Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 May 8;66(Pt 6):o1294. doi: 10.1107/S160053681001603X

Ethyl 4-(3-ethyl-5-oxo-4,5-dihydro-1H-1,2,4-triazol-4-yl)benzoate

Yasemin Ünver a, Yavuz Köysal b,*, Hasan Tanak c, Dilek Ünlüer a, Şamil Işık c
PMCID: PMC2979362  PMID: 21579391

Abstract

In the title compound, C13H15N3O3, the dihedral angle between the two aromatic ring is 51.06 (1)°. In the crystal, mol­ecules are connected by pairs of N—H⋯O hydrogen bonds into centrosymmetric dimers.

Related literature

For the pharmacological activity of 1,2,4-triazole compounds, see: Chiu & Huskey (1998); Eliott et al. (1986, 1987); Griffin & Mannion (1986, 1987, 1987); Heubach et al. (1975, 1979); Husain & Amir (1986, 1987,); Tanaka (1974, 1975); Tsukuda et al. (1998); Witkoaski et al. (1972). For the biological activity of the triazole family, see: Unver et al. (2008, 2009). For a related structure, see: Tanak et al. (2010).graphic file with name e-66-o1294-scheme1.jpg

Experimental

Crystal data

  • C13H15N3O3

  • M r = 261.28

  • Monoclinic, Inline graphic

  • a = 13.6111 (11) Å

  • b = 4.0970 (2) Å

  • c = 24.172 (2) Å

  • β = 100.063 (7)°

  • V = 1327.20 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.80 × 0.41 × 0.13 mm

Data collection

  • Stoe IPDS 2 diffractometer

  • 8189 measured reflections

  • 2581 independent reflections

  • 1606 reflections with I > 2σ(I)

  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.095

  • S = 0.93

  • 2581 reflections

  • 216 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681001603X/bt5258sup1.cif

e-66-o1294-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681001603X/bt5258Isup2.hkl

e-66-o1294-Isup2.hkl (124.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.883 (19) 1.94 (2) 2.808 (2) 169.5 (18)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer.

supplementary crystallographic information

Comment

1,2,4-triazole compounds posses important pharmacology activities such as antifungal and antiviral activities. Examples of such compounds bearing the 1,2,4- triazole residues are fluconazole (Tsukuda et al., 1998), the powerful azole antifungal agent as well as the potent antiviral N- nucleoside ribavirin (Witkoaski et al., 1972). Furthermore, various 1,2,4-triazole derivatives have been reported as fungicidal (Heubach et al., 1975, 1979), insecticidal (Tanaka, 1974, 1975), antimicrobial, (Griffin & Mannion, 1986, 1987) as well as anticonvulsants (Husain & Amir, 1986, 1987), antidepressants (Chiu & Huskey, 1998), and plant growth regulator anticoagulants (Eliott et al., 1986, 1987). Our laboratories reported the some biological activity of the triazole family (Unver et al., 2008; Unver et al., 2009). It is known that 1,2,4-triazol moieties interact strongly with heme iron, and aromatic substituents on the triazoles are very effective for interacting with the active site of aromatase. Furthermore, It was reported that compounds having triazole moieties such as Vorozole, Anastrozole and Letrozole appear to be very effective aromatase inhibitors very useful for preventing breast cancer.

In the title compound, the plane of the -C(=O)—O- group is inclined at the angle of 4.23 (1)° with respect to the benzoate ring. The dihedral angle between the two aromatic ring is 51.06 (1)°. The 1,2,4-triazole ring is strictly planar and the maximum deviation of -0.0016 (2)Å for atom C1. The double bond distance in the triazol group is good agreement with our previous report,5-benzyl-4- (3,4-dimethoxyphenethyl)-2H-1,2,4-triazol-3(4H)-one (Tanak et al., 2010).

The molecules are connected by intermolecular N—H···O hydrogen bonds to centrosymmetric dimers. generating eight-membered ring, producing a R22(8) motif (Bernstein et al., 1995).

Experimental

Ethyl 2-(1-ethoxypropylidene)hydrazinecarboxylate (10 mmol) and ethyl 4-amino benzoate (10 mmol) was mixed without solvent and heated at 433-443°K for 2 h. The formed solid products were separated by filtration, purified by crystallization twice from ethanol, washed with Et2O ether and dried in a vacuum. m p: 446°K.

Refinement

The H atoms of the phenyl ring were positioned geometrically and refined using a riding model with C—H = 0.93 Å and U(H)=1.2Ueq(C). The remaining H atoms were freely refined.

Figures

Fig. 1.

Fig. 1.

A view of the title compound with the atom-numbering scheme and 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

A partial packing diagram of the title compound.

Crystal data

C13H15N3O3 F(000) = 552
Mr = 261.28 Dx = 1.308 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 13.6111 (11) Å Cell parameters from 10833 reflections
b = 4.0970 (2) Å θ = 1.5–27.2°
c = 24.172 (2) Å µ = 0.10 mm1
β = 100.063 (7)° T = 293 K
V = 1327.20 (17) Å3 Prism, colourless
Z = 4 0.80 × 0.41 × 0.13 mm

Data collection

Stoe IPDS 2 diffractometer 1606 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.042
graphite θmax = 26.0°, θmin = 1.6°
Detector resolution: 6.67 pixels mm-1 h = −16→15
rotation method scans k = −4→5
8189 measured reflections l = −29→29
2581 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095 H atoms treated by a mixture of independent and constrained refinement
S = 0.93 w = 1/[σ2(Fo2) + (0.0488P)2] where P = (Fo2 + 2Fc2)/3
2581 reflections (Δ/σ)max < 0.001
216 parameters Δρmax = 0.13 e Å3
0 restraints Δρmin = −0.13 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.44143 (13) 0.7739 (5) 0.05726 (6) 0.0485 (5)
C2 0.51671 (12) 0.5332 (4) 0.13682 (6) 0.0440 (4)
C3 0.53173 (14) 0.3581 (6) 0.19150 (8) 0.0525 (5)
C4 0.63819 (16) 0.2621 (7) 0.21203 (9) 0.0631 (6)
C5 0.32736 (11) 0.5585 (5) 0.11912 (6) 0.0432 (4)
C6 0.30553 (12) 0.6504 (5) 0.17095 (6) 0.0466 (5)
H6 0.3534 0.7542 0.1973 0.056*
C7 0.21229 (12) 0.5858 (5) 0.18282 (6) 0.0473 (4)
H7 0.1975 0.6437 0.2177 0.057*
C8 0.14040 (12) 0.4365 (5) 0.14379 (6) 0.0450 (4)
C9 0.16301 (13) 0.3535 (5) 0.09164 (7) 0.0533 (5)
H9 0.1146 0.2559 0.0648 0.064*
C10 0.25609 (12) 0.4141 (5) 0.07938 (6) 0.0515 (5)
H10 0.2708 0.3579 0.0445 0.062*
C11 0.04218 (13) 0.3608 (5) 0.15961 (7) 0.0512 (5)
C12 −0.11800 (16) 0.1271 (8) 0.13044 (10) 0.0724 (7)
C13 −0.1753 (2) −0.0096 (12) 0.07756 (15) 0.1015 (11)
N1 0.54074 (11) 0.7686 (5) 0.06243 (6) 0.0562 (5)
N2 0.58809 (10) 0.6223 (4) 0.11107 (5) 0.0519 (4)
N3 0.42458 (9) 0.6181 (4) 0.10615 (5) 0.0447 (4)
O1 0.37870 (9) 0.8859 (4) 0.01948 (5) 0.0624 (4)
O2 0.02253 (9) 0.4134 (4) 0.20563 (5) 0.0726 (5)
O3 −0.02131 (9) 0.2283 (4) 0.11801 (5) 0.0660 (4)
H1 0.5731 (14) 0.864 (5) 0.0382 (8) 0.062 (6)*
H3A 0.4910 (15) 0.170 (5) 0.1871 (8) 0.069 (6)*
H3B 0.5059 (14) 0.489 (5) 0.2178 (8) 0.065 (6)*
H4A 0.6436 (14) 0.140 (5) 0.2481 (9) 0.074 (6)*
H4B 0.6795 (18) 0.443 (6) 0.2188 (9) 0.090 (8)*
H4C 0.6648 (16) 0.115 (6) 0.1853 (10) 0.086 (7)*
H12A −0.1044 (16) −0.029 (6) 0.1621 (9) 0.085 (7)*
H12B −0.1459 (17) 0.324 (6) 0.1422 (9) 0.083 (8)*
H13A −0.234 (2) −0.096 (8) 0.0840 (12) 0.126 (10)*
H13B −0.138 (3) −0.175 (9) 0.0604 (14) 0.153 (16)*
H13C −0.189 (2) 0.174 (8) 0.0528 (12) 0.120 (12)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0429 (10) 0.0675 (13) 0.0373 (8) −0.0030 (9) 0.0133 (7) 0.0024 (9)
C2 0.0395 (9) 0.0531 (12) 0.0399 (8) −0.0052 (8) 0.0087 (7) −0.0039 (8)
C3 0.0470 (11) 0.0639 (15) 0.0468 (10) 0.0000 (11) 0.0083 (8) 0.0064 (10)
C4 0.0521 (12) 0.0768 (17) 0.0572 (12) 0.0002 (13) 0.0006 (10) 0.0093 (12)
C5 0.0374 (9) 0.0534 (12) 0.0404 (8) −0.0005 (8) 0.0111 (7) 0.0043 (8)
C6 0.0433 (9) 0.0591 (13) 0.0377 (8) −0.0077 (9) 0.0083 (7) −0.0033 (8)
C7 0.0462 (9) 0.0612 (12) 0.0364 (8) −0.0028 (9) 0.0127 (7) −0.0011 (8)
C8 0.0377 (9) 0.0572 (12) 0.0409 (8) 0.0010 (8) 0.0095 (7) 0.0033 (8)
C9 0.0431 (10) 0.0739 (14) 0.0428 (9) −0.0079 (9) 0.0074 (7) −0.0078 (9)
C10 0.0449 (10) 0.0743 (13) 0.0370 (8) −0.0026 (10) 0.0118 (7) −0.0052 (9)
C11 0.0417 (10) 0.0646 (14) 0.0481 (9) −0.0004 (9) 0.0095 (8) 0.0047 (9)
C12 0.0435 (12) 0.096 (2) 0.0784 (15) −0.0156 (13) 0.0131 (11) 0.0078 (15)
C13 0.0636 (17) 0.135 (3) 0.098 (2) −0.039 (2) −0.0063 (16) 0.010 (2)
N1 0.0414 (9) 0.0862 (13) 0.0438 (8) −0.0034 (8) 0.0151 (6) 0.0120 (8)
N2 0.0424 (8) 0.0710 (11) 0.0430 (7) −0.0024 (8) 0.0095 (6) 0.0047 (7)
N3 0.0375 (8) 0.0609 (10) 0.0370 (7) −0.0037 (7) 0.0102 (6) 0.0038 (7)
O1 0.0463 (7) 0.0976 (11) 0.0452 (6) 0.0052 (7) 0.0137 (6) 0.0196 (7)
O2 0.0552 (8) 0.1122 (13) 0.0562 (7) −0.0142 (8) 0.0256 (6) −0.0088 (8)
O3 0.0414 (7) 0.1015 (12) 0.0556 (7) −0.0182 (7) 0.0100 (6) −0.0041 (7)

Geometric parameters (Å, °)

C1—O1 1.2251 (19) C7—H7 0.9300
C1—N1 1.336 (2) C8—C9 1.391 (2)
C1—N3 1.397 (2) C8—C11 1.486 (2)
C2—N2 1.295 (2) C9—C10 1.373 (2)
C2—N3 1.385 (2) C9—H9 0.9300
C2—C3 1.486 (2) C10—H10 0.9300
C3—C4 1.500 (3) C11—O2 1.2080 (19)
C3—H3A 0.94 (2) C11—O3 1.322 (2)
C3—H3B 0.95 (2) C12—O3 1.460 (2)
C4—H4A 1.00 (2) C12—C13 1.486 (4)
C4—H4B 0.93 (3) C12—H12A 0.99 (2)
C4—H4C 1.00 (2) C12—H12B 0.96 (2)
C5—C10 1.374 (2) C13—H13A 0.92 (3)
C5—C6 1.389 (2) C13—H13B 0.98 (4)
C5—N3 1.433 (2) C13—H13C 0.96 (3)
C6—C7 1.375 (2) N1—N2 1.376 (2)
C6—H6 0.9300 N1—H1 0.883 (19)
C7—C8 1.378 (2)
O1—C1—N1 129.64 (15) C10—C9—C8 120.66 (16)
O1—C1—N3 127.27 (15) C10—C9—H9 119.7
N1—C1—N3 103.09 (14) C8—C9—H9 119.7
N2—C2—N3 110.93 (14) C9—C10—C5 119.49 (15)
N2—C2—C3 124.44 (15) C9—C10—H10 120.3
N3—C2—C3 124.63 (14) C5—C10—H10 120.3
C2—C3—C4 113.30 (17) O2—C11—O3 123.57 (16)
C2—C3—H3A 107.9 (12) O2—C11—C8 123.62 (16)
C4—C3—H3A 109.7 (12) O3—C11—C8 112.81 (14)
C2—C3—H3B 108.3 (12) O3—C12—C13 106.6 (2)
C4—C3—H3B 112.2 (11) O3—C12—H12A 106.8 (13)
H3A—C3—H3B 105.0 (17) C13—C12—H12A 114.8 (13)
C3—C4—H4A 109.9 (12) O3—C12—H12B 103.8 (14)
C3—C4—H4B 111.7 (15) C13—C12—H12B 113.4 (14)
H4A—C4—H4B 107.3 (17) H12A—C12—H12B 110 (2)
C3—C4—H4C 112.6 (13) C12—C13—H13A 110.1 (18)
H4A—C4—H4C 106.5 (18) C12—C13—H13B 113 (2)
H4B—C4—H4C 109 (2) H13A—C13—H13B 110 (3)
C10—C5—C6 120.72 (15) C12—C13—H13C 104.8 (18)
C10—C5—N3 119.11 (14) H13A—C13—H13C 109 (2)
C6—C5—N3 120.16 (14) H13B—C13—H13C 110 (3)
C7—C6—C5 119.14 (15) C1—N1—N2 113.73 (14)
C7—C6—H6 120.4 C1—N1—H1 123.0 (12)
C5—C6—H6 120.4 N2—N1—H1 123.1 (12)
C6—C7—C8 120.88 (15) C2—N2—N1 104.77 (13)
C6—C7—H7 119.6 C2—N3—C1 107.48 (13)
C8—C7—H7 119.6 C2—N3—C5 128.63 (13)
C7—C8—C9 119.07 (15) C1—N3—C5 123.87 (13)
C7—C8—C11 118.65 (14) C11—O3—C12 116.92 (15)
C9—C8—C11 122.26 (15)
N2—C2—C3—C4 −5.8 (3) N3—C2—N2—N1 0.0 (2)
N3—C2—C3—C4 173.1 (2) C3—C2—N2—N1 178.99 (19)
C10—C5—C6—C7 2.0 (3) C1—N1—N2—C2 0.2 (2)
N3—C5—C6—C7 −178.93 (17) N2—C2—N3—C1 −0.1 (2)
C5—C6—C7—C8 −1.0 (3) C3—C2—N3—C1 −179.15 (19)
C6—C7—C8—C9 −0.6 (3) N2—C2—N3—C5 178.63 (17)
C6—C7—C8—C11 177.66 (18) C3—C2—N3—C5 −0.4 (3)
C7—C8—C9—C10 1.1 (3) O1—C1—N3—C2 −179.77 (19)
C11—C8—C9—C10 −177.07 (19) N1—C1—N3—C2 0.23 (19)
C8—C9—C10—C5 −0.1 (3) O1—C1—N3—C5 1.4 (3)
C6—C5—C10—C9 −1.5 (3) N1—C1—N3—C5 −178.60 (16)
N3—C5—C10—C9 179.42 (17) C10—C5—N3—C2 −128.50 (19)
C7—C8—C11—O2 −2.5 (3) C6—C5—N3—C2 52.4 (3)
C9—C8—C11—O2 175.7 (2) C10—C5—N3—C1 50.1 (3)
C7—C8—C11—O3 177.81 (17) C6—C5—N3—C1 −129.01 (19)
C9—C8—C11—O3 −4.0 (3) O2—C11—O3—C12 −3.3 (3)
O1—C1—N1—N2 179.7 (2) C8—C11—O3—C12 176.4 (2)
N3—C1—N1—N2 −0.3 (2) C13—C12—O3—C11 179.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.883 (19) 1.94 (2) 2.808 (2) 169.5 (18)

Symmetry codes: (i) −x+1, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5258).

References

  1. Chiu, S. H. L. & Huskey, S. E. W. (1998). Drug. Metab. Dispos.26, 838–847. [PubMed]
  2. Eliott, R., Sunley, R. L. & Griffin, D. A. (1986). UK Patent Appl. GB 2, 175-301.
  3. Eliott, R., Sunley, R. L. & Griffin, D. A. (1987). Chem. Abstr.107, 134310n.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  6. Griffin, D. A. & Mannion, S. K. (1986). Eur. Patent Appl. EP 199 474.
  7. Griffin, D. A. & Mannion, S. K. (1987). Chem. Abstr.106, 98120u.
  8. Heubach, G., Sachse, B. & Buerstell, H. (1975). Chem. Abstr 92, 181200h.
  9. Heubach, G., Sachse, B. & Buerstell, H. (1979). Ger. Off.2, 826–760
  10. Husain, M. I. & Amir, M. J. (1986). Indian Chem. Soc.63, 317–319.
  11. Husain, M. I. & Amir, M. J. (1987). Chem. Abstr.106, 176272h.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Stoe & Cie (2002). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.
  14. Tanaka, G. (1974). Japan Kokai, 973, 7495.
  15. Tanaka, G. (1975). Chem. Abstr.82, 156320h.
  16. Tanak, H., Köysal, Y., Yavuz, M., Büyükgüngőr, O. & Sancak, K. (2010). J. Mol. Model.16, 447–457. [DOI] [PubMed]
  17. Tsukuda, T., Shiratori, Y., Watanabe, M., Ontsuka, H., Hattori, K., Shirai, M. & Shimma, N. (1998). Bioorg. Med. Chem. Lett.8, 1819–1824. [DOI] [PubMed]
  18. Unver, Y., Dugdu, E., Sancak, K., Er, M. & Karaoglu, Ş. A. (2008). Turk. J. Chem.32, 441–455.
  19. Unver, Y., Dugdu, E., Sancak, K., Er, M. & Karaoglu, Ş. A. (2009). Turk. J. Chem.33, 135–147.
  20. Witkoaski, J. T., Robins, R. K., Sidwell, R. W. & Simon, L. N. (1972). J. Med. Chem.15, 1150–1154. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681001603X/bt5258sup1.cif

e-66-o1294-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681001603X/bt5258Isup2.hkl

e-66-o1294-Isup2.hkl (124.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES