Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 May 15;66(Pt 6):o1372–o1373. doi: 10.1107/S1600536810017277

Bis[(E)-1-methyl-4-styrylpyridinium] 4-bromo­benzene­sulfonate iodide

Chanasuk Surasit a, Suchada Chantrapromma a,*,, Kullapa Chanawanno a, Hoong-Kun Fun b,§
PMCID: PMC2979384  PMID: 21579454

Abstract

In the title compound, 2C14H14N+·C6H4BrO3S·I, two crystallographically independent cations exist in an E configuration with respect to the C=C ethenyl bond. One cation is approximately planar, whereas the other is twisted slightly, the dihedral angles between the pyridinium and phenyl rings of each cation being 0.96 (15) and 7.05 (16)°. In the crystal structure, the cations are stacked in an anti­parallel manner along the a axis through weak C—H⋯π inter­actions and π–π inter­actions, with centroid–centroid distances of 3.5544 (19) and 3.699 (2) Å. The 4-bromobenzene­sulfonate anions and the cations are linked together by weak C—H⋯O inter­actions. A short Br⋯I contact [3.6373 (4) Å] and C—H⋯I interactions are also observed.

Related literature

For bond-length data, see: Allen et al. (1987). For background to non-linear optical materials research, see: Chia et al. (1995); Pan et al. (1996); Prasad & Williams (1991). For related structures, see: Chantrapromma et al. (2006); Fun, Chanawanno & Chantrapromma (2009a ,b ): Fun, Surasit et al. (2009). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-66-o1372-scheme1.jpg

Experimental

Crystal data

  • 2C14H14N+·C6H4BrO3S·I

  • M r = 755.49

  • Monoclinic, Inline graphic

  • a = 7.7766 (2) Å

  • b = 32.2737 (9) Å

  • c = 12.8009 (4) Å

  • β = 96.097 (2)°

  • V = 3194.59 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.36 mm−1

  • T = 100 K

  • 0.50 × 0.14 × 0.05 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.383, T max = 0.889

  • 42790 measured reflections

  • 9275 independent reflections

  • 7161 reflections with I > 2σ(I)

  • R int = 0.054

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.089

  • S = 1.03

  • 9275 reflections

  • 381 parameters

  • H-atom parameters constrained

  • Δρmax = 1.96 e Å−3

  • Δρmin = −1.13 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810017277/is2540sup1.cif

e-66-o1372-sup1.cif (27.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810017277/is2540Isup2.hkl

e-66-o1372-Isup2.hkl (453.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 and Cg4 are the centroids of the C8A–C13A and C8B–C13B phenyl rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2A—H2AA⋯O2i 0.93 2.45 3.253 (3) 144
C3A—H3AA⋯O1 0.93 2.47 3.189 (3) 134
C2B—H2BA⋯O2ii 0.93 2.24 3.169 (4) 177
C4B—H4BA⋯O3 0.93 2.49 3.328 (4) 151
C11A—H11A⋯O1iii 0.93 2.51 3.390 (4) 159
C7B—H7BA⋯O3 0.93 2.50 3.314 (4) 146
C14A—H14C⋯O1 0.96 2.44 3.171 (4) 133
C14B—H14D⋯O3ii 0.96 2.46 3.365 (4) 157
C1A—H1AA⋯I1i 0.93 3.26 3.841 (3) 123
C1B—H1BA⋯I1ii 0.93 3.35 3.787 (3) 111
C17—H17A⋯I1iv 0.93 3.10 3.863 (3) 141
C14A—H14ACg2v 0.96 2.72 3.475 (3) 136
C14B—H14ECg4vi 0.96 2.73 3.520 (3) 140

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

The authors thank the Prince of Songkla University for financial support through the Crystal Materials Research Unit. KC thanks the Development and Promotion of Science and Technology Talents Project (DPST) for a fellowship. The authors also thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Organic molecules are promising candidates for the nonlinear optical (NLO) applications. Stilbene derivatives, especially the pyridinium stilbenes with Donor-π-Acceptor system, were recognized as a good organic NLO chromophore (Chia et al., 1995; Pan et al., 1996). We previously reported the systhesis and crystal structure of bis[(E)-1-methyl-4-styrylpyridinium] 4-chlorobenzenesulfonate iodide (I), a pyridinium stilbene derivative, which crystallizes in noncentrosymmetric P21 space group and exhibits second-order NLO properties (Fun et al., 2009; Prasad & Williams, 1991). In this work, the title compound (II) was synthesized by changing the 4-chlorobenzenesulfonate anionic part in (I) to the 4-bromobenzenesulfonate to study the different NLO properties. By changing this, it was found that the title compound (II) crystallizes in centrosymmetric P21/c space group and does not show second-order NLO properties.

The title molecule consists of two C14H14N+(A and B), one C6H4BrO3S- and one I- ions (Fig. 1), the two cations exist in an E configuration with respect to the C6═C7 ethenyl bond with the torsion angle of C6–C7–C8–C9 = 179.9 (3)° in molecule A [178.5 (3)° in molecule B]. One cation [molecule A] is planar while the other [molecule B] is slightly twisted, with the dihedral angles between the pyridinium and phenyl rings of the cation being 0.96 (15) and 7.05 (16)°, respectively. The two cations lie nearly on the same plane but in anti-parallel fashion with the dihedral angle between the planes through the whole molecule of cations being 4.01 (8)°. The anion is equally inclined with respect to the cations with the dihedral angles between the benzene ring of the anion and the pyridinium rings of the two cations being 82.20 (14) [molecule A] and 82.19 (15)° [molecule B], respectively. The bond distances in both cations and anion have normal values (Allen et al., 1987) and comparable with the closely related compounds (Fun et al., 2009a,b; Fun et al., 2009).

In the crystal packing (Fig. 2), all O atoms of the sulfonate group are involved in weak C—H···O interactions (Table 1). The cations are stacked in an antiparallel manner along the a axis. The anions and I- ions are located in interstitial spaces between the cations, and the ions linked together through weak C—H···O, C—H···I and C—H···π interactions (Table 1) forming a 3D network. The crystal structure is further stabilized by π–π interactions with the distances of Cg1···Cg2vi = 3.5544 (19) Å and Cg3···Cg4ii, vii = 3.699 (2) Å [(vi) = 2-x, -y, 2-z; (vii) = x, 1/2-y, =1/2+z; Cg1, Cg2, Cg3 and Cg4 are the centroids of C1A–C5A/N1A, C8A–C13A, C1B–C5B/N1B and C8B–C13B, respectively]. In addition the crystal structure also shows short C···O [3.169 (4)–3.365 (4) Å] and Br···I [3.6373 (4) Å] contacts.

Experimental

(E)-1-methyl-4-styrylpyridinium iodide (compound A, 0.19 g, 0.58 mmol) which was prepared according the previous method (Fun et al., 2009) was mixed with silver (I) 4-bromobenzenesulfonate (0.20 g, 0.58 mmol) (Chantrapromma et al., 2006) in methanol solution and stirred for 30 minutes. The precipitate of silver iodide which formed was filtered and the filtrate was evaporated to give the title compound as an orange solid. Orange needle-shaped single crystals of the title compound suitable for x-ray structure determination were recrystallized from methanol by slow evaporation at room temperature over a week (m.p. 472–473 K).

Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å for aromatic and CH and 0.96 Å for CH3 atoms. The Uiso(H) values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.78 Å from I1 and the deepest hole is located at 0.70 Å from I1.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed down the a axis. Weak C—H···O and C—H···I interactions are shown as dashed lines.

Crystal data

2C14H14N+·C6H4BrO3S·I F(000) = 1512
Mr = 755.49 Dx = 1.571 Mg m3
Monoclinic, P21/c Melting point = 472–473 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 7.7766 (2) Å Cell parameters from 9275 reflections
b = 32.2737 (9) Å θ = 1.3–30.0°
c = 12.8009 (4) Å µ = 2.36 mm1
β = 96.097 (2)° T = 100 K
V = 3194.59 (16) Å3 Needle, orange
Z = 4 0.50 × 0.14 × 0.05 mm

Data collection

Bruker APEXII CCD area-detector diffractometer 9275 independent reflections
Radiation source: sealed tube 7161 reflections with I > 2σ(I)
graphite Rint = 0.054
φ and ω scans θmax = 30.0°, θmin = 1.3°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −10→10
Tmin = 0.383, Tmax = 0.889 k = −45→45
42790 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0271P)2 + 6.2363P] where P = (Fo2 + 2Fc2)/3
9275 reflections (Δ/σ)max = 0.001
381 parameters Δρmax = 1.96 e Å3
0 restraints Δρmin = −1.13 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 0.60308 (3) 0.140711 (6) 0.018059 (15) 0.02340 (6)
Br1 1.22595 (4) 0.122562 (10) 0.83018 (3) 0.02557 (8)
S1 0.51213 (10) 0.11278 (2) 0.52311 (5) 0.01778 (14)
O1 0.4366 (3) 0.07387 (7) 0.55369 (17) 0.0263 (5)
O2 0.5601 (3) 0.11252 (7) 0.41576 (16) 0.0247 (5)
O3 0.4107 (3) 0.14897 (7) 0.54613 (17) 0.0244 (5)
N1A 0.4474 (3) −0.01295 (8) 0.72887 (19) 0.0188 (5)
C1A 0.6113 (4) −0.04541 (10) 0.8712 (2) 0.0247 (7)
H1AA 0.6522 −0.0697 0.9044 0.030*
C2A 0.5079 (4) −0.04764 (9) 0.7787 (2) 0.0216 (6)
H2AA 0.4787 −0.0734 0.7495 0.026*
C3A 0.4852 (4) 0.02476 (10) 0.7710 (2) 0.0226 (6)
H3AA 0.4414 0.0484 0.7363 0.027*
C4A 0.5875 (4) 0.02843 (10) 0.8645 (2) 0.0241 (7)
H4AA 0.6112 0.0545 0.8933 0.029*
C5A 0.6568 (4) −0.00702 (11) 0.9171 (2) 0.0244 (7)
C6A 0.7692 (5) −0.00622 (11) 1.0150 (3) 0.0282 (7)
H6AA 0.8083 −0.0315 1.0433 0.034*
C7A 0.8207 (4) 0.02818 (11) 1.0675 (2) 0.0268 (7)
H7AA 0.7812 0.0533 1.0386 0.032*
C8A 0.9350 (4) 0.02981 (10) 1.1676 (2) 0.0237 (6)
C9A 0.9766 (4) 0.06887 (10) 1.2096 (3) 0.0265 (7)
H9AA 0.9334 0.0925 1.1743 0.032*
C10A 1.0815 (5) 0.07282 (11) 1.3031 (3) 0.0310 (8)
H10A 1.1078 0.0991 1.3302 0.037*
C11A 1.1479 (5) 0.03825 (11) 1.3571 (3) 0.0302 (8)
H11A 1.2198 0.0412 1.4195 0.036*
C12A 1.1059 (5) −0.00100 (11) 1.3169 (3) 0.0296 (7)
H12A 1.1479 −0.0245 1.3533 0.036*
C13A 1.0021 (4) −0.00511 (10) 1.2230 (2) 0.0250 (7)
H13A 0.9764 −0.0314 1.1961 0.030*
C14A 0.3408 (4) −0.01642 (10) 0.6261 (2) 0.0235 (6)
H14A 0.2455 −0.0348 0.6326 0.035*
H14B 0.4103 −0.0271 0.5746 0.035*
H14C 0.2974 0.0104 0.6045 0.035*
N2B 0.5060 (3) 0.26563 (8) 0.85716 (19) 0.0202 (5)
C1B 0.3607 (5) 0.30099 (11) 0.7133 (2) 0.0276 (7)
H1BA 0.3248 0.3260 0.6821 0.033*
C2B 0.4540 (4) 0.30119 (10) 0.8096 (2) 0.0235 (6)
H2BA 0.4820 0.3263 0.8428 0.028*
C3B 0.4697 (4) 0.22869 (10) 0.8097 (3) 0.0251 (7)
H3BA 0.5070 0.2042 0.8433 0.030*
C4B 0.3775 (5) 0.22730 (11) 0.7119 (3) 0.0280 (7)
H4BA 0.3541 0.2019 0.6793 0.034*
C5B 0.3181 (4) 0.26401 (11) 0.6607 (2) 0.0250 (7)
C6B 0.2169 (5) 0.26553 (11) 0.5576 (3) 0.0284 (7)
H6BA 0.1893 0.2914 0.5283 0.034*
C7B 0.1624 (4) 0.23200 (11) 0.5035 (3) 0.0261 (7)
H7BA 0.1938 0.2065 0.5334 0.031*
C8B 0.0572 (4) 0.23131 (11) 0.4009 (2) 0.0247 (7)
C9B 0.0042 (5) 0.19256 (11) 0.3613 (3) 0.0298 (7)
H9BA 0.0390 0.1688 0.3989 0.036*
C10B −0.0981 (5) 0.18892 (11) 0.2678 (3) 0.0315 (8)
H10B −0.1333 0.1628 0.2431 0.038*
C11B −0.1495 (4) 0.22374 (11) 0.2099 (3) 0.0277 (7)
H11B −0.2180 0.2211 0.1461 0.033*
C12B −0.0986 (5) 0.26285 (11) 0.2471 (3) 0.0283 (7)
H12B −0.1333 0.2864 0.2085 0.034*
C13B 0.0040 (4) 0.26660 (11) 0.3422 (3) 0.0273 (7)
H13B 0.0378 0.2927 0.3672 0.033*
C14B 0.6078 (4) 0.26654 (11) 0.9611 (2) 0.0266 (7)
H14D 0.5600 0.2869 1.0046 0.040*
H14E 0.7256 0.2736 0.9529 0.040*
H14F 0.6041 0.2398 0.9934 0.040*
C15 0.7120 (4) 0.11668 (9) 0.6057 (2) 0.0179 (6)
C16 0.7080 (4) 0.12213 (9) 0.7132 (2) 0.0202 (6)
H16A 0.6025 0.1247 0.7405 0.024*
C17 0.8612 (4) 0.12368 (10) 0.7799 (2) 0.0225 (6)
H17A 0.8593 0.1271 0.8519 0.027*
C18 1.0171 (4) 0.12006 (9) 0.7367 (2) 0.0215 (6)
C19 1.0250 (4) 0.11501 (10) 0.6301 (3) 0.0250 (7)
H19A 1.1308 0.1128 0.6028 0.030*
C20 0.8692 (4) 0.11333 (10) 0.5645 (2) 0.0236 (6)
H20A 0.8712 0.1099 0.4925 0.028*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.02846 (11) 0.02210 (10) 0.01938 (9) 0.00045 (9) 0.00141 (7) −0.00226 (8)
Br1 0.01741 (15) 0.02441 (16) 0.03402 (17) 0.00048 (12) −0.00127 (13) −0.00088 (13)
S1 0.0203 (4) 0.0160 (3) 0.0170 (3) −0.0016 (3) 0.0017 (3) 0.0009 (2)
O1 0.0293 (12) 0.0253 (12) 0.0232 (11) −0.0098 (10) −0.0021 (9) 0.0048 (9)
O2 0.0305 (13) 0.0245 (11) 0.0192 (10) 0.0025 (10) 0.0034 (9) 0.0011 (8)
O3 0.0225 (11) 0.0252 (12) 0.0257 (11) 0.0038 (9) 0.0034 (9) −0.0014 (9)
N1A 0.0190 (13) 0.0197 (12) 0.0184 (11) −0.0002 (10) 0.0050 (10) −0.0004 (9)
C1A 0.0283 (17) 0.0236 (16) 0.0229 (15) −0.0029 (13) 0.0063 (13) 0.0022 (12)
C2A 0.0225 (16) 0.0165 (14) 0.0267 (15) 0.0006 (12) 0.0073 (13) −0.0007 (11)
C3A 0.0265 (17) 0.0196 (15) 0.0230 (14) −0.0011 (12) 0.0082 (13) 0.0003 (11)
C4A 0.0281 (17) 0.0240 (16) 0.0213 (14) −0.0066 (13) 0.0073 (13) −0.0046 (12)
C5A 0.0232 (16) 0.0335 (18) 0.0173 (13) −0.0032 (14) 0.0058 (12) 0.0010 (12)
C6A 0.0312 (19) 0.0277 (17) 0.0255 (15) 0.0004 (14) 0.0028 (14) 0.0011 (13)
C7A 0.0270 (17) 0.0295 (17) 0.0242 (15) 0.0037 (14) 0.0044 (13) 0.0007 (13)
C8A 0.0193 (15) 0.0313 (17) 0.0208 (14) 0.0019 (13) 0.0038 (12) −0.0038 (12)
C9A 0.0256 (17) 0.0268 (16) 0.0268 (15) 0.0067 (14) 0.0015 (13) −0.0033 (13)
C10A 0.0314 (19) 0.0281 (18) 0.0326 (17) 0.0040 (15) −0.0009 (15) −0.0076 (14)
C11A 0.0258 (17) 0.041 (2) 0.0224 (15) −0.0006 (15) −0.0038 (13) −0.0034 (14)
C12A 0.0277 (18) 0.0294 (18) 0.0318 (17) 0.0023 (14) 0.0031 (15) 0.0080 (14)
C13A 0.0239 (16) 0.0255 (16) 0.0267 (15) −0.0037 (13) 0.0072 (13) −0.0045 (12)
C14A 0.0262 (17) 0.0244 (16) 0.0195 (14) −0.0014 (13) −0.0003 (12) −0.0020 (11)
N2B 0.0190 (13) 0.0242 (13) 0.0176 (11) −0.0011 (10) 0.0033 (10) −0.0016 (10)
C1B 0.0317 (18) 0.0278 (17) 0.0237 (15) 0.0020 (14) 0.0050 (14) 0.0039 (13)
C2B 0.0249 (16) 0.0193 (15) 0.0270 (15) −0.0008 (13) 0.0060 (13) 0.0002 (12)
C3B 0.0280 (17) 0.0206 (15) 0.0276 (16) 0.0001 (13) 0.0064 (13) −0.0009 (12)
C4B 0.0305 (18) 0.0276 (17) 0.0266 (16) −0.0058 (14) 0.0062 (14) −0.0090 (13)
C5B 0.0212 (16) 0.0358 (18) 0.0192 (14) −0.0014 (14) 0.0070 (12) −0.0018 (12)
C6B 0.0339 (19) 0.0273 (17) 0.0237 (15) 0.0020 (14) 0.0017 (14) 0.0015 (13)
C7B 0.0240 (16) 0.0291 (17) 0.0255 (15) 0.0025 (14) 0.0033 (13) −0.0006 (13)
C8B 0.0162 (15) 0.0366 (18) 0.0216 (14) −0.0009 (13) 0.0033 (12) −0.0024 (13)
C9B 0.0295 (18) 0.0304 (18) 0.0290 (16) 0.0077 (15) 0.0002 (14) 0.0013 (14)
C10B 0.0330 (19) 0.0252 (17) 0.0354 (18) 0.0026 (15) −0.0007 (15) −0.0064 (14)
C11B 0.0250 (17) 0.0336 (18) 0.0235 (15) −0.0006 (14) −0.0024 (13) −0.0058 (13)
C12B 0.0286 (18) 0.0271 (17) 0.0287 (16) −0.0003 (14) 0.0009 (14) 0.0030 (13)
C13B 0.0256 (17) 0.0286 (17) 0.0278 (16) −0.0066 (14) 0.0041 (14) −0.0057 (13)
C14B 0.0240 (17) 0.0354 (18) 0.0197 (14) 0.0006 (14) −0.0002 (13) −0.0017 (13)
C15 0.0182 (14) 0.0139 (13) 0.0217 (13) −0.0001 (11) 0.0025 (11) 0.0005 (10)
C16 0.0153 (14) 0.0228 (15) 0.0229 (14) −0.0004 (12) 0.0040 (11) −0.0009 (11)
C17 0.0223 (15) 0.0237 (15) 0.0216 (14) −0.0004 (13) 0.0028 (12) −0.0012 (12)
C18 0.0169 (14) 0.0197 (15) 0.0275 (15) −0.0005 (12) 0.0007 (12) 0.0001 (11)
C19 0.0174 (15) 0.0269 (16) 0.0321 (16) −0.0002 (13) 0.0082 (13) −0.0007 (13)
C20 0.0262 (17) 0.0231 (15) 0.0228 (14) −0.0004 (13) 0.0088 (13) −0.0011 (12)

Geometric parameters (Å, °)

Br1—C18 1.914 (3) C1B—C2B 1.363 (4)
S1—O3 1.457 (2) C1B—C5B 1.392 (5)
S1—O1 1.457 (2) C1B—H1BA 0.9300
S1—O2 1.462 (2) C2B—H2BA 0.9300
S1—C15 1.789 (3) C3B—C4B 1.376 (4)
N1A—C2A 1.348 (4) C3B—H3BA 0.9300
N1A—C3A 1.351 (4) C4B—C5B 1.407 (5)
N1A—C14A 1.483 (4) C4B—H4BA 0.9300
C1A—C2A 1.361 (4) C5B—C6B 1.465 (4)
C1A—C5A 1.400 (5) C6B—C7B 1.330 (5)
C1A—H1AA 0.9300 C6B—H6BA 0.9300
C2A—H2AA 0.9300 C7B—C8B 1.472 (4)
C3A—C4A 1.370 (4) C7B—H7BA 0.9300
C3A—H3AA 0.9300 C8B—C9B 1.395 (5)
C4A—C5A 1.406 (5) C8B—C13B 1.402 (5)
C4A—H4AA 0.9300 C9B—C10B 1.370 (5)
C5A—C6A 1.449 (4) C9B—H9BA 0.9300
C6A—C7A 1.337 (5) C10B—C11B 1.382 (5)
C6A—H6AA 0.9300 C10B—H10B 0.9300
C7A—C8A 1.481 (4) C11B—C12B 1.392 (5)
C7A—H7AA 0.9300 C11B—H11B 0.9300
C8A—C9A 1.395 (5) C12B—C13B 1.388 (4)
C8A—C13A 1.402 (5) C12B—H12B 0.9300
C9A—C10A 1.381 (4) C13B—H13B 0.9300
C9A—H9AA 0.9300 C14B—H14D 0.9600
C10A—C11A 1.383 (5) C14B—H14E 0.9600
C10A—H10A 0.9300 C14B—H14F 0.9600
C11A—C12A 1.393 (5) C15—C20 1.386 (4)
C11A—H11A 0.9300 C15—C16 1.390 (4)
C12A—C13A 1.381 (5) C16—C17 1.391 (4)
C12A—H12A 0.9300 C16—H16A 0.9300
C13A—H13A 0.9300 C17—C18 1.390 (4)
C14A—H14A 0.9600 C17—H17A 0.9300
C14A—H14B 0.9600 C18—C19 1.382 (4)
C14A—H14C 0.9600 C19—C20 1.401 (4)
N2B—C2B 1.341 (4) C19—H19A 0.9300
N2B—C3B 1.354 (4) C20—H20A 0.9300
N2B—C14B 1.474 (4)
O3—S1—O1 113.20 (14) N2B—C2B—C1B 120.8 (3)
O3—S1—O2 113.12 (13) N2B—C2B—H2BA 119.6
O1—S1—O2 113.44 (13) C1B—C2B—H2BA 119.6
O3—S1—C15 106.21 (13) N2B—C3B—C4B 120.0 (3)
O1—S1—C15 104.57 (13) N2B—C3B—H3BA 120.0
O2—S1—C15 105.29 (14) C4B—C3B—H3BA 120.0
C2A—N1A—C3A 120.6 (3) C3B—C4B—C5B 120.6 (3)
C2A—N1A—C14A 119.4 (3) C3B—C4B—H4BA 119.7
C3A—N1A—C14A 120.0 (3) C5B—C4B—H4BA 119.7
C2A—C1A—C5A 120.7 (3) C1B—C5B—C4B 116.6 (3)
C2A—C1A—H1AA 119.6 C1B—C5B—C6B 119.0 (3)
C5A—C1A—H1AA 119.6 C4B—C5B—C6B 124.5 (3)
N1A—C2A—C1A 120.8 (3) C7B—C6B—C5B 123.6 (3)
N1A—C2A—H2AA 119.6 C7B—C6B—H6BA 118.2
C1A—C2A—H2AA 119.6 C5B—C6B—H6BA 118.2
N1A—C3A—C4A 120.6 (3) C6B—C7B—C8B 126.4 (3)
N1A—C3A—H3AA 119.7 C6B—C7B—H7BA 116.8
C4A—C3A—H3AA 119.7 C8B—C7B—H7BA 116.8
C3A—C4A—C5A 120.4 (3) C9B—C8B—C13B 118.3 (3)
C3A—C4A—H4AA 119.8 C9B—C8B—C7B 116.9 (3)
C5A—C4A—H4AA 119.8 C13B—C8B—C7B 124.7 (3)
C1A—C5A—C4A 116.9 (3) C10B—C9B—C8B 121.1 (3)
C1A—C5A—C6A 118.7 (3) C10B—C9B—H9BA 119.5
C4A—C5A—C6A 124.4 (3) C8B—C9B—H9BA 119.5
C7A—C6A—C5A 124.8 (3) C9B—C10B—C11B 120.5 (3)
C7A—C6A—H6AA 117.6 C9B—C10B—H10B 119.8
C5A—C6A—H6AA 117.6 C11B—C10B—H10B 119.8
C6A—C7A—C8A 125.8 (3) C10B—C11B—C12B 119.9 (3)
C6A—C7A—H7AA 117.1 C10B—C11B—H11B 120.1
C8A—C7A—H7AA 117.1 C12B—C11B—H11B 120.1
C9A—C8A—C13A 118.2 (3) C13B—C12B—C11B 119.7 (3)
C9A—C8A—C7A 117.3 (3) C13B—C12B—H12B 120.1
C13A—C8A—C7A 124.5 (3) C11B—C12B—H12B 120.1
C10A—C9A—C8A 120.6 (3) C12B—C13B—C8B 120.5 (3)
C10A—C9A—H9AA 119.7 C12B—C13B—H13B 119.7
C8A—C9A—H9AA 119.7 C8B—C13B—H13B 119.7
C9A—C10A—C11A 120.9 (3) N2B—C14B—H14D 109.5
C9A—C10A—H10A 119.6 N2B—C14B—H14E 109.5
C11A—C10A—H10A 119.6 H14D—C14B—H14E 109.5
C10A—C11A—C12A 119.3 (3) N2B—C14B—H14F 109.5
C10A—C11A—H11A 120.4 H14D—C14B—H14F 109.5
C12A—C11A—H11A 120.4 H14E—C14B—H14F 109.5
C13A—C12A—C11A 120.1 (3) C20—C15—C16 120.0 (3)
C13A—C12A—H12A 120.0 C20—C15—S1 121.0 (2)
C11A—C12A—H12A 120.0 C16—C15—S1 119.0 (2)
C12A—C13A—C8A 121.0 (3) C15—C16—C17 120.3 (3)
C12A—C13A—H13A 119.5 C15—C16—H16A 119.9
C8A—C13A—H13A 119.5 C17—C16—H16A 119.9
N1A—C14A—H14A 109.5 C18—C17—C16 118.6 (3)
N1A—C14A—H14B 109.5 C18—C17—H17A 120.7
H14A—C14A—H14B 109.5 C16—C17—H17A 120.7
N1A—C14A—H14C 109.5 C19—C18—C17 122.3 (3)
H14A—C14A—H14C 109.5 C19—C18—Br1 119.9 (2)
H14B—C14A—H14C 109.5 C17—C18—Br1 117.8 (2)
C2B—N2B—C3B 120.8 (3) C18—C19—C20 118.1 (3)
C2B—N2B—C14B 120.0 (3) C18—C19—H19A 121.0
C3B—N2B—C14B 119.3 (3) C20—C19—H19A 121.0
C2B—C1B—C5B 121.2 (3) C15—C20—C19 120.7 (3)
C2B—C1B—H1BA 119.4 C15—C20—H20A 119.7
C5B—C1B—H1BA 119.4 C19—C20—H20A 119.7
C3A—N1A—C2A—C1A −1.4 (5) C3B—C4B—C5B—C1B 1.2 (5)
C14A—N1A—C2A—C1A 177.6 (3) C3B—C4B—C5B—C6B −179.0 (3)
C5A—C1A—C2A—N1A 0.2 (5) C1B—C5B—C6B—C7B −176.5 (3)
C2A—N1A—C3A—C4A 0.8 (5) C4B—C5B—C6B—C7B 3.7 (6)
C14A—N1A—C3A—C4A −178.2 (3) C5B—C6B—C7B—C8B 178.5 (3)
N1A—C3A—C4A—C5A 1.0 (5) C6B—C7B—C8B—C9B −175.7 (4)
C2A—C1A—C5A—C4A 1.5 (5) C6B—C7B—C8B—C13B 2.7 (6)
C2A—C1A—C5A—C6A −179.2 (3) C13B—C8B—C9B—C10B −0.4 (5)
C3A—C4A—C5A—C1A −2.1 (5) C7B—C8B—C9B—C10B 178.1 (3)
C3A—C4A—C5A—C6A 178.6 (3) C8B—C9B—C10B—C11B 0.8 (6)
C1A—C5A—C6A—C7A −179.1 (3) C9B—C10B—C11B—C12B −0.7 (6)
C4A—C5A—C6A—C7A 0.1 (6) C10B—C11B—C12B—C13B 0.2 (5)
C5A—C6A—C7A—C8A 179.9 (3) C11B—C12B—C13B—C8B 0.2 (5)
C6A—C7A—C8A—C9A 178.9 (4) C9B—C8B—C13B—C12B −0.1 (5)
C6A—C7A—C8A—C13A −1.7 (6) C7B—C8B—C13B—C12B −178.5 (3)
C13A—C8A—C9A—C10A 0.1 (5) O3—S1—C15—C20 −128.7 (3)
C7A—C8A—C9A—C10A 179.5 (3) O1—S1—C15—C20 111.4 (3)
C8A—C9A—C10A—C11A 0.2 (6) O2—S1—C15—C20 −8.4 (3)
C9A—C10A—C11A—C12A −0.9 (6) O3—S1—C15—C16 52.9 (3)
C10A—C11A—C12A—C13A 1.4 (5) O1—S1—C15—C16 −67.0 (3)
C11A—C12A—C13A—C8A −1.1 (5) O2—S1—C15—C16 173.2 (2)
C9A—C8A—C13A—C12A 0.3 (5) C20—C15—C16—C17 −0.9 (4)
C7A—C8A—C13A—C12A −179.0 (3) S1—C15—C16—C17 177.5 (2)
C3B—N2B—C2B—C1B 1.2 (5) C15—C16—C17—C18 0.6 (5)
C14B—N2B—C2B—C1B 179.6 (3) C16—C17—C18—C19 0.0 (5)
C5B—C1B—C2B—N2B −0.7 (5) C16—C17—C18—Br1 179.7 (2)
C2B—N2B—C3B—C4B −0.4 (5) C17—C18—C19—C20 −0.3 (5)
C14B—N2B—C3B—C4B −178.8 (3) Br1—C18—C19—C20 180.0 (2)
N2B—C3B—C4B—C5B −0.9 (5) C16—C15—C20—C19 0.6 (5)
C2B—C1B—C5B—C4B −0.5 (5) S1—C15—C20—C19 −177.8 (2)
C2B—C1B—C5B—C6B 179.7 (3) C18—C19—C20—C15 0.0 (5)

Hydrogen-bond geometry (Å, °)

Cg2 and Cg4 are the centroids of the C8A–C13A and C8B–C13B phenyl rings, respectively.
D—H···A D—H H···A D···A D—H···A
C2A—H2AA···O2i 0.93 2.45 3.253 (3) 144
C3A—H3AA···O1 0.93 2.47 3.189 (3) 134
C2B—H2BA···O2ii 0.93 2.24 3.169 (4) 177
C4B—H4BA···O3 0.93 2.49 3.328 (4) 151
C11A—H11A···O1iii 0.93 2.51 3.390 (4) 159
C7B—H7BA···O3 0.93 2.50 3.314 (4) 146
C14A—H14C···O1 0.96 2.44 3.171 (4) 133
C14B—H14D···O3ii 0.96 2.46 3.365 (4) 157
C1A—H1AA···I1i 0.93 3.26 3.841 (3) 123
C1B—H1BA···I1ii 0.93 3.35 3.787 (3) 111
C17—H17A···I1iv 0.93 3.10 3.863 (3) 141
C14A—H14A···Cg2v 0.96 2.72 3.475 (3) 136
C14B—H14E···Cg4vi 0.96 2.73 3.520 (3) 140

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, −y+1/2, z+1/2; (iii) x+1, y, z+1; (iv) x, y, z+1; (v) −x+1, −y, −z+2; (vi) x+1, −y−1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2540).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chantrapromma, S., Ruanwas, P., Fun, H.-K. & Patil, P. S. (2006). Acta Cryst. E62, o5494–o5496.
  4. Chia, W.-L., Chen, C.-N. & Sheu, H.-J. (1995). Mater. Res. Bull 30, 1421–1430.
  5. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  6. Fun, H.-K., Chanawanno, K. & Chantrapromma, S. (2009a). Acta Cryst. E65, o1554–o1555. [DOI] [PMC free article] [PubMed]
  7. Fun, H.-K., Chanawanno, K. & Chantrapromma, S. (2009b). Acta Cryst. E65, o1934–o1935. [DOI] [PMC free article] [PubMed]
  8. Fun, H.-K., Surasit, C., Chanawanno, K. & Chantrapromma, S. (2009). Acta Cryst. E65, o2633–o2634. [DOI] [PMC free article] [PubMed]
  9. Pan, F., Wong, M. S., Bosshard, C. & Gunter, P. (1996). Adv. Mater 8, 592–596.
  10. Prasad, P. N. & Williams, D. J. (1991). Introduction to Nonlinear Optical Effects in Molecules and Polymers New York: Wiley.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810017277/is2540sup1.cif

e-66-o1372-sup1.cif (27.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810017277/is2540Isup2.hkl

e-66-o1372-Isup2.hkl (453.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES