Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 May 29;66(Pt 6):o1507–o1508. doi: 10.1107/S1600536810019665

Bis(2-{[3-methyl-4-(2,2,2-trifluoro­eth­oxy)-2-pyrid­yl]methyl­sulfan­yl}-1H,3H +-benzimidazolium) 2,5-dichloro-3,6-dioxocyclo­hexa-1,4-diene-1,4-diolate

Q N M Hakim Al-arique a, Jerry P Jasinski b,*, Ray J Butcher c, H S Yathirajan a, B Narayana d
PMCID: PMC2979375  PMID: 21579567

Abstract

The title salt, 2C16H15F3N3OS+·C6Cl2O4 2−, is composed of two independent cations of a lansoprazole {systematic name 2-([3-methyl-4-(2,2,2-trifluoroethoxy)pyridin-2-yl]methylsulfinyl)-1H-benzo[d]imidazole} inter­mediate and a dianion of chloranilic acid. In the cations of the lansoprazole inter­mediate, the dihedral angles between the least-squares planes of the pyridine and benzimidazole rings are 11.1 (6) and 13.1 (5)°, respectively. The dihedral angles between the mean plane of the benzene ring in the chloranilic acid dianion and the pryidine and benzimidazole rings of the two lansoprazole inter­mediate groups are 71.8 (1)/80.5 (7) and 74.2 (4)/74.8 (6)°. In addition to ionic bond inter­actions, the lansoprazole inter­mediate and chloranilic ions are connected by strong N—H⋯O hydrogen bonds, which produce a set of extended O—H⋯O—H⋯O—H chains along the b axis in the (011) plane. In addition, weak C—H⋯O, C—H⋯F, N—H⋯Cl and π–π [centroid–centroid distances = 3.5631 (15), 3.8187 (13), 3.7434 (17) and 3.842 (2) Å] inter­molecular inter­actions are observed, which contribute to crystal packing stability.

Related literature

For bacterial growth inhibition by lansoprazole and its analogs, see: Iwahi et al. (1991). For related structures, see: Arslan et al. (2006); Gotoh et al. (2006, 2007, 2008); Ishida (2004a ,b ,c ); Ishida & Kashino (1999, 2000); Meng & Qian (2006); Refat et al. (2006); Swamy & Ravikumar (2007); Tabuchi et al. (2005); Vyas et al. (2000).graphic file with name e-66-o1507-scheme1.jpg

Experimental

Crystal data

  • 2C16H15F3N3OS+·C6Cl2O4 2−

  • M r = 915.70

  • Monoclinic, Inline graphic

  • a = 9.48575 (8) Å

  • b = 23.6316 (2) Å

  • c = 17.86775 (15) Å

  • β = 100.2065 (9)°

  • V = 3941.92 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.22 mm−1

  • T = 295 K

  • 0.38 × 0.24 × 0.19 mm

Data collection

  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) T min = 0.692, T max = 1.000

  • 19572 measured reflections

  • 8269 independent reflections

  • 6572 reflections with I > 2σ(I)

  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.158

  • S = 1.10

  • 8269 reflections

  • 600 parameters

  • 138 restraints

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.49 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810019665/bt5269sup1.cif

e-66-o1507-sup1.cif (34.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810019665/bt5269Isup2.hkl

e-66-o1507-Isup2.hkl (404.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1AA⋯O3 0.86 1.95 2.749 (2) 155
N1A—H1AA⋯Cl2 0.86 2.96 3.5169 (18) 125
N2A—H2AA⋯O5i 0.86 1.91 2.737 (2) 160
N1B—H1BA⋯O2 0.86 1.89 2.717 (2) 160
N2B—H2BA⋯O6i 0.86 1.96 2.766 (2) 155
C8A—H8AB⋯O5i 0.97 2.50 3.195 (3) 127
C8B—H8BA⋯O6i 0.97 2.45 3.289 (3) 145
C6B—H6BA⋯F3AAii 0.93 2.49 3.104 (5) 124

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

QNMHA thanks the University of Mysore for use of their research facilities and HSY thanks the University of Mysore for a sabbatical. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

supplementary crystallographic information

Comment

The Lansoprazole intermediate (Systematic name: 2-([[3-Methyl-4-(2,2,2-trifluoroethoxy)-2-pyridinyl]methyl]sulfanyl) -1H-benzimidazole) in this study is a benzimidazole derivative. Lansoprazole, a widely used proton-pump inhibitor, has been reported to have an independent gastroprotective action. Lansoprazole and its analogs inhibit the growth of Helicobacter pylori at concentrations of several micrograms per milliliter (Iwahi et al., 1991) and is widely used for the treatment of acid-related gastric diseases due to their ability to inhibit acid secretio. The crystal structures of lansoprazole (Vyas et al., 2000) and lansoprazole sulphone have been reported (Swamy & Ravikumar, 2007).

Charge transfer complexes of organic species are intensively studied because of their special type of interaction, which is accompanied by transfer of an electron from the donor to the acceptor. Chloranilic acid is a strong dibasic organic acid which exhibits the electron-acceptor properties on one hand and acidic properties leading to formation of hydrogen bonds on the other hand. In the case of stronger bases the proton-transfer hydrogen bonded ion pairs will be formed which is interesting from the point of view of electron transfer reactions in biological systems. Protonation of the donor from acidic acceptors are generally a route for the formation of ion pair adducts. The synthesis and spectroscopic studies of charge transfer complexes between chloranilic acid and some heterocyclic amines in ethanol and amino heterocyclic donors in acteonitrile have been studied. The interaction of the lansoprazole intermediate as an electron donor with chloranilic acid as electron acceptor in this study resulted in the formation of a charge transfer complex of the title compound (I). In view of the importance of lansoprazole, this paper reports the crystal structure of [C16H15F3N3OS+]2 [C6Cl2O42-], (I).

The title compound (I) is a salt composed of two independent cations (A & B) of a lansoprazole intermediate, [C16H15F3N3OS+]2, and a dianion [C6Cl2O42-] of chloranilic acid, (2:1) in the asymmetric unit (Fig. 1). In each cation (A & B) of the lansoprazole intermediate the dihedral angles between the least squares planes of the pyridine and benzimidazole rings are 11.1 (6)° (A) and 13.1 (5)° (B), respectively. The dihedral angles between the mean plane of the benzene ring in the chloranilic acid dianion and the pryidine and benzimidazole rings of the two lansoprazole intermediate groups are 71.8 (1)° (A), 80.5 (7)° (B) and 74.2 (4)° (A), 74.8 (6)° (B), respectively. The fluorine atoms in both cations are disordered (relative occupancies = 0.361 (5) (A), 0.639 (5) (A) and 0.684 (5) (B), 0.316 (5) (B)). In neutral chloranilic acid, typical C═O and C–O(—H) bond lengths are 1.22 (1)Å and 1.32 (1) Å. For the chloroanilate monoanion C═O and C–O-, values of 1.24 (2)Å and 1.25 (2) Å have been reported (Gotoh et al., (2007). In (I), we report values of 1.248 (2)Å (C2═O2), 1.248 (2) Å (C5═O5), 1.249 (2) Å (C3–O3-) and 1.245 (2) Å (C6–O6-), respectively. In addition to ionic bond interactions, the lansoprazole intermediate and chloranilic acid ions are connected by strong N—H···O hydrogen bonds [N1A···O3 = 2.749 (2) Å; N2A···O5 = 2.737 (2) Å; N1B···O2 = 2.717 (2) Å; N2B···O6 = 2.766 (2) Å] (Fig. 2, Table 1). This produces a set of O—H···O—H···O—H infinite one-dimensional chains along the b axis in the (011) plane. In addition, weak C—H···O, C—H···F, N—H···Cl (Table 1) and π–π (Table 2) intermolecular stacking interactions are observed which contribute to crystal packing stability (Fig. 2).

Experimental

The title compound was synthesized by adding a saturated solution of chloranilic acid (0.42 g, 2 mmol) in methanol (10 ml) to a solution of the lansoprazole intermediate (0.74 g, 2 mmol) in methanol (10 ml). A red color developed and the solution was allowed to evaporate slowly at room temperature. The red color complex formed was filtered off, washed with diethyl ether and dried under vacuum (Yield: 72.4%). Crystals were grown from a dimethyl formamide solution (m.p.: 441-444 K). Composition (%) found (calculated) for [C16H15F3N3OS+]2 [C6Cl2O42-]: C: 49.76 (49.84); H: 3.28 (3.30); N: 9.15 (9.18).

Refinement

The H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with N–H = 0.86Å and C–H distances in the range 0.93-0.97Å and with Uiso(H) = 1.19-1.50 Ueq(C,N). The fluorine atoms were disordered with F1A, F2A, F3A at 0.361 (5) and F1AA, F2AA, F3AA at 0.639 (5) partial occupancy. F1B, F2B, F3B were placed at 0.684 (5) and F1BB, F2BB, F3BB at 0.316 (5) partial occupancy. All fluorine atoms were then refined anisotropically. The following restraints were applied: the ellipsoids of the F atoms were restrained to be isotropic and to have a similar shape than their opposite counterpart. The C-F distances were restrained to 1.303 (1)Å and the F···F distances to 2.128 (1)Å.

Figures

Fig. 1.

Fig. 1.

Molecular structure of [C16H15F3N3OS+]2 [C6Cl2O42-], showing the atom labeling scheme and 50% probability displacement ellipsoids. Dashed lines indicate strong N—H···O intermolecular interactions within the asymmetric unit. H atoms are presented as small circles of arbitrary radius.

Fig. 2.

Fig. 2.

Packing diagram of the title compound ,[C16H15F3N3OS+]2 [C6Cl2O42-],, viewed down the a axis. Dashed lines indicate strong N—H···O and weak C—H···O, C—H···F intermolecular hydrogen bonds linking the [C16H15F3N3OS+]2 and [C6Cl2O42-] ions into an infinite O—H···O—H···O—H chain network along the b axis in the (011) plane.

Crystal data

2C16H15F3N3OS+·C6Cl2O42 F(000) = 1872
Mr = 915.70 Dx = 1.543 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2yn Cell parameters from 10683 reflections
a = 9.48575 (8) Å θ = 4.5–77.4°
b = 23.6316 (2) Å µ = 3.22 mm1
c = 17.86775 (15) Å T = 295 K
β = 100.2065 (9)° Prism, red-brown
V = 3941.92 (6) Å3 0.38 × 0.24 × 0.19 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur Ruby Gemini diffractometer 8269 independent reflections
Radiation source: Enhance (Cu) X-ray Source 6572 reflections with I > 2σ(I)
graphite Rint = 0.019
Detector resolution: 10.5081 pixels mm-1 θmax = 77.6°, θmin = 4.5°
ω scans h = −11→10
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) k = −29→21
Tmin = 0.692, Tmax = 1.000 l = −21→22
19572 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.1054P)2 + 0.2084P] where P = (Fo2 + 2Fc2)/3
8269 reflections (Δ/σ)max = 0.007
600 parameters Δρmax = 0.87 e Å3
138 restraints Δρmin = −0.49 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cl1 −0.02389 (6) 0.28125 (3) 0.75775 (3) 0.06238 (17)
Cl2 0.65326 (6) 0.29242 (4) 0.82221 (3) 0.06540 (18)
O2 0.16831 (17) 0.31643 (8) 0.65093 (9) 0.0562 (4)
O3 0.45465 (16) 0.32221 (7) 0.67875 (8) 0.0499 (4)
O5 0.45948 (16) 0.26157 (7) 0.92935 (8) 0.0487 (3)
O6 0.17567 (16) 0.25255 (8) 0.90012 (9) 0.0518 (4)
C1 0.1616 (2) 0.28648 (9) 0.77553 (11) 0.0401 (4)
C2 0.2306 (2) 0.30329 (8) 0.71610 (11) 0.0387 (4)
C3 0.3966 (2) 0.30515 (8) 0.73206 (11) 0.0380 (4)
C4 0.4674 (2) 0.28877 (9) 0.80369 (11) 0.0410 (4)
C5 0.3979 (2) 0.27343 (8) 0.86360 (10) 0.0372 (4)
C6 0.2333 (2) 0.27039 (8) 0.84730 (11) 0.0368 (4)
S1A 0.76555 (7) 0.36213 (3) 0.55737 (3) 0.05601 (14)
F1A 0.9879 (2) 0.53715 (13) 0.14545 (16) 0.161 (4) 0.361 (5)
F2A 1.1807 (2) 0.50633 (8) 0.2122 (2) 0.105 (2) 0.361 (5)
F3A 1.1443 (3) 0.59488 (7) 0.2010 (3) 0.149 (3) 0.361 (5)
F1AA 1.0095 (2) 0.51401 (8) 0.15374 (14) 0.1149 (16) 0.639 (5)
F2AA 1.21213 (17) 0.52535 (11) 0.2249 (2) 0.153 (2) 0.639 (5)
F3AA 1.0897 (4) 0.59702 (6) 0.1800 (2) 0.216 (3) 0.639 (5)
O1A 0.9921 (3) 0.49361 (8) 0.29873 (12) 0.0721 (5)
N1A 0.68513 (19) 0.27244 (9) 0.63087 (10) 0.0479 (4)
H1AA 0.6338 0.2931 0.6552 0.057*
N2A 0.8291 (2) 0.24764 (8) 0.55373 (10) 0.0469 (4)
H2AA 0.8853 0.2497 0.5210 0.056*
N3A 0.8120 (2) 0.45798 (9) 0.48750 (13) 0.0592 (5)
C1A 0.7631 (2) 0.29124 (10) 0.58035 (11) 0.0450 (5)
C2A 0.7007 (2) 0.21455 (11) 0.63736 (12) 0.0496 (5)
C3A 0.6439 (3) 0.17509 (13) 0.68139 (16) 0.0650 (7)
H3AA 0.5843 0.1858 0.7150 0.078*
C4A 0.6802 (4) 0.11919 (14) 0.67281 (19) 0.0813 (9)
H4AA 0.6447 0.0916 0.7016 0.098*
C5A 0.7691 (4) 0.10301 (14) 0.62188 (19) 0.0781 (8)
H5AA 0.7894 0.0648 0.6169 0.094*
C6A 0.8277 (3) 0.14224 (12) 0.57871 (15) 0.0634 (6)
H6AA 0.8879 0.1315 0.5454 0.076*
C7A 0.7919 (2) 0.19858 (11) 0.58771 (12) 0.0492 (5)
C8A 0.8823 (3) 0.36051 (11) 0.48755 (15) 0.0570 (6)
H8AA 0.9794 0.3513 0.5116 0.068*
H8AB 0.8497 0.3323 0.4490 0.068*
C9A 0.8769 (3) 0.41856 (10) 0.45245 (14) 0.0517 (5)
C10A 0.8074 (3) 0.51054 (12) 0.45988 (16) 0.0653 (7)
H10A 0.7620 0.5382 0.4840 0.078*
C11A 0.8657 (3) 0.52621 (12) 0.39785 (16) 0.0641 (6)
H11A 0.8612 0.5634 0.3807 0.077*
C12A 0.9315 (3) 0.48433 (11) 0.36190 (15) 0.0577 (6)
C13A 0.9393 (3) 0.42859 (10) 0.38825 (14) 0.0526 (5)
C14A 1.0114 (3) 0.38352 (12) 0.34966 (17) 0.0673 (7)
H14A 1.0194 0.3496 0.3797 0.101*
H14B 1.1052 0.3961 0.3442 0.101*
H14C 0.9558 0.3759 0.3004 0.101*
C15A 1.0090 (6) 0.54929 (14) 0.2751 (2) 0.0985 (12)
H15A 1.0667 0.5708 0.3156 0.118*
H15B 0.9165 0.5676 0.2615 0.118*
C16A 1.08337 (16) 0.54588 (6) 0.20623 (10) 0.1085 (15)
S1B 0.37775 (7) 0.35551 (3) 0.47949 (3) 0.05589 (14)
F1B 0.46185 (16) 0.52009 (8) 0.0783 (2) 0.144 (2) 0.684 (5)
F2B 0.68815 (15) 0.52999 (10) 0.10037 (18) 0.1317 (14) 0.684 (5)
F3B 0.5535 (3) 0.60246 (6) 0.08372 (17) 0.1343 (16) 0.684 (5)
F1BB 0.5025 (3) 0.59349 (8) 0.0729 (2) 0.114 (3) 0.316 (5)
F2BB 0.5274 (3) 0.50406 (7) 0.0777 (2) 0.115 (3) 0.316 (5)
F3BB 0.70535 (15) 0.55741 (14) 0.1178 (3) 0.162 (4) 0.316 (5)
O1B 0.5855 (3) 0.50090 (9) 0.22645 (11) 0.0748 (6)
N1B 0.2888 (2) 0.26340 (9) 0.54297 (11) 0.0492 (4)
H1BA 0.2374 0.2835 0.5679 0.059*
N2B 0.4330 (2) 0.24045 (8) 0.46559 (10) 0.0467 (4)
H2BA 0.4892 0.2434 0.4329 0.056*
N3B 0.4174 (3) 0.45403 (9) 0.41534 (12) 0.0618 (5)
C1B 0.3674 (2) 0.28334 (10) 0.49428 (11) 0.0446 (4)
C2B 0.3029 (3) 0.20543 (11) 0.54709 (14) 0.0540 (5)
C3B 0.2441 (4) 0.16568 (14) 0.58983 (19) 0.0760 (8)
H3BA 0.1832 0.1759 0.6230 0.091*
C4B 0.2813 (5) 0.10991 (17) 0.5801 (2) 0.0975 (12)
H4BA 0.2449 0.0817 0.6077 0.117*
C5B 0.3720 (5) 0.09494 (15) 0.5299 (3) 0.0991 (13)
H5BA 0.3935 0.0569 0.5245 0.119*
C6B 0.4311 (4) 0.13501 (13) 0.48792 (18) 0.0744 (8)
H6BA 0.4922 0.1247 0.4549 0.089*
C7B 0.3950 (3) 0.19064 (11) 0.49732 (13) 0.0526 (5)
C8B 0.4554 (3) 0.35551 (11) 0.39369 (13) 0.0556 (6)
H8BA 0.5487 0.3375 0.4032 0.067*
H8BB 0.3941 0.3350 0.3535 0.067*
C9B 0.4691 (3) 0.41622 (10) 0.37107 (12) 0.0495 (5)
C10B 0.4281 (4) 0.50877 (12) 0.39791 (16) 0.0680 (7)
H10B 0.3962 0.5355 0.4293 0.082*
C11B 0.4831 (3) 0.52773 (12) 0.33653 (15) 0.0652 (7)
H11B 0.4876 0.5662 0.3260 0.078*
C12B 0.5319 (3) 0.48743 (11) 0.29059 (13) 0.0566 (6)
C13B 0.5295 (3) 0.43033 (10) 0.30822 (12) 0.0513 (5)
C14B 0.5910 (3) 0.38603 (12) 0.26233 (15) 0.0655 (7)
H14D 0.6283 0.4040 0.2218 0.098*
H14E 0.5171 0.3598 0.2415 0.098*
H14F 0.6667 0.3661 0.2946 0.098*
C15B 0.5554 (4) 0.55470 (13) 0.19478 (18) 0.0803 (9)
H15C 0.6229 0.5822 0.2207 0.096*
H15D 0.4595 0.5663 0.2001 0.096*
C16B 0.56725 (15) 0.55150 (6) 0.11217 (10) 0.0924 (11)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0340 (2) 0.1034 (5) 0.0508 (3) −0.0013 (2) 0.0106 (2) 0.0039 (3)
Cl2 0.0347 (2) 0.1177 (5) 0.0455 (3) −0.0089 (3) 0.0117 (2) 0.0020 (3)
O2 0.0479 (8) 0.0864 (11) 0.0365 (7) 0.0193 (8) 0.0130 (6) 0.0129 (7)
O3 0.0493 (7) 0.0665 (9) 0.0389 (7) −0.0025 (7) 0.0212 (6) 0.0073 (6)
O5 0.0436 (7) 0.0706 (9) 0.0325 (7) −0.0026 (7) 0.0081 (6) 0.0078 (6)
O6 0.0443 (7) 0.0765 (10) 0.0379 (7) −0.0111 (7) 0.0164 (6) 0.0072 (7)
C1 0.0313 (8) 0.0535 (10) 0.0374 (9) −0.0002 (7) 0.0110 (7) 0.0003 (8)
C2 0.0398 (9) 0.0452 (9) 0.0334 (9) 0.0063 (7) 0.0127 (7) 0.0008 (7)
C3 0.0396 (9) 0.0429 (9) 0.0346 (9) −0.0001 (7) 0.0147 (7) 0.0005 (7)
C4 0.0321 (8) 0.0577 (11) 0.0354 (9) −0.0044 (8) 0.0117 (7) 0.0010 (8)
C5 0.0382 (9) 0.0430 (9) 0.0320 (8) −0.0026 (7) 0.0106 (7) 0.0008 (7)
C6 0.0378 (9) 0.0408 (9) 0.0341 (8) −0.0045 (7) 0.0130 (7) −0.0013 (7)
S1A 0.0645 (3) 0.0645 (3) 0.0451 (3) 0.0095 (3) 0.0264 (2) −0.0001 (2)
F1A 0.162 (7) 0.194 (7) 0.125 (6) −0.033 (6) 0.018 (5) 0.057 (6)
F2A 0.113 (4) 0.084 (3) 0.136 (5) −0.031 (3) 0.073 (4) −0.031 (3)
F3A 0.227 (6) 0.088 (4) 0.166 (6) −0.049 (4) 0.124 (5) 0.007 (4)
F1AA 0.176 (4) 0.110 (3) 0.0567 (18) 0.033 (3) 0.016 (2) −0.0122 (17)
F2AA 0.109 (3) 0.207 (5) 0.149 (4) −0.066 (3) 0.042 (3) −0.009 (4)
F3AA 0.442 (8) 0.104 (4) 0.136 (4) −0.017 (5) 0.142 (5) 0.011 (3)
O1A 0.0979 (14) 0.0607 (10) 0.0668 (11) −0.0055 (10) 0.0391 (10) 0.0041 (9)
N1A 0.0432 (9) 0.0682 (11) 0.0350 (8) −0.0004 (8) 0.0144 (7) −0.0060 (8)
N2A 0.0453 (8) 0.0673 (11) 0.0309 (8) 0.0023 (8) 0.0142 (7) −0.0026 (7)
N3A 0.0671 (12) 0.0609 (11) 0.0552 (11) 0.0049 (10) 0.0261 (9) −0.0069 (9)
C1A 0.0412 (9) 0.0653 (12) 0.0298 (8) 0.0003 (9) 0.0097 (7) −0.0036 (8)
C2A 0.0472 (11) 0.0671 (13) 0.0361 (10) −0.0062 (9) 0.0119 (8) −0.0051 (9)
C3A 0.0706 (15) 0.0759 (16) 0.0553 (13) −0.0119 (13) 0.0301 (12) −0.0056 (12)
C4A 0.107 (2) 0.0754 (18) 0.0710 (18) −0.0169 (17) 0.0404 (17) −0.0002 (15)
C5A 0.101 (2) 0.0652 (16) 0.0752 (18) −0.0023 (15) 0.0363 (17) −0.0048 (14)
C6A 0.0743 (16) 0.0688 (15) 0.0511 (13) 0.0052 (12) 0.0219 (12) −0.0066 (11)
C7A 0.0501 (11) 0.0659 (13) 0.0330 (9) −0.0028 (10) 0.0108 (8) −0.0056 (9)
C8A 0.0640 (13) 0.0591 (13) 0.0554 (13) 0.0039 (11) 0.0313 (11) −0.0038 (10)
C9A 0.0541 (11) 0.0573 (12) 0.0470 (11) 0.0001 (10) 0.0180 (9) −0.0068 (9)
C10A 0.0741 (16) 0.0620 (14) 0.0636 (15) 0.0097 (12) 0.0230 (13) −0.0104 (12)
C11A 0.0773 (16) 0.0535 (13) 0.0636 (15) 0.0023 (12) 0.0186 (13) −0.0012 (11)
C12A 0.0625 (13) 0.0615 (13) 0.0522 (12) −0.0056 (11) 0.0192 (10) −0.0022 (10)
C13A 0.0557 (12) 0.0576 (12) 0.0488 (11) −0.0010 (10) 0.0208 (10) −0.0052 (10)
C14A 0.0813 (16) 0.0654 (15) 0.0651 (15) 0.0067 (13) 0.0399 (13) −0.0019 (12)
C15A 0.162 (4) 0.0620 (17) 0.083 (2) −0.012 (2) 0.054 (2) 0.0002 (16)
C16A 0.184 (5) 0.072 (2) 0.076 (2) −0.025 (3) 0.040 (3) 0.0107 (18)
S1B 0.0684 (3) 0.0580 (3) 0.0482 (3) 0.0082 (3) 0.0293 (2) 0.0006 (2)
F1B 0.211 (5) 0.118 (3) 0.091 (3) −0.007 (3) −0.006 (3) −0.012 (2)
F2B 0.191 (3) 0.118 (3) 0.117 (2) 0.027 (3) 0.110 (2) 0.008 (2)
F3B 0.265 (5) 0.0703 (18) 0.091 (2) 0.014 (2) 0.094 (3) 0.0221 (16)
F1BB 0.135 (6) 0.123 (6) 0.083 (5) 0.006 (5) 0.017 (4) 0.047 (4)
F2BB 0.188 (7) 0.108 (5) 0.053 (3) 0.038 (5) 0.028 (4) −0.009 (3)
F3BB 0.150 (7) 0.205 (9) 0.149 (7) −0.009 (6) 0.076 (6) 0.030 (7)
O1B 0.1124 (15) 0.0664 (11) 0.0570 (10) 0.0159 (11) 0.0467 (10) 0.0109 (8)
N1B 0.0446 (9) 0.0646 (11) 0.0415 (9) 0.0019 (8) 0.0158 (7) −0.0003 (8)
N2B 0.0459 (9) 0.0610 (10) 0.0353 (8) 0.0045 (8) 0.0124 (7) −0.0030 (7)
N3B 0.0853 (14) 0.0589 (11) 0.0494 (10) 0.0164 (10) 0.0340 (10) 0.0038 (9)
C1B 0.0416 (9) 0.0599 (12) 0.0332 (9) 0.0020 (8) 0.0088 (7) −0.0019 (8)
C2B 0.0521 (12) 0.0662 (14) 0.0443 (11) −0.0036 (10) 0.0103 (9) −0.0003 (10)
C3B 0.0829 (18) 0.0791 (18) 0.0714 (18) −0.0151 (15) 0.0283 (15) 0.0081 (15)
C4B 0.123 (3) 0.079 (2) 0.096 (3) −0.018 (2) 0.036 (2) 0.0131 (19)
C5B 0.143 (4) 0.0581 (17) 0.097 (3) 0.000 (2) 0.024 (3) 0.0009 (17)
C6B 0.094 (2) 0.0654 (16) 0.0653 (17) 0.0083 (15) 0.0192 (15) −0.0082 (13)
C7B 0.0550 (12) 0.0615 (13) 0.0408 (11) 0.0016 (10) 0.0071 (9) −0.0021 (9)
C8B 0.0700 (14) 0.0589 (13) 0.0435 (11) 0.0150 (11) 0.0257 (10) 0.0054 (9)
C9B 0.0563 (11) 0.0569 (12) 0.0378 (10) 0.0129 (10) 0.0151 (9) 0.0019 (9)
C10B 0.0955 (18) 0.0612 (14) 0.0562 (13) 0.0193 (13) 0.0377 (13) −0.0011 (11)
C11B 0.0927 (19) 0.0547 (13) 0.0548 (13) 0.0128 (13) 0.0310 (13) 0.0052 (11)
C12B 0.0704 (14) 0.0635 (13) 0.0404 (11) 0.0083 (11) 0.0223 (10) 0.0047 (10)
C13B 0.0613 (12) 0.0585 (12) 0.0363 (10) 0.0128 (10) 0.0148 (9) 0.0012 (9)
C14B 0.0878 (17) 0.0666 (15) 0.0495 (12) 0.0172 (13) 0.0321 (12) −0.0007 (11)
C15B 0.129 (3) 0.0583 (15) 0.0645 (16) −0.0002 (16) 0.0478 (17) 0.0028 (12)
C16B 0.148 (3) 0.0671 (18) 0.075 (2) 0.002 (2) 0.054 (2) 0.0131 (16)

Geometric parameters (Å, °)

Cl1—C1 1.7363 (19) C14A—H14A 0.9600
Cl2—C4 1.7370 (19) C14A—H14B 0.9600
O2—C2 1.248 (2) C14A—H14C 0.9600
O3—C3 1.249 (2) C15A—C16A 1.525 (4)
O5—C5 1.248 (2) C15A—H15A 0.9700
O6—C6 1.245 (2) C15A—H15B 0.9700
C1—C6 1.394 (3) S1B—C1B 1.731 (2)
C1—C2 1.400 (3) S1B—C8B 1.814 (2)
C2—C3 1.551 (3) F1B—C16B 1.3048 (11)
C3—C4 1.391 (3) F2B—C16B 1.3053 (11)
C4—C5 1.401 (3) F3B—C16B 1.3047 (11)
C5—C6 1.539 (3) F1BB—C16B 1.3039 (12)
S1A—C1A 1.726 (2) F2BB—C16B 1.3026 (12)
S1A—C8A 1.809 (2) F3BB—C16B 1.3034 (11)
F1A—C16A 1.3016 (12) O1B—C12B 1.371 (3)
F2A—C16A 1.3045 (11) O1B—C15B 1.400 (4)
F3A—C16A 1.3052 (12) N1B—C1B 1.328 (3)
F1AA—C16A 1.3056 (11) N1B—C2B 1.377 (3)
F2AA—C16A 1.3016 (11) N1B—H1BA 0.8600
F3AA—C16A 1.3014 (12) N2B—C1B 1.338 (3)
O1A—C12A 1.372 (3) N2B—C7B 1.382 (3)
O1A—C15A 1.400 (4) N2B—H2BA 0.8600
N1A—C1A 1.340 (3) N3B—C10B 1.339 (4)
N1A—C2A 1.379 (3) N3B—C9B 1.342 (3)
N1A—H1AA 0.8600 C2B—C3B 1.389 (4)
N2A—C1A 1.336 (3) C2B—C7B 1.397 (3)
N2A—C7A 1.383 (3) C3B—C4B 1.383 (5)
N2A—H2AA 0.8600 C3B—H3BA 0.9300
N3A—C9A 1.332 (3) C4B—C5B 1.393 (6)
N3A—C10A 1.334 (4) C4B—H4BA 0.9300
C2A—C3A 1.389 (4) C5B—C6B 1.387 (5)
C2A—C7A 1.397 (3) C5B—H5BA 0.9300
C3A—C4A 1.381 (5) C6B—C7B 1.376 (4)
C3A—H3AA 0.9300 C6B—H6BA 0.9300
C4A—C5A 1.399 (4) C8B—C9B 1.502 (3)
C4A—H4AA 0.9300 C8B—H8BA 0.9700
C5A—C6A 1.384 (4) C8B—H8BB 0.9700
C5A—H5AA 0.9300 C9B—C13B 1.389 (3)
C6A—C7A 1.390 (4) C10B—C11B 1.371 (4)
C6A—H6AA 0.9300 C10B—H10B 0.9300
C8A—C9A 1.505 (4) C11B—C12B 1.389 (3)
C8A—H8AA 0.9700 C11B—H11B 0.9300
C8A—H8AB 0.9700 C12B—C13B 1.387 (4)
C9A—C13A 1.401 (3) C13B—C14B 1.509 (3)
C10A—C11A 1.374 (4) C14B—H14D 0.9600
C10A—H10A 0.9300 C14B—H14E 0.9600
C11A—C12A 1.387 (4) C14B—H14F 0.9600
C11A—H11A 0.9300 C15B—C16B 1.502 (3)
C12A—C13A 1.396 (4) C15B—H15C 0.9700
C13A—C14A 1.498 (3) C15B—H15D 0.9700
C6—C1—C2 123.92 (18) F2AA—C16A—F1AA 109.21 (12)
C6—C1—Cl1 117.53 (15) F2A—C16A—F1AA 85.83 (17)
C2—C1—Cl1 118.44 (15) F3A—C16A—F1AA 130.4 (2)
O2—C2—C1 124.80 (18) F3AA—C16A—C15A 107.4 (2)
O2—C2—C3 117.51 (17) F2AA—C16A—C15A 111.1 (3)
C1—C2—C3 117.69 (17) F1A—C16A—C15A 109.2 (3)
O3—C3—C4 125.85 (18) F2A—C16A—C15A 113.2 (3)
O3—C3—C2 116.08 (17) F3A—C16A—C15A 106.6 (3)
C4—C3—C2 118.06 (16) F1AA—C16A—C15A 110.1 (2)
C3—C4—C5 124.00 (18) C1B—S1B—C8B 99.87 (11)
C3—C4—Cl2 118.02 (14) C12B—O1B—C15B 118.0 (2)
C5—C4—Cl2 117.81 (15) C1B—N1B—C2B 109.11 (19)
O5—C5—C4 124.93 (18) C1B—N1B—H1BA 125.4
O5—C5—C6 117.24 (16) C2B—N1B—H1BA 125.4
C4—C5—C6 117.83 (16) C1B—N2B—C7B 108.40 (19)
O6—C6—C1 125.59 (18) C1B—N2B—H2BA 125.8
O6—C6—C5 116.07 (17) C7B—N2B—H2BA 125.8
C1—C6—C5 118.34 (16) C10B—N3B—C9B 117.1 (2)
C1A—S1A—C8A 100.32 (11) N1B—C1B—N2B 109.6 (2)
C12A—O1A—C15A 119.0 (2) N1B—C1B—S1B 120.19 (17)
C1A—N1A—C2A 108.78 (19) N2B—C1B—S1B 130.18 (17)
C1A—N1A—H1AA 125.6 N1B—C2B—C3B 131.1 (3)
C2A—N1A—H1AA 125.6 N1B—C2B—C7B 106.3 (2)
C1A—N2A—C7A 108.54 (18) C3B—C2B—C7B 122.6 (3)
C1A—N2A—H2AA 125.7 C4B—C3B—C2B 116.0 (3)
C7A—N2A—H2AA 125.7 C4B—C3B—H3BA 122.0
C9A—N3A—C10A 117.7 (2) C2B—C3B—H3BA 122.0
N2A—C1A—N1A 109.5 (2) C3B—C4B—C5B 121.5 (3)
N2A—C1A—S1A 129.56 (16) C3B—C4B—H4BA 119.2
N1A—C1A—S1A 120.94 (17) C5B—C4B—H4BA 119.2
N1A—C2A—C3A 131.9 (2) C6B—C5B—C4B 122.0 (3)
N1A—C2A—C7A 106.5 (2) C6B—C5B—H5BA 119.0
C3A—C2A—C7A 121.6 (2) C4B—C5B—H5BA 119.0
C4A—C3A—C2A 116.7 (3) C7B—C6B—C5B 117.0 (3)
C4A—C3A—H3AA 121.6 C7B—C6B—H6BA 121.5
C2A—C3A—H3AA 121.6 C5B—C6B—H6BA 121.5
C3A—C4A—C5A 121.7 (3) C6B—C7B—N2B 132.5 (3)
C3A—C4A—H4AA 119.2 C6B—C7B—C2B 120.9 (3)
C5A—C4A—H4AA 119.2 N2B—C7B—C2B 106.6 (2)
C6A—C5A—C4A 121.8 (3) C9B—C8B—S1B 107.15 (16)
C6A—C5A—H5AA 119.1 C9B—C8B—H8BA 110.3
C4A—C5A—H5AA 119.1 S1B—C8B—H8BA 110.3
C5A—C6A—C7A 116.5 (3) C9B—C8B—H8BB 110.3
C5A—C6A—H6AA 121.7 S1B—C8B—H8BB 110.3
C7A—C6A—H6AA 121.7 H8BA—C8B—H8BB 108.5
N2A—C7A—C6A 131.7 (2) N3B—C9B—C13B 124.2 (2)
N2A—C7A—C2A 106.7 (2) N3B—C9B—C8B 114.8 (2)
C6A—C7A—C2A 121.6 (2) C13B—C9B—C8B 121.0 (2)
C9A—C8A—S1A 106.77 (16) N3B—C10B—C11B 123.8 (2)
C9A—C8A—H8AA 110.4 N3B—C10B—H10B 118.1
S1A—C8A—H8AA 110.4 C11B—C10B—H10B 118.1
C9A—C8A—H8AB 110.4 C10B—C11B—C12B 117.6 (2)
S1A—C8A—H8AB 110.4 C10B—C11B—H11B 121.2
H8AA—C8A—H8AB 108.6 C12B—C11B—H11B 121.2
N3A—C9A—C13A 124.3 (2) O1B—C12B—C13B 116.0 (2)
N3A—C9A—C8A 115.2 (2) O1B—C12B—C11B 123.1 (2)
C13A—C9A—C8A 120.5 (2) C13B—C12B—C11B 120.8 (2)
N3A—C10A—C11A 123.9 (2) C12B—C13B—C9B 116.3 (2)
N3A—C10A—H10A 118.1 C12B—C13B—C14B 121.9 (2)
C11A—C10A—H10A 118.1 C9B—C13B—C14B 121.8 (2)
C10A—C11A—C12A 117.4 (3) C13B—C14B—H14D 109.5
C10A—C11A—H11A 121.3 C13B—C14B—H14E 109.5
C12A—C11A—H11A 121.3 H14D—C14B—H14E 109.5
O1A—C12A—C11A 123.7 (2) C13B—C14B—H14F 109.5
O1A—C12A—C13A 115.0 (2) H14D—C14B—H14F 109.5
C11A—C12A—C13A 121.2 (2) H14E—C14B—H14F 109.5
C12A—C13A—C9A 115.5 (2) O1B—C15B—C16B 107.8 (2)
C12A—C13A—C14A 121.1 (2) O1B—C15B—H15C 110.1
C9A—C13A—C14A 123.4 (2) C16B—C15B—H15C 110.1
C13A—C14A—H14A 109.5 O1B—C15B—H15D 110.1
C13A—C14A—H14B 109.5 C16B—C15B—H15D 110.1
H14A—C14A—H14B 109.5 H15C—C15B—H15D 108.5
C13A—C14A—H14C 109.5 F2BB—C16B—F3BB 109.42 (13)
H14A—C14A—H14C 109.5 F2BB—C16B—F1BB 109.35 (13)
H14B—C14A—H14C 109.5 F3BB—C16B—F1BB 109.33 (13)
O1A—C15A—C16A 106.7 (3) F2BB—C16B—F3B 127.6 (2)
O1A—C15A—H15A 110.4 F3BB—C16B—F3B 87.8 (2)
C16A—C15A—H15A 110.4 F3BB—C16B—F1B 140.7 (2)
O1A—C15A—H15B 110.4 F1BB—C16B—F1B 86.25 (16)
C16A—C15A—H15B 110.4 F3B—C16B—F1B 109.20 (12)
H15A—C15A—H15B 108.6 F2BB—C16B—F2B 77.19 (18)
F3AA—C16A—F2AA 109.73 (12) F1BB—C16B—F2B 123.6 (2)
F3AA—C16A—F1A 85.21 (19) F3B—C16B—F2B 109.08 (12)
F2AA—C16A—F1A 129.6 (2) F1B—C16B—F2B 109.06 (12)
F3AA—C16A—F2A 128.2 (2) F2BB—C16B—C15B 116.2 (3)
F1A—C16A—F2A 109.42 (12) F3BB—C16B—C15B 99.7 (3)
F2AA—C16A—F3A 86.66 (18) F1BB—C16B—C15B 112.3 (3)
F1A—C16A—F3A 109.40 (13) F3B—C16B—C15B 108.5 (2)
F2A—C16A—F3A 109.00 (12) F1B—C16B—C15B 107.4 (2)
F3AA—C16A—F1AA 109.29 (12) F2B—C16B—C15B 113.5 (2)
C6—C1—C2—O2 178.1 (2) C11A—C12A—C13A—C14A −179.5 (3)
Cl1—C1—C2—O2 2.0 (3) N3A—C9A—C13A—C12A 0.7 (4)
C6—C1—C2—C3 −1.3 (3) C8A—C9A—C13A—C12A −178.2 (2)
Cl1—C1—C2—C3 −177.35 (14) N3A—C9A—C13A—C14A −179.9 (3)
O2—C2—C3—O3 3.1 (3) C8A—C9A—C13A—C14A 1.2 (4)
C1—C2—C3—O3 −177.56 (19) C12A—O1A—C15A—C16A 177.9 (2)
O2—C2—C3—C4 −177.9 (2) O1A—C15A—C16A—F3AA 175.1 (3)
C1—C2—C3—C4 1.5 (3) O1A—C15A—C16A—F2AA −64.9 (4)
O3—C3—C4—C5 175.6 (2) O1A—C15A—C16A—F1A 84.2 (4)
C2—C3—C4—C5 −3.4 (3) O1A—C15A—C16A—F2A −38.0 (4)
O3—C3—C4—Cl2 0.4 (3) O1A—C15A—C16A—F3A −157.8 (3)
C2—C3—C4—Cl2 −178.54 (14) O1A—C15A—C16A—F1AA 56.2 (4)
C3—C4—C5—O5 −175.9 (2) C2B—N1B—C1B—N2B 0.2 (3)
Cl2—C4—C5—O5 −0.8 (3) C2B—N1B—C1B—S1B −177.41 (16)
C3—C4—C5—C6 4.6 (3) C7B—N2B—C1B—N1B −0.1 (2)
Cl2—C4—C5—C6 179.79 (14) C7B—N2B—C1B—S1B 177.27 (18)
C2—C1—C6—O6 −176.2 (2) C8B—S1B—C1B—N1B −165.94 (18)
Cl1—C1—C6—O6 −0.1 (3) C8B—S1B—C1B—N2B 17.0 (2)
C2—C1—C6—C5 2.5 (3) C1B—N1B—C2B—C3B 179.3 (3)
Cl1—C1—C6—C5 178.64 (14) C1B—N1B—C2B—C7B −0.3 (3)
O5—C5—C6—O6 −4.7 (3) N1B—C2B—C3B—C4B −180.0 (3)
C4—C5—C6—O6 174.79 (19) C7B—C2B—C3B—C4B −0.3 (5)
O5—C5—C6—C1 176.48 (19) C2B—C3B—C4B—C5B −0.3 (6)
C4—C5—C6—C1 −4.0 (3) C3B—C4B—C5B—C6B 0.8 (7)
C7A—N2A—C1A—N1A 0.5 (2) C4B—C5B—C6B—C7B −0.6 (6)
C7A—N2A—C1A—S1A −178.46 (17) C5B—C6B—C7B—N2B 179.9 (3)
C2A—N1A—C1A—N2A −0.1 (2) C5B—C6B—C7B—C2B 0.0 (5)
C2A—N1A—C1A—S1A 178.96 (15) C1B—N2B—C7B—C6B 179.9 (3)
C8A—S1A—C1A—N2A 0.0 (2) C1B—N2B—C7B—C2B −0.1 (3)
C8A—S1A—C1A—N1A −178.86 (18) N1B—C2B—C7B—C6B −179.8 (2)
C1A—N1A—C2A—C3A 179.8 (3) C3B—C2B—C7B—C6B 0.5 (4)
C1A—N1A—C2A—C7A −0.3 (2) N1B—C2B—C7B—N2B 0.3 (3)
N1A—C2A—C3A—C4A 178.8 (3) C3B—C2B—C7B—N2B −179.4 (3)
C7A—C2A—C3A—C4A −1.0 (4) C1B—S1B—C8B—C9B 178.68 (17)
C2A—C3A—C4A—C5A −0.4 (5) C10B—N3B—C9B—C13B −1.3 (4)
C3A—C4A—C5A—C6A 1.4 (6) C10B—N3B—C9B—C8B 179.5 (3)
C4A—C5A—C6A—C7A −0.9 (5) S1B—C8B—C9B—N3B −2.7 (3)
C1A—N2A—C7A—C6A 178.2 (3) S1B—C8B—C9B—C13B 178.04 (19)
C1A—N2A—C7A—C2A −0.7 (2) C9B—N3B—C10B—C11B 2.5 (5)
C5A—C6A—C7A—N2A −179.2 (3) N3B—C10B—C11B—C12B −0.8 (5)
C5A—C6A—C7A—C2A −0.5 (4) C15B—O1B—C12B—C13B 163.0 (3)
N1A—C2A—C7A—N2A 0.6 (2) C15B—O1B—C12B—C11B −17.4 (4)
C3A—C2A—C7A—N2A −179.5 (2) C10B—C11B—C12B—O1B 178.1 (3)
N1A—C2A—C7A—C6A −178.4 (2) C10B—C11B—C12B—C13B −2.4 (5)
C3A—C2A—C7A—C6A 1.5 (4) O1B—C12B—C13B—C9B −177.0 (2)
C1A—S1A—C8A—C9A 171.22 (17) C11B—C12B—C13B—C9B 3.4 (4)
C10A—N3A—C9A—C13A −0.6 (4) O1B—C12B—C13B—C14B 3.7 (4)
C10A—N3A—C9A—C8A 178.4 (2) C11B—C12B—C13B—C14B −175.8 (3)
S1A—C8A—C9A—N3A 10.6 (3) N3B—C9B—C13B—C12B −1.6 (4)
S1A—C8A—C9A—C13A −170.4 (2) C8B—C9B—C13B—C12B 177.5 (2)
C9A—N3A—C10A—C11A −0.2 (4) N3B—C9B—C13B—C14B 177.6 (3)
N3A—C10A—C11A—C12A 0.8 (5) C8B—C9B—C13B—C14B −3.3 (4)
C15A—O1A—C12A—C11A 10.1 (5) C12B—O1B—C15B—C16B −156.3 (2)
C15A—O1A—C12A—C13A −170.4 (3) O1B—C15B—C16B—F2BB 34.4 (4)
C10A—C11A—C12A—O1A 178.9 (3) O1B—C15B—C16B—F3BB −82.9 (3)
C10A—C11A—C12A—C13A −0.6 (4) O1B—C15B—C16B—F1BB 161.4 (2)
O1A—C12A—C13A—C9A −179.6 (2) O1B—C15B—C16B—F3B −173.8 (2)
C11A—C12A—C13A—C9A −0.1 (4) O1B—C15B—C16B—F1B 68.3 (3)
O1A—C12A—C13A—C14A 0.9 (4) O1B—C15B—C16B—F2B −52.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1A—H1AA···O3 0.86 1.95 2.749 (2) 155
N1A—H1AA···Cl2 0.86 2.96 3.5169 (18) 125
N2A—H2AA···O5i 0.86 1.91 2.737 (2) 160
N1B—H1BA···O2 0.86 1.89 2.717 (2) 160
N2B—H2BA···O6i 0.86 1.96 2.766 (2) 155
C8A—H8AB···O5i 0.97 2.50 3.195 (3) 127
C8B—H8BA···O6i 0.97 2.45 3.289 (3) 145
C6B—H6BA···F3AAii 0.93 2.49 3.104 (5) 124

Symmetry codes: (i) x+1/2, −y+1/2, z−1/2; (ii) −x+3/2, y−1/2, −z+1/2.

Table 2 Weak π-π hydrogen-bond intermoleular interactions (Å)

Cg···Cg D···A
Cg1···Cg4i 3.8187 (13)
Cg2···Cg2ii 3.5631 (15)
Cg2···Cg5i 3.7434 (17)
Cg3···Cg6i 3.842 (2)

Symmetry codes: (i) x, y, z; (ii) 2-x, 1-y, 1-z; Cg1,Cg2,Cg3,Cg4,Cg5,Cg6 are the centroids of the N1A/C1A/N2A/C7A/C2A; N3A/C9A/C13A/C12A/C11A/C10A; C2A–C7A; N1B/C1B/N2B/C7B/C2B; N3B/C9B/C13B/C12B/C11B/C10B; C2B–C7B rings.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5269).

References

  1. Arslan, M., Asker, E., Krafcik, R. B., Masnovi, J. & Baker, R. J. (2006). Acta Cryst. E62, o4055–o4057.
  2. Gotoh, K., Ishikawa, R. & Ishida, H. (2006). Acta Cryst. E62, o4738–o4740.
  3. Gotoh, K., Nagoshi, H. & Ishida, H. (2007). Acta Cryst. E63, o4295.
  4. Gotoh, K., Nagoshi, H. & Ishida, H. (2008). Acta Cryst. E64, o1260. [DOI] [PMC free article] [PubMed]
  5. Ishida, H. (2004a). Acta Cryst. E60, o1900–o1901.
  6. Ishida, H. (2004b). Acta Cryst. E60, o2005–o2006.
  7. Ishida, H. (2004c). Acta Cryst. E60, o2506–o2508.
  8. Ishida, H. & Kashino, S. (1999). Acta Cryst. C55, 1923–1926.
  9. Ishida, H. & Kashino, S. (2000). Acta Cryst. C56, e202–e204. [DOI] [PubMed]
  10. Iwahi, T., Satoh, H., Nakao, M., Iwasaki, T., Yamazaki, T., Kubo, K., Tamura, T. & Imada, A. (1991). Antimicrob. Agents Chemother.35, 490–496. [DOI] [PMC free article] [PubMed]
  11. Meng, X.-G. & Qian, J.-L. (2006). Acta Cryst. E62, o4178–o4180.
  12. Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  13. Refat, M. S., Ahmed, H. A.-D., El-Zayat, L. A., Fukunaga, T. & Ishida, H. (2006). Acta Cryst. E62, o1886–o1887.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Swamy, G. Y. S. K. & Ravikumar, K. (2007). J. Struct. Chem.48, 715–718.
  16. Tabuchi, Y., Takahashi, A., Gotoh, K., Akashi, H. & Ishida, H. (2005). Acta Cryst. E61, o4215–o4217.
  17. Vyas, K., Sivalakshmidevi, A. & Om Reddy, G. (2000). Acta Cryst. C56, e572–e573. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810019665/bt5269sup1.cif

e-66-o1507-sup1.cif (34.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810019665/bt5269Isup2.hkl

e-66-o1507-Isup2.hkl (404.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES