Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Sep;86(17):6821–6825. doi: 10.1073/pnas.86.17.6821

Voltage-activated K+ conductances in freshly isolated embryonic chicken osteoclasts.

J H Ravesloot 1, D L Ypey 1, T Vrijheid-Lammers 1, P J Nijweide 1
PMCID: PMC297938  PMID: 2549551

Abstract

Patch-clamp measurements on freshly isolated embryonic chicken osteoclasts revealed three distinct types of voltage-dependent K+ conductance. The first type of conductance, present in 72% of the cells, activated at membrane potentials less negative than -30 to -20 mV and reached full activation at +40 mV. It activated with a delay, reached a peak value, and then inactivated with a time constant of approximately 1.5 s. Inactivation was complete or almost so. Recovery from inactivation, at -70 mV, had a time constant of roughly 1 s. The conductance could be blocked, at least partly, by 4 mM 4-aminopyridine. The second type of conductance (present in all cells) activated at membrane potentials more negative than -40 to -80 mV and reached full activation at -130 mV. Activation potential and maximal conductance were dependent on the extracellular K+ concentration. Inactivation of the conductance first became apparent at membrane potentials more negative than -100 mV and was a two-exponential process. The conductance could be blocked by external 5 mM Cs+ ions. The third type of conductance (present in all cells) activated at membrane potentials more positive than +30 mV. Generally, the conductance did not inactivate.

Full text

PDF
6821

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akisaka T., Gay C. V. Ultracytochemical evidence for a proton-pump adenosine triphosphatase in chick osteoclasts. Cell Tissue Res. 1986;245(3):507–512. doi: 10.1007/BF00218550. [DOI] [PubMed] [Google Scholar]
  2. Akisaka T., Yamamoto T., Gay C. V. Ultracytochemical investigation of calcium-activated adenosine triphosphatase (Ca++-ATPase) in chick tibia. J Bone Miner Res. 1988 Feb;3(1):19–25. doi: 10.1002/jbmr.5650030105. [DOI] [PubMed] [Google Scholar]
  3. Anderson R. E., Woodbury D. M., Jee W. S. Humoral and ionic regulation of osteoclast acidity. Calcif Tissue Int. 1986 Oct;39(4):252–258. doi: 10.1007/BF02555214. [DOI] [PubMed] [Google Scholar]
  4. Baron R., Neff L., Louvard D., Courtoy P. J. Cell-mediated extracellular acidification and bone resorption: evidence for a low pH in resorbing lacunae and localization of a 100-kD lysosomal membrane protein at the osteoclast ruffled border. J Cell Biol. 1985 Dec;101(6):2210–2222. doi: 10.1083/jcb.101.6.2210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baron R., Neff L., Roy C., Boisvert A., Caplan M. Evidence for a high and specific concentration of (Na+,K+)ATPase in the plasma membrane of the osteoclast. Cell. 1986 Jul 18;46(2):311–320. doi: 10.1016/0092-8674(86)90748-8. [DOI] [PubMed] [Google Scholar]
  6. Choquet D., Sarthou P., Primi D., Cazenave P. A., Korn H. Cyclic AMP-modulated potassium channels in murine B cells and their precursors. Science. 1987 Mar 6;235(4793):1211–1214. doi: 10.1126/science.2434998. [DOI] [PubMed] [Google Scholar]
  7. Coyne M. D., Dagan D., Levitan I. B. Calcium and barium permeable channels from Aplysia nervous system reconstituted in lipid bilayers. J Membr Biol. 1987;97(3):205–213. doi: 10.1007/BF01869223. [DOI] [PubMed] [Google Scholar]
  8. Delaisse J. M., Boyde A., Maconnachie E., Ali N. N., Sear C. H., Eeckhout Y., Vaes G., Jones S. J. The effects of inhibitors of cysteine-proteinases and collagenase on the resorptive activity of isolated osteoclasts. Bone. 1987;8(5):305–313. doi: 10.1016/8756-3282(87)90007-x. [DOI] [PubMed] [Google Scholar]
  9. Deutsch C., Lee S. C. Modulation of K+ currents in human lymphocytes by pH. J Physiol. 1989 Jun;413:399–413. doi: 10.1113/jphysiol.1989.sp017660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Forte J. G., Machen T. E., Obrink K. J. Mechanisms of gastric H+ and Cl- transport. Annu Rev Physiol. 1980;42:111–126. doi: 10.1146/annurev.ph.42.030180.000551. [DOI] [PubMed] [Google Scholar]
  11. Gallin E. K., Livengood D. R. Inward rectification in mouse macrophages: evidence for a negative resistance region. Am J Physiol. 1981 Jul;241(1):C9–17. doi: 10.1152/ajpcell.1981.241.1.C9. [DOI] [PubMed] [Google Scholar]
  12. Hagenaars C. E., van der Kraan A. A., Kawilarang-de Haas E. W., Visser J. W., Nijweide P. J. Osteoclast formation from cloned pluripotent hemopoietic stem cells. Bone Miner. 1989 May;6(2):179–189. doi: 10.1016/0169-6009(89)90049-4. [DOI] [PubMed] [Google Scholar]
  13. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  14. Hunter S. J., Schraer H., Gay C. V. Characterization of isolated and cultured chick osteoclasts: the effects of acetazolamide, calcitonin, and parathyroid hormone on acid production. J Bone Miner Res. 1988 Jun;3(3):297–303. doi: 10.1002/jbmr.5650030308. [DOI] [PubMed] [Google Scholar]
  15. Ince C., van Bavel E., van Duijn B., Donkersloot K., Coremans A., Ypey D. L., Verveen A. A. Intracellular microelectrode measurements in small cells evaluated with the patch clamp technique. Biophys J. 1986 Dec;50(6):1203–1209. doi: 10.1016/S0006-3495(86)83563-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mears D. C. Effects of parathyroid hormone and thyrocalcitonin on the membrane potential of osteoclasts. Endocrinology. 1971 Apr;88(4):1021–1028. doi: 10.1210/endo-88-4-1021. [DOI] [PubMed] [Google Scholar]
  17. Nijweide P. J., Burger E. H., Feyen J. H. Cells of bone: proliferation, differentiation, and hormonal regulation. Physiol Rev. 1986 Oct;66(4):855–886. doi: 10.1152/physrev.1986.66.4.855. [DOI] [PubMed] [Google Scholar]
  18. Nijweide P. J., Vrijheid-Lammers T., Mulder R. J., Blok J. Cell surface antigens on osteoclasts and related cells in the quail studied with monoclonal antibodies. Histochemistry. 1985;83(4):315–324. doi: 10.1007/BF00684377. [DOI] [PubMed] [Google Scholar]
  19. Randriamampita C., Trautmann A. Ionic channels in murine macrophages. J Cell Biol. 1987 Aug;105(2):761–769. doi: 10.1083/jcb.105.2.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Scheven B. A., Visser J. W., Nijweide P. J. In vitro osteoclast generation from different bone marrow fractions, including a highly enriched haematopoietic stem cell population. Nature. 1986 May 1;321(6065):79–81. doi: 10.1038/321079a0. [DOI] [PubMed] [Google Scholar]
  21. Silver I. A., Murrills R. J., Etherington D. J. Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Exp Cell Res. 1988 Apr;175(2):266–276. doi: 10.1016/0014-4827(88)90191-7. [DOI] [PubMed] [Google Scholar]
  22. Sims S. M., Dixon S. J. Inwardly rectifying K+ current in osteoclasts. Am J Physiol. 1989 Jun;256(6 Pt 1):C1277–C1282. doi: 10.1152/ajpcell.1989.256.6.C1277. [DOI] [PubMed] [Google Scholar]
  23. Teti A., Blair H. C., Teitelbaum S. L., Kahn A. J., Koziol C., Konsek J., Zambonin-Zallone A., Schlesinger P. H. Cytoplasmic pH regulation and chloride/bicarbonate exchange in avian osteoclasts. J Clin Invest. 1989 Jan;83(1):227–233. doi: 10.1172/JCI113863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tuukkanen J., Vänänen H. K. Omeprazole, a specific inhibitor of H+-K+-ATPase, inhibits bone resorption in vitro. Calcif Tissue Int. 1986 Feb;38(2):123–125. doi: 10.1007/BF02556841. [DOI] [PubMed] [Google Scholar]
  25. Ueda S., Loo D. D., Sachs G. Regulation of K+ channels in the basolateral membrane of Necturus oxyntic cells. J Membr Biol. 1987;97(1):31–41. doi: 10.1007/BF01869612. [DOI] [PubMed] [Google Scholar]
  26. Ypey D. L., Ravesloot J. H., Buisman H. P., Nijweide P. J. Voltage-activated ionic channels and conductances in embryonic chick osteoblast cultures. J Membr Biol. 1988;101(2):141–150. doi: 10.1007/BF01872829. [DOI] [PubMed] [Google Scholar]
  27. von Tscharner V., Prod'hom B., Baggiolini M., Reuter H. Ion channels in human neutrophils activated by a rise in free cytosolic calcium concentration. 1986 Nov 27-Dec 3Nature. 324(6095):369–372. doi: 10.1038/324369a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES