A 1.0827 0.4567 0.3233 0.075*
H4B 0.9271 0.4348 0.3898 0.075*
C5 1.1631 (10) 0.3406 (3) 0.3725 (3) 0.0793 (17)
H5 1.2452 0.3206 0.3290 0.095*
C6 1.3329 (10) 0.3803 (4) 0.4260 (3) 0.097 (2)
H6A 1.2604 0.3948 0.4715 0.145*
H6B 1.3955 0.4321 0.4046 0.145*
H6C 1.4490 0.3387 0.4353 0.145*
C7 1.0511 (12) 0.2623 (4) 0.4053 (3) 0.129 (3)
H7A 0.9645 0.2799 0.4471 0.193*
H7B 1.1615 0.2208 0.4205 0.193*
H7C 0.9557 0.2360 0.3692 0.193*
C8 0.8305 (9) 0.2601 (3) 0.2021 (2) 0.0520 (12)
C9 0.9491 (9) 0.2185 (3) 0.1398 (3) 0.0518 (13)
C10 0.8393 (9) 0.1520 (3) 0.1025 (2) 0.0575 (13)
H10 0.6966 0.1359 0.1168 0.069*
C11 0.9413 (10) 0.1093 (3) 0.0440 (3) 0.0673 (15)
H11 0.8661 0.0660 0.0181 0.081*
C12 1.1541 (11) 0.1319 (3) 0.0247 (3) 0.0663 (15)
C13 1.2613 (9) 0.1986 (3) 0.0598 (3) 0.0681 (15)
H13 1.4027 0.2153 0.0446 0.082*
C14 1.1604 (9) 0.2411 (3) 0.1174 (3) 0.0639 (14)
H14 1.2355 0.2858 0.1416 0.077*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.1383 (16) 0.0987 (12) 0.0876 (10) 0.0156 (12) 0.0383 (11) −0.0126 (9)
N1 0.069 (3) 0.046 (3) 0.081 (3) 0.002 (3) −0.002 (3) −0.005 (2)
N2 0.078 (3) 0.047 (3) 0.079 (3) 0.005 (3) −0.012 (3) −0.004 (2)
N3 0.050 (3) 0.044 (2) 0.066 (3) −0.006 (2) 0.007 (2) −0.0108 (19)
O1 0.079 (3) 0.045 (2) 0.071 (2) 0.002 (2) −0.019 (2) −0.0068 (17)
O2 0.069 (3) 0.046 (2) 0.086 (2) −0.004 (2) 0.016 (2) −0.0039 (17)
S1 0.0914 (12) 0.0756 (10) 0.1037 (11) −0.0050 (10) −0.0315 (10) 0.0091 (9)
C1 0.064 (4) 0.058 (3) 0.058 (3) −0.009 (3) −0.004 (3) −0.002 (3)
C2 0.074 (4) 0.037 (3) 0.056 (3) 0.004 (3) 0.001 (3) −0.005 (2)
C3 0.072 (4) 0.046 (3) 0.053 (3) 0.001 (3) 0.009 (3) −0.002 (2)
C4 0.074 (4) 0.056 (3) 0.058 (3) 0.001 (3) −0.007 (3) −0.004 (3)
C5 0.088 (5) 0.075 (4) 0.074 (4) 0.001 (4) −0.015 (4) 0.007 (3)
C6 0.094 (5) 0.109 (5) 0.088 (4) 0.010 (4) −0.017 (4) 0.003 (3)
C7 0.140 (7) 0.092 (5) 0.154 (6) −0.018 (5) −0.040 (5) 0.056 (5)
C8 0.056 (3) 0.043 (3) 0.057 (3) 0.000 (3) 0.000 (3) 0.001 (2)
C9 0.057 (3) 0.037 (3) 0.062 (3) −0.002 (3) −0.006 (3) −0.003 (2)
C10 0.062 (4) 0.044 (3) 0.067 (3) −0.004 (3) 0.001 (3) 0.002 (2)
C11 0.097 (5) 0.048 (3) 0.056 (3) 0.001 (3) −0.001 (3) −0.001 (3)
C12 0.084 (5) 0.055 (3) 0.059 (3) 0.011 (4) 0.007 (3) 0.005 (3)
C13 0.063 (4) 0.068 (4) 0.074 (3) 0.005 (3) 0.014 (3) 0.006 (3)
C14 0.067 (4) 0.051 (3) 0.074 (3) −0.003 (3) −0.002 (3) 0.000 (3)

Geometric parameters (Å, °)

Cl1—C12 1.723 (5) C5—C6 1.535 (7)
N1—C1 1.321 (5) C5—H5 0.9800
N1—N2 1.382 (5) C6—H6A 0.9600
N1—H1 0.8600 C6—H6B 0.9600
N2—C2 1.283 (5) C6—H6C 0.9600
N3—C8 1.357 (5) C7—H7A 0.9600
N3—C3 1.454 (5) C7—H7B 0.9600
N3—H3 0.8600 C7—H7C 0.9600
O1—C2 1.363 (5) C8—C9 1.481 (6)
O1—C1 1.382 (5) C9—C14 1.379 (6)
O2—C8 1.232 (5) C9—C10 1.390 (6)
S1—C1 1.629 (5) C10—C11 1.390 (6)
C2—C3 1.483 (6) C10—H10 0.9300
C3—C4 1.527 (6) C11—C12 1.372 (7)
C3—H3A 0.9800 C11—H11 0.9300
C4—C5 1.522 (6) C12—C13 1.366 (6)
C4—H4A 0.9700 C13—C14 1.373 (6)
C4—H4B 0.9700 C13—H13 0.9300
C5—C7 1.498 (7) C14—H14 0.9300
C1—N1—N2 114.3 (4) C5—C6—H6B 109.5
C1—N1—H1 122.9 H6A—C6—H6B 109.5
N2—N1—H1 122.9 C5—C6—H6C 109.5
C2—N2—N1 102.5 (4) H6A—C6—H6C 109.5
C8—N3—C3 121.5 (4) H6B—C6—H6C 109.5
C8—N3—H3 119.3 C5—C7—H7A 109.5
C3—N3—H3 119.3 C5—C7—H7B 109.5
C2—O1—C1 106.8 (3) H7A—C7—H7B 109.5
N1—C1—O1 103.3 (4) C5—C7—H7C 109.5
N1—C1—S1 132.6 (4) H7A—C7—H7C 109.5
O1—C1—S1 124.0 (4) H7B—C7—H7C 109.5
N2—C2—O1 113.1 (5) O2—C8—N3 119.8 (4)
N2—C2—C3 128.9 (5) O2—C8—C9 122.9 (4)
O1—C2—C3 117.9 (4) N3—C8—C9 117.2 (4)
N3—C3—C2 109.0 (3) C14—C9—C10 118.6 (5)
N3—C3—C4 111.9 (4) C14—C9—C8 124.2 (4)
C2—C3—C4 112.1 (4) C10—C9—C8 117.3 (5)
N3—C3—H3A 107.9 C11—C10—C9 120.4 (5)
C2—C3—H3A 107.9 C11—C10—H10 119.8
C4—C3—H3A 107.9 C9—C10—H10 119.8
C5—C4—C3 114.9 (4) C12—C11—C10 119.3 (5)
C5—C4—H4A 108.5 C12—C11—H11 120.4
C3—C4—H4A 108.5 C10—C11—H11 120.4
C5—C4—H4B 108.5 C13—C12—C11 120.7 (5)
C3—C4—H4B 108.5 C13—C12—Cl1 119.7 (5)
H4A—C4—H4B 107.5 C11—C12—Cl1 119.6 (5)
C7—C5—C4 113.0 (5) C12—C13—C14 120.1 (5)
C7—C5—C6 111.4 (5) C12—C13—H13 120.0
C4—C5—C6 110.2 (4) C14—C13—H13 120.0
C7—C5—H5 107.3 C13—C14—C9 120.9 (5)
C4—C5—H5 107.3 C13—C14—H14 119.6
C6—C5—H5 107.3 C9—C14—H14 119.6
C5—C6—H6A 109.5
C1—N1—N2—C2 0.1 (6) C3—C4—C5—C6 −179.7 (4)
N2—N1—C1—O1 0.3 (5) C3—N3—C8—O2 1.7 (7)
N2—N1—C1—S1 178.2 (4) C3—N3—C8—C9 −176.2 (4)
C2—O1—C1—N1 −0.5 (5) O2—C8—C9—C14 −165.1 (4)
C2—O1—C1—S1 −178.7 (3) N3—C8—C9—C14 12.7 (7)
N1—N2—C2—O1 −0.5 (5) O2—C8—C9—C10 14.3 (7)
N1—N2—C2—C3 −178.1 (5) N3—C8—C9—C10 −167.9 (4)
C1—O1—C2—N2 0.7 (5) C14—C9—C10—C11 0.1 (7)
C1—O1—C2—C3 178.6 (4) C8—C9—C10—C11 −179.3 (4)
C8—N3—C3—C2 −98.1 (5) C9—C10—C11—C12 1.8 (7)
C8—N3—C3—C4 137.4 (4) C10—C11—C12—C13 −3.5 (7)
N2—C2—C3—N3 −129.7 (5) C10—C11—C12—Cl1 176.5 (3)
O1—C2—C3—N3 52.8 (6) C11—C12—C13—C14 3.2 (8)
N2—C2—C3—C4 −5.2 (8) Cl1—C12—C13—C14 −176.7 (4)
O1—C2—C3—C4 177.2 (4) C12—C13—C14—C9 −1.2 (7)
N3—C3—C4—C5 −54.7 (6) C10—C9—C14—C13 −0.4 (7)
C2—C3—C4—C5 −177.5 (4) C8—C9—C14—C13 178.9 (4)
C3—C4—C5—C7 −54.3 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O2i 0.86 1.87 2.720 (6) 171
N3—H3···S1ii 0.86 2.78 3.495 (4) 142

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5439).

References

  1. Boland, Y., Hertsens, P., Marchand-Brynaert, J. & Garcia, Y. (2006). Synthesis, pp. 1504–1512.
  2. Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Du, M., Zhao, X.-J. & Guo, J.-H. (2004). Acta Cryst. E60, o327–o328.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Ginzel, K. D., Brungs, P. & Steckhan, E. (1989). Tetrahedron, 45, 1691–1701.
  6. Havaldar, F. H. & Patil, A. R. (2009). Asian J. Chem.21, 5267–5272.
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Shriner, R. L. & Furrow, C. L. (1955). Org. Synth.35, 49–50.
  10. Tu, G. G., Li, S. H., Huang, H. M., Li, G., Xiong, F., Mai, X., Zhu, H. W., Kuang, B. H. & Xu, W. F. (2008). Bioorg. Med. Chem 16, 6663–6668. [DOI] [PubMed]
  11. Westrip, S. P. (2010). J. Appl. Cryst.43 Submitted.
  12. Zareef, M., Iqbal, R., Zaidi, J. H., Arfan, M. & Parvez, M. (2006). Acta Cryst. E62, o2481–o2483.
  13. Ziyaev, A. A., Galust’yan, G. G., Sabirov, K., Nasirov, S., Tashkhodzhaev, B. & Yag’budaev, M. R. (1992). Zh. Org. Khim 28, 1538–1543.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810017368/hb5439sup1.cif

e-66-o1381-sup1.cif (18.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810017368/hb5439Isup2.hkl

e-66-o1381-Isup2.hkl (144.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES