Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 May 22;66(Pt 6):o1434. doi: 10.1107/S1600536810018696

N-[4-Chloro-2-(2-chlorobenzoyl)phenyl]acetamide

F Nawaz Khan a, S Mohana Roopan a, N Malathi a, Venkatesha R Hathwar b, Mehmet Akkurt c,*
PMCID: PMC2979381  PMID: 21579509

Abstract

In the title compound, C15H11Cl2NO2, the dihedral angle between the two benzene rings is 74.83 (5)°. The N-bound and terminal benzene rings are inclined at dihedral angles of 4.09 (10) and 78.38 (9)°, respectively, to the mean plane through the acetamide group. Intra­molecular C—H⋯O and N—H⋯O hydrogen bonds both generate S(6) rings.

Related literature

For the acetyl­ation reaction, see: Greene et al. (1999); Gupta et al. (2008). For solvent-free synthesis, see: Roopan et al. (2008, 2009). For reactions of acetic anhydride and acetyl chloride, see: Orita et al. (2000); Procopiou et al. (1998). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-66-o1434-scheme1.jpg

Experimental

Crystal data

  • C15H11Cl2NO2

  • M r = 308.15

  • Monoclinic, Inline graphic

  • a = 11.1371 (11) Å

  • b = 5.0661 (6) Å

  • c = 25.594 (3) Å

  • β = 100.672 (9)°

  • V = 1419.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 293 K

  • 0.28 × 0.24 × 0.18 mm

Data collection

  • Oxford Xcalibur Eos (Nova) CCD detector diffractometer

  • 14628 measured reflections

  • 2633 independent reflections

  • 1537 reflections with I > 2σ(I)

  • R int = 0.080

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.107

  • S = 0.98

  • 2633 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810018696/tk2672sup1.cif

e-66-o1434-sup1.cif (19.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810018696/tk2672Isup2.hkl

e-66-o1434-Isup2.hkl (126.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 1.96 2.660 (3) 138
C5—H5⋯O2 0.93 2.22 2.839 (4) 124

Acknowledgments

We thank the Department of Science and Technology, India, for use of the CCD facility set up under the IRHPA–DST program at IISc, Bangalore. We also thank Professor T. N. Guru Row, IISc, for useful crystallographic discussions. FNK thanks the DST for Fast Track Proposal funding.

supplementary crystallographic information

Comment

The acetylation of phenol, alcohol and amine are important chemical reactions in organic synthesis (Greene et al., 1999, Gupta et al., 2008). Mainly, acylation of amines is used for the protection of an amino functionality in a multi-step synthetic process. Acetic anhydride and acetyl chloride are generally used in the presence of acidic or basic catalysts in an organic medium (Orita et al., 2000; Procopiou et al., 1998). One of the major factors for a green chemical processes are solvent-free reactions. In continuation of our our interest in this area (Roopan et al., 2008, 2009), we herein report the solvent-free acetylation of an amine, leading to the title compound, (I).

Compound (I), Fig. 1, has two chloro-phenyl groups (Cl2/C1–C6 and Cl1/C8–C13) which make a dihedral angle of 74.83 (5)° with each other. The chloro-phenyl groups are inclined at dihedral angles of 4.09 (10) and 78.38 (9) °, respectively, with the mean plane through the acetamide group (N1/O2/C14/C15). The torsion angles O1—C7—C8—C9, O1—C7—C8—C13, C2—C3—C7—O1 and C4—C3—C7—O1 are 109.0 (3), -68.5 (4), 172.8 (3) and -5.8 (4)°, respectively.

Two intramolecular, i.e. N1—H1···O1 and C5—H5···O2, hydrogen bonds form six-membered rings, producing S(6) ring motifs (Table 1, Fig. 1, Bernstein et al., 1995). In the crystal structure, there are no classical intermolecular hydrogen bonds.

Experimental

2-Amino-5-chloro-phenyl(2-chloro-phenyl)methanone (1 mmol) was stirred with acetyl-chloride (1 mmol) at room temperature for 1 h. The reaction was monitored by TLC. After the completion of the reaction, the contents were cooled and poured onto cold water with stirring. The solid which separated was separated by filtration and dried in air. The dried compound was dissolved in dichloromethane and subjected to slow evaporation to yield single crystals.

Refinement

All the H atoms were discernible in the difference Fourier maps. However, H atoms were located geometrically with N—H = 0.86 and C—H = 0.93-0.96 Å and refined in the riding model approximation, with Uiso(H) = 1.2 or 1.5Ueq(C, N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Crystal data

C15H11Cl2NO2 F(000) = 632
Mr = 308.15 Dx = 1.442 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1298 reflections
a = 11.1371 (11) Å θ = 2.0–20.9°
b = 5.0661 (6) Å µ = 0.46 mm1
c = 25.594 (3) Å T = 293 K
β = 100.672 (9)° Block, colourless
V = 1419.1 (3) Å3 0.28 × 0.24 × 0.18 mm
Z = 4

Data collection

Oxford Xcalibur Eos (Nova) CCD detector diffractometer 1537 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray Source Rint = 0.080
graphite θmax = 25.5°, θmin = 2.7°
ω scans h = −13→13
14628 measured reflections k = −6→6
2633 independent reflections l = −30→30

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107 H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0469P)2] where P = (Fo2 + 2Fc2)/3
2633 reflections (Δ/σ)max < 0.001
182 parameters Δρmax = 0.18 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 1.01228 (8) 0.21348 (16) 0.05190 (3) 0.0676 (3)
Cl2 0.68968 (8) 0.97146 (17) 0.00452 (3) 0.0706 (3)
O1 0.94298 (18) 0.2513 (5) 0.19297 (8) 0.0777 (9)
O2 0.5030 (2) 0.0779 (5) 0.17216 (10) 0.0936 (11)
N1 0.7034 (2) 0.1634 (5) 0.17250 (9) 0.0533 (9)
C1 0.6927 (2) 0.7372 (6) 0.05413 (10) 0.0477 (10)
C2 0.8029 (2) 0.6603 (5) 0.08384 (10) 0.0429 (9)
C3 0.8082 (2) 0.4689 (5) 0.12330 (10) 0.0396 (9)
C4 0.6978 (2) 0.3551 (5) 0.13289 (10) 0.0431 (10)
C5 0.5876 (3) 0.4396 (6) 0.10239 (12) 0.0580 (11)
C6 0.5855 (3) 0.6267 (6) 0.06384 (12) 0.0566 (11)
C7 0.9300 (2) 0.3982 (6) 0.15419 (11) 0.0459 (10)
C8 1.0428 (2) 0.5175 (5) 0.13994 (10) 0.0399 (9)
C9 1.0892 (2) 0.4451 (5) 0.09588 (10) 0.0435 (10)
C10 1.1978 (3) 0.5487 (6) 0.08559 (12) 0.0565 (11)
C11 1.2597 (3) 0.7314 (7) 0.11949 (14) 0.0661 (13)
C12 1.2151 (3) 0.8101 (7) 0.16279 (13) 0.0686 (12)
C13 1.1075 (3) 0.7045 (6) 0.17374 (11) 0.0586 (11)
C14 0.6092 (3) 0.0330 (6) 0.18928 (13) 0.0607 (12)
C15 0.6499 (3) −0.1678 (7) 0.23219 (13) 0.0775 (16)
H1 0.77560 0.12130 0.18860 0.0640*
H2 0.87480 0.73680 0.07750 0.0510*
H5 0.51450 0.36760 0.10840 0.0700*
H6 0.51110 0.68050 0.04390 0.0680*
H10 1.22820 0.49410 0.05590 0.0680*
H11 1.33250 0.80190 0.11290 0.0790*
H12 1.25710 0.93660 0.18540 0.0820*
H13 1.07860 0.75900 0.20380 0.0700*
H15A 0.63180 −0.10450 0.26520 0.1160*
H15B 0.73630 −0.19610 0.23590 0.1160*
H15C 0.60750 −0.33100 0.22290 0.1160*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0736 (6) 0.0686 (6) 0.0632 (5) −0.0187 (5) 0.0197 (4) −0.0213 (4)
Cl2 0.0681 (6) 0.0796 (6) 0.0622 (5) 0.0248 (5) 0.0069 (4) 0.0221 (5)
O1 0.0495 (13) 0.117 (2) 0.0670 (14) 0.0078 (13) 0.0115 (11) 0.0456 (14)
O2 0.0531 (15) 0.121 (2) 0.109 (2) −0.0246 (16) 0.0209 (14) 0.0138 (17)
N1 0.0417 (14) 0.0620 (17) 0.0590 (16) −0.0031 (13) 0.0164 (12) 0.0079 (14)
C1 0.0450 (18) 0.054 (2) 0.0428 (16) 0.0096 (15) 0.0050 (14) −0.0018 (14)
C2 0.0343 (15) 0.0506 (18) 0.0446 (16) 0.0030 (13) 0.0098 (13) −0.0003 (15)
C3 0.0334 (15) 0.0486 (18) 0.0367 (15) 0.0029 (13) 0.0061 (12) 0.0003 (14)
C4 0.0394 (16) 0.0466 (18) 0.0446 (16) 0.0048 (14) 0.0110 (13) −0.0019 (15)
C5 0.0325 (16) 0.077 (2) 0.064 (2) 0.0005 (16) 0.0074 (15) −0.0017 (19)
C6 0.0357 (17) 0.075 (2) 0.0552 (19) 0.0166 (16) −0.0017 (14) −0.0033 (18)
C7 0.0460 (17) 0.056 (2) 0.0368 (16) 0.0067 (15) 0.0108 (13) 0.0062 (15)
C8 0.0304 (14) 0.0515 (19) 0.0357 (15) 0.0058 (14) 0.0004 (12) 0.0049 (14)
C9 0.0392 (16) 0.0481 (18) 0.0427 (16) −0.0041 (14) 0.0066 (13) −0.0055 (14)
C10 0.0502 (19) 0.064 (2) 0.060 (2) −0.0023 (17) 0.0223 (16) −0.0031 (17)
C11 0.0431 (18) 0.081 (3) 0.072 (2) −0.0194 (19) 0.0052 (17) 0.001 (2)
C12 0.066 (2) 0.071 (2) 0.061 (2) −0.022 (2) −0.0085 (18) −0.0118 (19)
C13 0.060 (2) 0.071 (2) 0.0425 (17) −0.0004 (18) 0.0032 (15) −0.0111 (17)
C14 0.062 (2) 0.066 (2) 0.059 (2) −0.0170 (19) 0.0242 (18) −0.0106 (18)
C15 0.098 (3) 0.071 (3) 0.071 (2) −0.026 (2) 0.035 (2) 0.003 (2)

Geometric parameters (Å, °)

Cl1—C9 1.738 (3) C8—C9 1.374 (3)
Cl2—C1 1.734 (3) C9—C10 1.388 (4)
O1—C7 1.228 (4) C10—C11 1.365 (5)
O2—C14 1.205 (4) C11—C12 1.356 (5)
N1—C4 1.397 (3) C12—C13 1.388 (5)
N1—C14 1.374 (4) C14—C15 1.504 (5)
N1—H1 0.8600 C2—H2 0.9300
C1—C6 1.382 (4) C5—H5 0.9300
C1—C2 1.375 (3) C6—H6 0.9300
C2—C3 1.393 (4) C10—H10 0.9300
C3—C4 1.420 (3) C11—H11 0.9300
C3—C7 1.482 (3) C12—H12 0.9300
C4—C5 1.394 (4) C13—H13 0.9300
C5—C6 1.365 (4) C15—H15A 0.9600
C7—C8 1.499 (3) C15—H15B 0.9600
C8—C13 1.391 (4) C15—H15C 0.9600
Cl1···C2 3.455 (3) C13···O1x 3.407 (4)
Cl1···C3 3.423 (3) C7···H1 2.5000
Cl1···Cl1i 3.3974 (12) C8···H2 2.4900
Cl2···C11ii 3.650 (4) C9···H2 2.7700
Cl1···H2iii 3.0000 C12···H15Axi 3.0900
Cl2···H6iv 2.9400 C14···H5 2.7300
Cl2···H10v 3.0500 C15···H12xii 2.9500
O1···N1 2.660 (3) H1···O1 1.9600
O1···C13iii 3.407 (4) H1···C7 2.5000
O2···C5 2.839 (4) H1···H15B 2.1100
O2···C11vi 3.300 (4) H2···Cl1x 3.0000
O1···H13vii 2.7000 H2···C8 2.4900
O1···H1 1.9600 H2···C9 2.7700
O1···H13iii 2.9000 H5···O2 2.2200
O2···H5 2.2200 H5···C14 2.7300
O2···H11vi 2.6100 H6···Cl2iv 2.9400
O2···H12vi 2.9100 H10···Cl2v 3.0500
O2···H15Aviii 2.8800 H11···O2ix 2.6100
N1···O1 2.660 (3) H12···O2ix 2.9100
C2···Cl1 3.455 (3) H12···C15xiii 2.9500
C2···C9 3.330 (3) H13···O1x 2.9000
C3···Cl1 3.423 (3) H13···O1xi 2.7000
C5···O2 2.839 (4) H15A···O2xiv 2.8800
C9···C2 3.330 (3) H15A···C12vii 3.0900
C11···O2ix 3.300 (4) H15B···H1 2.1100
C11···Cl2ii 3.650 (4)
C4—N1—C14 128.8 (2) C11—C12—C13 120.8 (3)
C14—N1—H1 116.00 C8—C13—C12 120.3 (3)
C4—N1—H1 116.00 N1—C14—C15 114.2 (3)
Cl2—C1—C6 120.6 (2) O2—C14—N1 123.4 (3)
C2—C1—C6 119.9 (3) O2—C14—C15 122.4 (3)
Cl2—C1—C2 119.55 (19) C1—C2—H2 120.00
C1—C2—C3 120.8 (2) C3—C2—H2 120.00
C2—C3—C7 117.8 (2) C4—C5—H5 120.00
C2—C3—C4 119.1 (2) C6—C5—H5 120.00
C4—C3—C7 123.1 (2) C1—C6—H6 120.00
N1—C4—C5 122.4 (2) C5—C6—H6 120.00
C3—C4—C5 118.6 (2) C9—C10—H10 120.00
N1—C4—C3 119.0 (2) C11—C10—H10 120.00
C4—C5—C6 120.9 (3) C10—C11—H11 120.00
C1—C6—C5 120.8 (3) C12—C11—H11 120.00
O1—C7—C3 122.5 (2) C11—C12—H12 120.00
C3—C7—C8 119.9 (2) C13—C12—H12 120.00
O1—C7—C8 117.6 (2) C8—C13—H13 120.00
C7—C8—C13 119.0 (2) C12—C13—H13 120.00
C9—C8—C13 117.5 (2) C14—C15—H15A 109.00
C7—C8—C9 123.5 (2) C14—C15—H15B 110.00
C8—C9—C10 121.9 (2) C14—C15—H15C 109.00
Cl1—C9—C8 119.76 (18) H15A—C15—H15B 109.00
Cl1—C9—C10 118.4 (2) H15A—C15—H15C 109.00
C9—C10—C11 119.4 (3) H15B—C15—H15C 110.00
C10—C11—C12 120.0 (3)
C14—N1—C4—C3 178.3 (3) N1—C4—C5—C6 −179.7 (3)
C14—N1—C4—C5 −1.6 (4) C3—C4—C5—C6 0.4 (4)
C4—N1—C14—O2 −3.1 (5) C4—C5—C6—C1 −0.1 (5)
C4—N1—C14—C15 178.4 (3) O1—C7—C8—C9 109.0 (3)
Cl2—C1—C2—C3 −178.8 (2) O1—C7—C8—C13 −68.5 (4)
C6—C1—C2—C3 0.9 (4) C3—C7—C8—C9 −73.8 (4)
Cl2—C1—C6—C5 179.1 (2) C3—C7—C8—C13 108.7 (3)
C2—C1—C6—C5 −0.6 (4) C7—C8—C9—Cl1 2.8 (4)
C1—C2—C3—C4 −0.6 (4) C7—C8—C9—C10 −176.2 (3)
C1—C2—C3—C7 −179.3 (2) C13—C8—C9—Cl1 −179.7 (2)
C2—C3—C4—N1 −180.0 (2) C13—C8—C9—C10 1.4 (4)
C2—C3—C4—C5 −0.1 (4) C7—C8—C13—C12 177.2 (3)
C7—C3—C4—N1 −1.3 (4) C9—C8—C13—C12 −0.4 (4)
C7—C3—C4—C5 178.5 (3) Cl1—C9—C10—C11 179.8 (2)
C2—C3—C7—O1 172.8 (3) C8—C9—C10—C11 −1.2 (4)
C2—C3—C7—C8 −4.3 (4) C9—C10—C11—C12 0.0 (5)
C4—C3—C7—O1 −5.8 (4) C10—C11—C12—C13 0.9 (5)
C4—C3—C7—C8 177.1 (2) C11—C12—C13—C8 −0.7 (5)

Symmetry codes: (i) −x+2, −y, −z; (ii) −x+2, −y+2, −z; (iii) x, y−1, z; (iv) −x+1, −y+2, −z; (v) −x+2, −y+1, −z; (vi) x−1, y−1, z; (vii) −x+2, y−1/2, −z+1/2; (viii) −x+1, y+1/2, −z+1/2; (ix) x+1, y+1, z; (x) x, y+1, z; (xi) −x+2, y+1/2, −z+1/2; (xii) −x+2, y−3/2, −z+1/2; (xiii) −x+2, y+3/2, −z+1/2; (xiv) −x+1, y−1/2, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1 0.86 1.96 2.660 (3) 138
C5—H5···O2 0.93 2.22 2.839 (4) 124

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2672).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  4. Greene, T. W. & Wuts, P. G. M. (1999). Protective Groups in Organic Synthesis, 3rd ed. New York: Wiley & Sons.
  5. Gupta, R., Kumar, V., Gupta, M., Paul, S. & Gupta, R. (2008). Indian J. Chem. Sect. B, 47, 1739–1743.
  6. Orita, A., Tanahashi, C., Kakuda, A. & Otera, J. (2000). Angew. Chem. Int. Ed.39, 2877–2879. [DOI] [PubMed]
  7. Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED Oxford Diffraction Ltd, Yarnton, England.
  8. Procopiou, P. A., Baugh, S. P. D., Flack, S. S. & Inglis, G. G. A. (1998). J. Org. Chem.63, 2342–2347.
  9. Roopan, S. M. & Khan, F. N. (2009). Arkivoc, xiii, 161–169.
  10. Roopan, S. M., Maiyalagan, T. & Khan, F. N. (2008). Can. J. Chem 86, 1019–1025.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810018696/tk2672sup1.cif

e-66-o1434-sup1.cif (19.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810018696/tk2672Isup2.hkl

e-66-o1434-Isup2.hkl (126.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES