Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 May 22;66(Pt 6):m693–m694. doi: 10.1107/S1600536810018040

Bis[μ-2-(2-benzoyl­hydrazinylidenemeth­yl)-6-methoxy­phenolato][2-(2-benzoyl­hydrazinylidenemeth­yl)-6-methoxy­phenolato]dimanganese(II) perchlorate methanol solvate

Gui-Miao Yu a, Yun-Hui Li a, Li-Fei Zou a, Jian-Wei Zhu b,*, Xiao-Qiu Liu b
PMCID: PMC2979386  PMID: 21579331

Abstract

In the title complex, [Mn2(C15H13N2O3)3]ClO4·CH3OH, the two MnII ions are bridged by two phenolate O atoms from two ligands, forming an Mn2O2 quadrangle. Each MnII ion has a distorted octa­hedral coordination geometry. One MnII ion is coordinated by two N atoms and four O atoms from two ligands, and the other is coordinated by one N atom and five O atoms from three ligands. A dimer is formed by inter­molecular N—H⋯O hydrogen bonds. The dimers, perchlorate anions and methanol solvent mol­ecules are further connected into a chain along [Inline graphic01] through N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For general background to the study of Schiff base compounds, see: Ando et al. (2004); Costes et al. (1995); Duda et al. (2003); Siddall et al. (1983). For related structures, see: Li et al. (2010); Huang & Li (2007); Mikuriya et al. (1992); Yin (2008); Yu et al. (2006). For the ligand synthesis, see: Pouralimardan et al. (2007); Sacconi (1954).graphic file with name e-66-0m693-scheme1.jpg

Experimental

Crystal data

  • [Mn2(C15H13N2O3)3]ClO4·CH4O

  • M r = 1049.19

  • Triclinic, Inline graphic

  • a = 12.7184 (6) Å

  • b = 13.8723 (7) Å

  • c = 15.0885 (12) Å

  • α = 100.268 (1)°

  • β = 94.030 (1)°

  • γ = 115.826 (1)°

  • V = 2324.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.68 mm−1

  • T = 173 K

  • 0.15 × 0.12 × 0.10 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.906, T max = 0.936

  • 11959 measured reflections

  • 8138 independent reflections

  • 6183 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.123

  • S = 1.05

  • 8138 reflections

  • 627 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.68 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810018040/hy2307sup1.cif

e-66-0m693-sup1.cif (30.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810018040/hy2307Isup2.hkl

e-66-0m693-Isup2.hkl (398.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Mn1—O2 2.099 (2)
Mn1—O3 2.148 (2)
Mn1—O8 2.105 (2)
Mn1—O9 2.196 (2)
Mn1—N1 2.263 (2)
Mn1—N5 2.253 (3)
Mn2—O1 2.427 (2)
Mn2—O2 2.083 (2)
Mn2—O5 2.061 (2)
Mn2—O6 2.192 (2)
Mn2—O8 2.215 (2)
Mn2—N3 2.200 (3)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O5i 0.88 2.04 2.907 (3) 168
N4—H4A⋯O13ii 0.88 2.08 2.910 (4) 156
N6—H6A⋯O14 0.88 1.98 2.810 (4) 156
O14—H14A⋯O10iii 0.84 2.05 2.865 (4) 165

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank Changchun University of Science and Technology for a research grant and Fujian Normal University for a technology grant.

supplementary crystallographic information

Comment

Studies of Schiff base compounds are of great interest in various aspects of chemistry, such as homogeneous catalysts in industry, antitumor activities, photoelectric materials, catalytic materials, etc. (Ando et al., 2004; Costes et al., 1995; Duda et al., 2003; Siddall et al., 1983). The crystal structures of metal complexes with salicylaldehyde benzoylhydrazide have been attracted tremendous interest (Huang & Li, 2007; Yin, 2008; Yu et al., 2006). As a continuation of our effort in this system, we investigated a novel Schiff base, 3-methoxysalicylaldehyde benzoylhydrazide (H2L). This multidentate ligand has several O and N donors with suitable relative positions, which can coordinate to two or more metal centers. In addition, the vanillin group displays a variety of bonding geometries, such as monodentate, chelating, bidentate bridging, monodentate bridging, and chelating bridging (Li et al., 2010). We report here the synthesis and crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. There are two crystallographically independent MnII centers with different coordination environments in the asymmetric unit. The two MnII ions, Mnl and Mn2, are bridged by two phenolate O atoms (O2, O8) from two Schiff base ligands (Table 1). The Mn1···Mn2 separation is 3.284 (1) Å, and the Mn1—O2—Mn2 and Mn1—O8—Mn2 angles are 103.50 (9) and 98.92 (8)°, respectively. The coordination geometry of each MnII ion is distorted octahedral. The Mn1 atom is coordinated by two N atoms and four O atoms from two ligands. The square plane around the Mn1 atom is formed by O2N2 donor atoms (N1, N5, O8 and O9) and the axial positions are occupied by phenolate O2 and carbonyl O3. However, the Mn2 atom is coordinated by one N atom and five O atoms from three ligands. The distorted octahedral coordination is achieved by the equatorial plane donor atoms, methoxy O1, carbonyl O2, phenolate O8 and hydrazine N3, and the coordination of phenolate O5 and carbonyl O6 at the axial positions. In addition, the methoxy O1 is weakly bonded to Mn2 with a Mn2—O1 distance of 2.427 (2) Å, which is comparable to those reported for other binuclear MnII complexes (Mikuriya et al., 1992). In the crystal structure, two adjacent molecules participate in complementary N(hydrazine)—H···O(phenolate) hydrogen bonds, forming a dimeric structure (Fig. 2 and Table 2). The dimers, perchlorate anions and methanol solvent molecules are further connected into a chain structure through N—H···O and O—H···O hydrogen bonds (Fig. 3).

Experimental

The Schiff base ligand (H2L) was prepared in a similar manner to the reported procedures (Pouralimardan et al., 2007; Sacconi, 1954). The title compound was synthesized by adding Mn(ClO4)2.6H2O (36.6 mg, 0.1 mmol) and imidazole(6.8 mg, 0.1 mmol) to a solution of H2L (27.3 mg, 0.1 mmol) in methanol (15 ml). The resulting mixture was stirred for 5 h at room temperature to afford a yellow solution, which was left unperturbed to allow slow evaporation of the solvent. Yellow single crystals suitable for X-ray diffraction analysis were formed after about two weeks.

Refinement

H atoms were placed in calculated positions and refined using a riding model, with C—H (aromatic) = 0.95 and 0.98 (methyl) Å, N—H = 0.88 Å and O—H = 0.84 Å and with Uiso(H) = 1.2(1.5 for methyl and hydroxy)Ueq(C, N, O).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.

Fig. 2.

Fig. 2.

The dimeric structure of the title compound, with hydrogen bonds shown as green dashed lines.

Fig. 3.

Fig. 3.

One-dimensional chain structure of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

[Mn2(C15H13N2O3)3]ClO4·CH4O Z = 2
Mr = 1049.19 F(000) = 1080
Triclinic, P1 Dx = 1.499 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 12.7184 (6) Å Cell parameters from 5673 reflections
b = 13.8723 (7) Å θ = 2.4–25.9°
c = 15.0885 (12) Å µ = 0.68 mm1
α = 100.268 (1)° T = 173 K
β = 94.030 (1)° Block, yellow
γ = 115.826 (1)° 0.15 × 0.12 × 0.10 mm
V = 2324.7 (2) Å3

Data collection

Bruker APEXII CCD diffractometer 8138 independent reflections
Radiation source: fine-focus sealed tube 6183 reflections with I > 2σ(I)
graphite Rint = 0.021
φ and ω scans θmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −15→10
Tmin = 0.906, Tmax = 0.936 k = −16→16
11959 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0586P)2 + 1.186P] where P = (Fo2 + 2Fc2)/3
8138 reflections (Δ/σ)max = 0.001
627 parameters Δρmax = 0.49 e Å3
0 restraints Δρmin = −0.68 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.89876 (8) 0.67575 (8) 0.50975 (6) 0.0426 (2)
Mn1 0.36982 (4) 0.89528 (4) 0.15072 (3) 0.02431 (13)
Mn2 0.43109 (4) 1.15354 (4) 0.23009 (3) 0.03144 (15)
N1 0.4807 (2) 0.87719 (19) 0.04411 (16) 0.0228 (5)
N2 0.4219 (2) 0.77597 (19) −0.01720 (16) 0.0251 (6)
H2A 0.4560 0.7548 −0.0600 0.030*
N3 0.3403 (2) 1.2330 (2) 0.31023 (17) 0.0293 (6)
N4 0.3060 (2) 1.1885 (2) 0.38472 (18) 0.0322 (6)
H4A 0.2582 1.2037 0.4174 0.039*
N5 0.2727 (2) 0.8410 (2) 0.26601 (17) 0.0267 (6)
N6 0.3164 (2) 0.7859 (2) 0.31286 (17) 0.0294 (6)
H6A 0.2818 0.7550 0.3559 0.035*
O1 0.64422 (19) 1.24458 (18) 0.27865 (15) 0.0357 (5)
O2 0.50670 (18) 1.05637 (16) 0.17192 (15) 0.0293 (5)
O3 0.26225 (19) 0.74323 (17) 0.05223 (14) 0.0308 (5)
O4 0.4299 (2) 1.3273 (2) 0.00081 (16) 0.0468 (7)
O5 0.43845 (19) 1.26231 (17) 0.15090 (14) 0.0312 (5)
O6 0.42445 (19) 1.10827 (19) 0.36227 (15) 0.0344 (5)
O7 0.1612 (2) 1.08089 (19) 0.09004 (16) 0.0377 (6)
O8 0.27945 (18) 0.99182 (17) 0.16429 (14) 0.0287 (5)
O9 0.46239 (19) 0.82750 (19) 0.22884 (15) 0.0337 (5)
O10 1.0073 (2) 0.6796 (2) 0.54667 (19) 0.0528 (7)
O11 0.8019 (3) 0.5765 (2) 0.5162 (3) 0.0818 (11)
O12 0.9022 (3) 0.6841 (4) 0.4178 (2) 0.0971 (13)
O13 0.8851 (3) 0.7656 (2) 0.5595 (2) 0.0648 (8)
O14 0.1488 (2) 0.6610 (2) 0.41134 (19) 0.0510 (7)
H14A 0.1138 0.6790 0.4513 0.077*
C1 0.7174 (3) 1.3365 (3) 0.3523 (2) 0.0494 (10)
H1A 0.7737 1.3195 0.3857 0.074*
H1B 0.6677 1.3518 0.3938 0.074*
H1C 0.7609 1.4012 0.3280 0.074*
C2 0.6994 (3) 1.2000 (3) 0.2201 (2) 0.0273 (7)
C3 0.8167 (3) 1.2503 (3) 0.2135 (2) 0.0330 (8)
H3 0.8690 1.3194 0.2531 0.040*
C4 0.8587 (3) 1.1981 (3) 0.1472 (2) 0.0378 (8)
H4 0.9399 1.2327 0.1412 0.045*
C5 0.7840 (3) 1.0981 (3) 0.0912 (2) 0.0310 (7)
H5 0.8140 1.0643 0.0463 0.037*
C6 0.6630 (3) 1.0438 (2) 0.0988 (2) 0.0243 (7)
C7 0.6198 (3) 1.0971 (2) 0.1639 (2) 0.0238 (7)
C8 0.5897 (3) 0.9368 (2) 0.0389 (2) 0.0244 (7)
H8 0.6239 0.9091 −0.0066 0.029*
C9 0.3099 (3) 0.7115 (3) −0.0082 (2) 0.0270 (7)
C10 0.2450 (3) 0.6014 (3) −0.0711 (2) 0.0308 (7)
C11 0.2905 (3) 0.5623 (3) −0.1418 (2) 0.0351 (8)
H11 0.3678 0.6075 −0.1520 0.042*
C12 0.2250 (4) 0.4588 (3) −0.1973 (3) 0.0487 (10)
H12 0.2567 0.4338 −0.2463 0.058*
C13 0.1160 (4) 0.3924 (4) −0.1825 (3) 0.0705 (14)
H13 0.0710 0.3212 −0.2215 0.085*
C14 0.0703 (4) 0.4277 (4) −0.1116 (4) 0.0882 (19)
H14 −0.0052 0.3801 −0.0999 0.106*
C15 0.1342 (4) 0.5327 (3) −0.0570 (3) 0.0615 (12)
H15 0.1011 0.5577 −0.0090 0.074*
C16 0.4032 (4) 1.3346 (4) −0.0898 (3) 0.0576 (11)
H16A 0.3172 1.2961 −0.1099 0.086*
H16B 0.4408 1.3006 −0.1304 0.086*
H16C 0.4331 1.4122 −0.0919 0.086*
C17 0.3771 (3) 1.3615 (3) 0.0659 (2) 0.0399 (9)
C18 0.3230 (4) 1.4265 (3) 0.0576 (3) 0.0507 (10)
H18 0.3211 1.4513 0.0030 0.061*
C19 0.2704 (4) 1.4567 (3) 0.1289 (3) 0.0573 (12)
H19 0.2341 1.5029 0.1235 0.069*
C20 0.2720 (4) 1.4192 (3) 0.2055 (3) 0.0509 (10)
H20 0.2361 1.4398 0.2536 0.061*
C21 0.3251 (3) 1.3508 (3) 0.2163 (2) 0.0349 (8)
C22 0.3833 (3) 1.3234 (3) 0.1464 (2) 0.0325 (8)
C23 0.3085 (3) 1.3055 (3) 0.2952 (2) 0.0357 (8)
H23 0.2713 1.3307 0.3397 0.043*
C24 0.3494 (3) 1.1208 (3) 0.4046 (2) 0.0298 (7)
C25 0.3037 (3) 1.0616 (3) 0.4763 (2) 0.0309 (7)
C26 0.1919 (3) 1.0360 (3) 0.4984 (2) 0.0372 (8)
H26 0.1430 1.0614 0.4700 0.045*
C27 0.1522 (3) 0.9736 (3) 0.5616 (2) 0.0459 (9)
H27 0.0747 0.9540 0.5752 0.055*
C28 0.2237 (4) 0.9395 (3) 0.6051 (3) 0.0506 (10)
H28 0.1958 0.8977 0.6495 0.061*
C29 0.3351 (4) 0.9651 (3) 0.5852 (3) 0.0496 (10)
H29 0.3848 0.9421 0.6159 0.060*
C30 0.3739 (3) 1.0248 (3) 0.5200 (3) 0.0436 (9)
H30 0.4500 1.0410 0.5047 0.052*
C31 0.1054 (3) 1.1402 (3) 0.0565 (3) 0.0461 (9)
H31A 0.0234 1.0889 0.0279 0.069*
H31B 0.1486 1.1769 0.0112 0.069*
H31C 0.1059 1.1954 0.1073 0.069*
C32 0.1105 (3) 1.0228 (3) 0.1532 (2) 0.0317 (8)
C33 0.0058 (3) 1.0108 (3) 0.1813 (2) 0.0404 (9)
H33 −0.0358 1.0457 0.1574 0.049*
C34 −0.0395 (3) 0.9480 (3) 0.2444 (2) 0.0413 (9)
H34 −0.1120 0.9400 0.2633 0.050*
C35 0.0195 (3) 0.8980 (3) 0.2794 (2) 0.0352 (8)
H35 −0.0121 0.8558 0.3229 0.042*
C36 0.1272 (3) 0.9079 (3) 0.2519 (2) 0.0284 (7)
C37 0.1759 (3) 0.9730 (3) 0.1888 (2) 0.0273 (7)
C38 0.1829 (3) 0.8511 (2) 0.2921 (2) 0.0282 (7)
H38 0.1513 0.8191 0.3408 0.034*
C39 0.4151 (3) 0.7819 (3) 0.2892 (2) 0.0295 (7)
C40 0.4667 (3) 0.7237 (3) 0.3367 (2) 0.0304 (7)
C41 0.4082 (3) 0.6553 (3) 0.3924 (3) 0.0431 (9)
H41 0.3318 0.6451 0.4031 0.052*
C42 0.4614 (3) 0.6021 (3) 0.4321 (3) 0.0507 (10)
H42 0.4210 0.5548 0.4700 0.061*
C43 0.5727 (4) 0.6170 (3) 0.4175 (3) 0.0477 (10)
H43 0.6080 0.5789 0.4443 0.057*
C44 0.6327 (3) 0.6870 (3) 0.3641 (2) 0.0416 (9)
H44 0.7101 0.6986 0.3550 0.050*
C45 0.5795 (3) 0.7404 (3) 0.3238 (2) 0.0342 (8)
H45 0.6207 0.7888 0.2870 0.041*
C46 0.0717 (4) 0.5557 (4) 0.3563 (4) 0.0767 (15)
H46A 0.1038 0.5429 0.3007 0.115*
H46B −0.0064 0.5515 0.3398 0.115*
H46C 0.0640 0.4996 0.3902 0.115*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0341 (5) 0.0521 (6) 0.0478 (5) 0.0259 (4) 0.0126 (4) 0.0075 (4)
Mn1 0.0245 (3) 0.0270 (3) 0.0250 (3) 0.0148 (2) 0.0078 (2) 0.00504 (19)
Mn2 0.0328 (3) 0.0336 (3) 0.0319 (3) 0.0191 (2) 0.0108 (2) 0.0045 (2)
N1 0.0270 (14) 0.0203 (13) 0.0225 (13) 0.0124 (11) 0.0055 (11) 0.0036 (10)
N2 0.0286 (15) 0.0252 (14) 0.0216 (13) 0.0137 (12) 0.0065 (11) 0.0013 (11)
N3 0.0305 (15) 0.0319 (15) 0.0262 (14) 0.0150 (12) 0.0094 (12) 0.0046 (12)
N4 0.0356 (16) 0.0368 (16) 0.0322 (15) 0.0218 (13) 0.0167 (13) 0.0086 (12)
N5 0.0258 (14) 0.0299 (14) 0.0271 (14) 0.0159 (12) 0.0062 (11) 0.0043 (11)
N6 0.0303 (15) 0.0369 (16) 0.0291 (14) 0.0194 (13) 0.0112 (12) 0.0136 (12)
O1 0.0300 (13) 0.0326 (13) 0.0369 (13) 0.0115 (10) 0.0088 (10) −0.0036 (10)
O2 0.0227 (12) 0.0262 (12) 0.0380 (13) 0.0121 (10) 0.0108 (10) 0.0002 (10)
O3 0.0291 (12) 0.0310 (12) 0.0310 (12) 0.0140 (10) 0.0096 (10) 0.0015 (10)
O4 0.0661 (18) 0.0687 (18) 0.0340 (13) 0.0499 (16) 0.0220 (13) 0.0228 (13)
O5 0.0357 (13) 0.0332 (12) 0.0311 (12) 0.0197 (11) 0.0111 (10) 0.0095 (10)
O6 0.0314 (13) 0.0426 (14) 0.0345 (13) 0.0213 (11) 0.0101 (10) 0.0082 (11)
O7 0.0361 (13) 0.0443 (14) 0.0446 (14) 0.0265 (12) 0.0085 (11) 0.0157 (12)
O8 0.0234 (11) 0.0343 (12) 0.0337 (12) 0.0171 (10) 0.0087 (10) 0.0084 (10)
O9 0.0299 (13) 0.0480 (14) 0.0355 (13) 0.0237 (11) 0.0135 (10) 0.0205 (11)
O10 0.0397 (15) 0.0699 (19) 0.0589 (17) 0.0322 (14) 0.0091 (13) 0.0198 (15)
O11 0.0371 (17) 0.0475 (18) 0.150 (3) 0.0131 (14) 0.0151 (19) 0.014 (2)
O12 0.098 (3) 0.190 (4) 0.0464 (19) 0.100 (3) 0.0219 (18) 0.033 (2)
O13 0.0533 (18) 0.0531 (17) 0.095 (2) 0.0311 (15) 0.0346 (17) 0.0086 (16)
O14 0.0425 (15) 0.0571 (18) 0.0637 (18) 0.0250 (14) 0.0296 (14) 0.0238 (14)
C1 0.048 (2) 0.051 (2) 0.036 (2) 0.019 (2) 0.0038 (18) −0.0115 (18)
C2 0.0303 (18) 0.0305 (17) 0.0271 (16) 0.0190 (15) 0.0068 (14) 0.0070 (14)
C3 0.0256 (18) 0.0294 (18) 0.0377 (19) 0.0100 (15) −0.0008 (15) 0.0016 (15)
C4 0.0227 (18) 0.042 (2) 0.049 (2) 0.0153 (16) 0.0102 (16) 0.0070 (17)
C5 0.0264 (18) 0.0385 (19) 0.0347 (18) 0.0210 (16) 0.0093 (14) 0.0063 (15)
C6 0.0265 (17) 0.0291 (17) 0.0238 (16) 0.0173 (14) 0.0069 (13) 0.0082 (13)
C7 0.0214 (16) 0.0285 (17) 0.0248 (16) 0.0138 (14) 0.0050 (13) 0.0073 (13)
C8 0.0275 (17) 0.0295 (17) 0.0234 (16) 0.0189 (14) 0.0084 (13) 0.0065 (13)
C9 0.0298 (18) 0.0278 (17) 0.0268 (17) 0.0163 (15) 0.0053 (14) 0.0064 (13)
C10 0.0296 (18) 0.0285 (17) 0.0333 (18) 0.0132 (15) 0.0053 (14) 0.0047 (14)
C11 0.036 (2) 0.0324 (19) 0.0339 (19) 0.0155 (16) 0.0062 (15) 0.0014 (15)
C12 0.051 (2) 0.040 (2) 0.049 (2) 0.021 (2) 0.0105 (19) −0.0056 (18)
C13 0.057 (3) 0.041 (2) 0.079 (3) 0.004 (2) 0.014 (2) −0.019 (2)
C14 0.055 (3) 0.052 (3) 0.104 (4) −0.010 (2) 0.031 (3) −0.024 (3)
C15 0.046 (2) 0.043 (2) 0.070 (3) 0.005 (2) 0.023 (2) −0.012 (2)
C16 0.076 (3) 0.079 (3) 0.040 (2) 0.050 (3) 0.019 (2) 0.021 (2)
C17 0.046 (2) 0.046 (2) 0.040 (2) 0.0293 (19) 0.0168 (17) 0.0145 (17)
C18 0.072 (3) 0.058 (3) 0.047 (2) 0.046 (2) 0.021 (2) 0.024 (2)
C19 0.086 (3) 0.060 (3) 0.059 (3) 0.059 (3) 0.023 (2) 0.022 (2)
C20 0.073 (3) 0.053 (2) 0.048 (2) 0.045 (2) 0.022 (2) 0.0129 (19)
C21 0.040 (2) 0.0361 (19) 0.0350 (19) 0.0234 (17) 0.0111 (16) 0.0069 (15)
C22 0.0320 (19) 0.0300 (18) 0.0377 (19) 0.0164 (15) 0.0082 (15) 0.0065 (15)
C23 0.041 (2) 0.0362 (19) 0.0359 (19) 0.0247 (17) 0.0124 (16) 0.0029 (15)
C24 0.0245 (17) 0.0315 (18) 0.0279 (17) 0.0111 (14) 0.0031 (14) −0.0010 (14)
C25 0.0309 (18) 0.0310 (18) 0.0292 (17) 0.0134 (15) 0.0093 (14) 0.0035 (14)
C26 0.034 (2) 0.042 (2) 0.0322 (18) 0.0165 (17) 0.0067 (15) 0.0046 (16)
C27 0.036 (2) 0.052 (2) 0.041 (2) 0.0116 (18) 0.0108 (17) 0.0122 (18)
C28 0.061 (3) 0.046 (2) 0.046 (2) 0.021 (2) 0.017 (2) 0.0185 (19)
C29 0.057 (3) 0.053 (2) 0.052 (2) 0.033 (2) 0.011 (2) 0.022 (2)
C30 0.044 (2) 0.050 (2) 0.046 (2) 0.0287 (19) 0.0134 (18) 0.0125 (18)
C31 0.042 (2) 0.043 (2) 0.062 (3) 0.0269 (19) 0.0021 (19) 0.0165 (19)
C32 0.0263 (18) 0.0353 (19) 0.0351 (18) 0.0183 (15) 0.0033 (15) 0.0013 (15)
C33 0.034 (2) 0.056 (2) 0.042 (2) 0.0321 (19) 0.0059 (16) 0.0061 (18)
C34 0.0263 (19) 0.055 (2) 0.045 (2) 0.0235 (18) 0.0099 (16) 0.0029 (18)
C35 0.0274 (18) 0.0365 (19) 0.0384 (19) 0.0139 (16) 0.0096 (15) 0.0014 (15)
C36 0.0223 (16) 0.0312 (17) 0.0291 (17) 0.0137 (14) 0.0036 (13) −0.0026 (14)
C37 0.0229 (17) 0.0287 (17) 0.0276 (17) 0.0138 (14) 0.0021 (13) −0.0045 (13)
C38 0.0241 (17) 0.0288 (17) 0.0287 (17) 0.0109 (14) 0.0077 (14) 0.0015 (14)
C39 0.0311 (18) 0.0306 (17) 0.0274 (17) 0.0149 (15) 0.0054 (14) 0.0063 (14)
C40 0.0318 (18) 0.0296 (17) 0.0315 (18) 0.0159 (15) 0.0055 (14) 0.0065 (14)
C41 0.036 (2) 0.049 (2) 0.049 (2) 0.0191 (18) 0.0078 (17) 0.0239 (19)
C42 0.042 (2) 0.053 (2) 0.060 (3) 0.019 (2) 0.0020 (19) 0.030 (2)
C43 0.059 (3) 0.043 (2) 0.050 (2) 0.032 (2) −0.003 (2) 0.0135 (19)
C44 0.045 (2) 0.051 (2) 0.038 (2) 0.0332 (19) −0.0008 (17) 0.0027 (17)
C45 0.040 (2) 0.041 (2) 0.0289 (18) 0.0257 (17) 0.0073 (15) 0.0061 (15)
C46 0.054 (3) 0.058 (3) 0.120 (4) 0.028 (3) 0.023 (3) 0.016 (3)

Geometric parameters (Å, °)

Cl1—O12 1.414 (3) C12—C13 1.351 (6)
Cl1—O11 1.418 (3) C12—H12 0.9500
Cl1—O13 1.422 (3) C13—C14 1.368 (6)
Cl1—O10 1.428 (3) C13—H13 0.9500
Mn1—O2 2.099 (2) C14—C15 1.381 (6)
Mn1—O3 2.148 (2) C14—H14 0.9500
Mn1—O8 2.105 (2) C15—H15 0.9500
Mn1—O9 2.196 (2) C16—H16A 0.9800
Mn1—N1 2.263 (2) C16—H16B 0.9800
Mn1—N5 2.253 (3) C16—H16C 0.9800
Mn2—O1 2.427 (2) C17—C18 1.367 (5)
Mn2—O2 2.083 (2) C17—C22 1.419 (5)
Mn2—O5 2.061 (2) C18—C19 1.403 (5)
Mn2—O6 2.192 (2) C18—H18 0.9500
Mn2—O8 2.215 (2) C19—C20 1.351 (5)
Mn2—N3 2.200 (3) C19—H19 0.9500
Mn1—Mn2 3.284 (1) C20—C21 1.407 (5)
N1—C8 1.285 (4) C20—H20 0.9500
N1—N2 1.383 (3) C21—C22 1.420 (4)
N2—C9 1.344 (4) C21—C23 1.430 (5)
N2—H2A 0.8800 C23—H23 0.9500
N3—C23 1.284 (4) C24—C25 1.473 (4)
N3—N4 1.384 (4) C25—C26 1.388 (5)
N4—C24 1.343 (4) C25—C30 1.388 (5)
N4—H4A 0.8800 C26—C27 1.376 (5)
N5—C38 1.289 (4) C26—H26 0.9500
N5—N6 1.377 (3) C27—C28 1.372 (5)
N6—C39 1.350 (4) C27—H27 0.9500
N6—H6A 0.8800 C28—C29 1.372 (6)
O1—C2 1.388 (4) C28—H28 0.9500
O1—C1 1.429 (4) C29—C30 1.378 (5)
O2—C7 1.320 (3) C29—H29 0.9500
O3—C9 1.249 (4) C30—H30 0.9500
O4—C17 1.358 (4) C31—H31A 0.9800
O4—C16 1.418 (4) C31—H31B 0.9800
O5—C22 1.322 (4) C31—H31C 0.9800
O6—C24 1.242 (4) C32—C33 1.375 (4)
O7—C32 1.372 (4) C32—C37 1.424 (4)
O7—C31 1.430 (4) C33—C34 1.391 (5)
O8—C37 1.320 (4) C33—H33 0.9500
O9—C39 1.242 (4) C34—C35 1.361 (5)
O14—C46 1.410 (5) C34—H34 0.9500
O14—H14A 0.8400 C35—C36 1.416 (4)
C1—H1A 0.9800 C35—H35 0.9500
C1—H1B 0.9800 C36—C37 1.417 (5)
C1—H1C 0.9800 C36—C38 1.445 (4)
C2—C3 1.364 (4) C38—H38 0.9500
C2—C7 1.404 (4) C39—C40 1.483 (4)
C3—C4 1.401 (5) C40—C45 1.383 (5)
C3—H3 0.9500 C40—C41 1.385 (5)
C4—C5 1.365 (5) C41—C42 1.377 (5)
C4—H4 0.9500 C41—H41 0.9500
C5—C6 1.412 (4) C42—C43 1.380 (5)
C5—H5 0.9500 C42—H42 0.9500
C6—C7 1.410 (4) C43—C44 1.376 (5)
C6—C8 1.444 (4) C43—H43 0.9500
C8—H8 0.9500 C44—C45 1.384 (5)
C9—C10 1.480 (4) C44—H44 0.9500
C10—C15 1.373 (5) C45—H45 0.9500
C10—C11 1.385 (4) C46—H46A 0.9800
C11—C12 1.374 (5) C46—H46B 0.9800
C11—H11 0.9500 C46—H46C 0.9800
O12—Cl1—O11 111.2 (3) C12—C13—H13 120.0
O12—Cl1—O13 108.7 (2) C14—C13—H13 120.0
O11—Cl1—O13 108.39 (19) C13—C14—C15 119.8 (4)
O12—Cl1—O10 108.54 (18) C13—C14—H14 120.1
O11—Cl1—O10 109.91 (18) C15—C14—H14 120.1
O13—Cl1—O10 110.12 (18) C10—C15—C14 120.9 (4)
O2—Mn1—O8 76.87 (8) C10—C15—H15 119.6
O2—Mn1—O3 145.50 (8) C14—C15—H15 119.6
O8—Mn1—O3 109.15 (8) O4—C16—H16A 109.5
O2—Mn1—O9 98.66 (9) O4—C16—H16B 109.5
O8—Mn1—O9 143.09 (8) H16A—C16—H16B 109.5
O3—Mn1—O9 95.20 (9) O4—C16—H16C 109.5
O2—Mn1—N5 119.63 (9) H16A—C16—H16C 109.5
O8—Mn1—N5 79.31 (9) H16B—C16—H16C 109.5
O3—Mn1—N5 94.72 (9) O4—C17—C18 125.1 (3)
O9—Mn1—N5 71.21 (8) O4—C17—C22 113.2 (3)
O2—Mn1—N1 77.63 (8) C18—C17—C22 121.7 (3)
O8—Mn1—N1 128.89 (9) C17—C18—C19 120.5 (4)
O3—Mn1—N1 72.54 (8) C17—C18—H18 119.7
O9—Mn1—N1 84.16 (8) C19—C18—H18 119.7
N5—Mn1—N1 151.29 (9) C20—C19—C18 119.1 (3)
O5—Mn2—O2 109.55 (9) C20—C19—H19 120.4
O5—Mn2—O6 150.92 (8) C18—C19—H19 120.4
O2—Mn2—O6 96.68 (8) C19—C20—C21 122.2 (3)
O5—Mn2—N3 82.02 (9) C19—C20—H20 118.9
O2—Mn2—N3 168.30 (9) C21—C20—H20 118.9
O6—Mn2—N3 72.45 (9) C20—C21—C22 119.4 (3)
O5—Mn2—O8 107.68 (8) C20—C21—C23 117.0 (3)
O2—Mn2—O8 74.83 (8) C22—C21—C23 123.5 (3)
O6—Mn2—O8 90.80 (8) O5—C22—C17 118.9 (3)
N3—Mn2—O8 100.50 (9) O5—C22—C21 124.1 (3)
O5—Mn2—O1 92.92 (9) C17—C22—C21 117.0 (3)
O2—Mn2—O1 68.95 (8) N3—C23—C21 124.6 (3)
O6—Mn2—O1 84.77 (8) N3—C23—H23 117.7
N3—Mn2—O1 113.22 (9) C21—C23—H23 117.7
O8—Mn2—O1 142.67 (7) O6—C24—N4 120.1 (3)
C8—N1—N2 117.0 (2) O6—C24—C25 121.8 (3)
C8—N1—Mn1 131.2 (2) N4—C24—C25 118.1 (3)
N2—N1—Mn1 111.15 (17) C26—C25—C30 118.8 (3)
C9—N2—N1 116.7 (2) C26—C25—C24 123.2 (3)
C9—N2—H2A 121.6 C30—C25—C24 117.9 (3)
N1—N2—H2A 121.6 C27—C26—C25 119.8 (3)
C23—N3—N4 117.4 (3) C27—C26—H26 120.1
C23—N3—Mn2 130.8 (2) C25—C26—H26 120.1
N4—N3—Mn2 111.61 (18) C28—C27—C26 120.5 (4)
C24—N4—N3 116.6 (2) C28—C27—H27 119.7
C24—N4—H4A 121.7 C26—C27—H27 119.7
N3—N4—H4A 121.7 C29—C28—C27 120.7 (4)
C38—N5—N6 116.8 (3) C29—C28—H28 119.7
C38—N5—Mn1 130.1 (2) C27—C28—H28 119.7
N6—N5—Mn1 113.08 (18) C28—C29—C30 119.0 (4)
C39—N6—N5 116.4 (3) C28—C29—H29 120.5
C39—N6—H6A 121.8 C30—C29—H29 120.5
N5—N6—H6A 121.8 C29—C30—C25 121.2 (4)
C2—O1—C1 118.0 (3) C29—C30—H30 119.4
C2—O1—Mn2 111.43 (18) C25—C30—H30 119.4
C1—O1—Mn2 130.5 (2) O7—C31—H31A 109.5
C7—O2—Mn2 122.82 (18) O7—C31—H31B 109.5
C7—O2—Mn1 133.25 (18) H31A—C31—H31B 109.5
Mn2—O2—Mn1 103.50 (9) O7—C31—H31C 109.5
C9—O3—Mn1 118.2 (2) H31A—C31—H31C 109.5
C17—O4—C16 118.2 (3) H31B—C31—H31C 109.5
C22—O5—Mn2 133.1 (2) O7—C32—C33 125.0 (3)
C24—O6—Mn2 114.7 (2) O7—C32—C37 113.9 (3)
C32—O7—C31 117.1 (3) C33—C32—C37 121.1 (3)
C37—O8—Mn1 131.7 (2) C32—C33—C34 120.5 (3)
C37—O8—Mn2 116.67 (18) C32—C33—H33 119.8
Mn1—O8—Mn2 98.92 (8) C34—C33—H33 119.8
C39—O9—Mn1 118.4 (2) C35—C34—C33 120.3 (3)
C46—O14—H14A 109.5 C35—C34—H34 119.8
O1—C1—H1A 109.5 C33—C34—H34 119.8
O1—C1—H1B 109.5 C34—C35—C36 120.9 (3)
H1A—C1—H1B 109.5 C34—C35—H35 119.5
O1—C1—H1C 109.5 C36—C35—H35 119.5
H1A—C1—H1C 109.5 C35—C36—C37 119.6 (3)
H1B—C1—H1C 109.5 C35—C36—C38 117.0 (3)
C3—C2—O1 125.1 (3) C37—C36—C38 123.4 (3)
C3—C2—C7 122.3 (3) O8—C37—C36 123.1 (3)
O1—C2—C7 112.5 (3) O8—C37—C32 119.3 (3)
C2—C3—C4 118.8 (3) C36—C37—C32 117.5 (3)
C2—C3—H3 120.6 N5—C38—C36 124.2 (3)
C4—C3—H3 120.6 N5—C38—H38 117.9
C5—C4—C3 120.6 (3) C36—C38—H38 117.9
C5—C4—H4 119.7 O9—C39—N6 120.1 (3)
C3—C4—H4 119.7 O9—C39—C40 120.6 (3)
C4—C5—C6 121.3 (3) N6—C39—C40 119.3 (3)
C4—C5—H5 119.4 C45—C40—C41 119.6 (3)
C6—C5—H5 119.4 C45—C40—C39 117.0 (3)
C7—C6—C5 118.3 (3) C41—C40—C39 123.4 (3)
C7—C6—C8 123.4 (3) C42—C41—C40 119.7 (4)
C5—C6—C8 118.3 (3) C42—C41—H41 120.1
O2—C7—C2 118.6 (3) C40—C41—H41 120.1
O2—C7—C6 122.7 (3) C41—C42—C43 120.6 (4)
C2—C7—C6 118.7 (3) C41—C42—H42 119.7
N1—C8—C6 123.4 (3) C43—C42—H42 119.7
N1—C8—H8 118.3 C44—C43—C42 120.1 (3)
C6—C8—H8 118.3 C44—C43—H43 120.0
O3—C9—N2 120.9 (3) C42—C43—H43 120.0
O3—C9—C10 120.8 (3) C43—C44—C45 119.5 (3)
N2—C9—C10 118.3 (3) C43—C44—H44 120.3
C15—C10—C11 118.0 (3) C45—C44—H44 120.3
C15—C10—C9 117.9 (3) C40—C45—C44 120.5 (3)
C11—C10—C9 124.0 (3) C40—C45—H45 119.7
C12—C11—C10 120.7 (3) C44—C45—H45 119.7
C12—C11—H11 119.6 O14—C46—H46A 109.5
C10—C11—H11 119.6 O14—C46—H46B 109.5
C13—C12—C11 120.4 (4) H46A—C46—H46B 109.5
C13—C12—H12 119.8 O14—C46—H46C 109.5
C11—C12—H12 119.8 H46A—C46—H46C 109.5
C12—C13—C14 120.1 (4) H46B—C46—H46C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2A···O5i 0.88 2.04 2.907 (3) 168
N4—H4A···O13ii 0.88 2.08 2.910 (4) 156
N6—H6A···O14 0.88 1.98 2.810 (4) 156
O14—H14A···O10iii 0.84 2.05 2.865 (4) 165

Symmetry codes: (i) −x+1, −y+2, −z; (ii) −x+1, −y+2, −z+1; (iii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2307).

References

  1. Ando, R., Yagyu, T. & Maeda, M. (2004). Inorg. Chim. Acta, 357, 2237–2244.
  2. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2007). APEX2 and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Costes, J. P., Dominiguez-Vera, J. M. & Laurent, J. P. (1995). Polyhedron, 14, 2179–2187.
  5. Duda, D., Govindasamy, L., Agbandje-McKenna, M., Tu, C., Silverman, D. N. & McKenna, R. (2003). Acta Cryst. D59, 93–104. [DOI] [PubMed]
  6. Huang, J.-S. & Li, M.-T. (2007). Acta Cryst. E63, m2170–m2171.
  7. Li, S.-H., Gao, S.-K., Liu, S.-X. & Guo, Y.-N. (2010). Cryst. Growth Des.10, 495–503.
  8. Mikuriya, M., Yamato, Y. & Tokii, T. (1992). Bull. Chem. Soc. Jpn, 65, 2624–2637.
  9. Pouralimardan, O., Chamayou, A.-C., Janiak, C. & Hosseini-Monfared, H. (2007). Inorg. Chim. Acta, 360, 1599–1608.
  10. Sacconi, L. (1954). Z. Anorg. Allg. Chem.275, 249–256.
  11. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Siddall, T. L., Miyaura, N. & Huffman, J. C. (1983). J. Chem. Soc. Chem. Commun. pp. 1185–1986.
  14. Westrip, S. P. (2010). J. Appl. Cryst.43 Submitted.
  15. Yin, H. (2008). Acta Cryst. C64, m324–m326. [DOI] [PubMed]
  16. Yu, Z.-X., Qi, J.-S., Liang, K.-Z. & Sun, Y.-X. (2006). Acta Cryst. E62, m3284–m3286.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810018040/hy2307sup1.cif

e-66-0m693-sup1.cif (30.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810018040/hy2307Isup2.hkl

e-66-0m693-Isup2.hkl (398.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES