Abstract
The title compound, C13H10BrNO2, crystallizes in a zwitterionic form. The zwitterion exists in a trans configuration about the C=N bond and is almost planar, the dihedral angle between the two benzene rings being 2.29 (9)°. An intramolecular N—H⋯O hydrogen bond formed between the iminium NH+ and the phenolate O− atoms generates an S(6) ring motif. In the crystal, the zwitterions are linked through O—H⋯O hydrogen bonds into chains along [101] and these chains are further connected through C—H⋯Br interactions into a two-dimensional network perpendicular to (101). C⋯C [3.572 (3)–3.592 (3) Å] and C⋯Br [3.5633 (19)–3.7339 (18) Å] short contacts are observed. The crystal studied was a twin with twin law
00, 0
0, 001 with a domain ratio of 0.09919 (2):0.90081 (2).
Related literature
For bond-length data, see: Allen et al. (1987 ▶). For hydrogen-bond motifs, see: Bernstein et al. (1995 ▶). For background to Schiff bases and their applications, see: Dao et al. (2000 ▶); Kagkelari et al. (2009 ▶); Karthikeyan et al. (2006 ▶); Sriram et al. (2006 ▶); Wei & Atwood (1998 ▶). For related structures, see: Eltayeb et al. (2009 ▶; 2010 ▶); Tan & Liu (2009 ▶). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986 ▶).
Experimental
Crystal data
C13H10BrNO2
M r = 291.12
Monoclinic,
a = 4.6387 (3) Å
b = 18.9379 (13) Å
c = 6.2270 (4) Å
β = 90.144 (3)°
V = 547.02 (6) Å3
Z = 2
Mo Kα radiation
μ = 3.74 mm−1
T = 100 K
0.43 × 0.14 × 0.14 mm
Data collection
Bruker APEXII DUO CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2009 ▶) T min = 0.295, T max = 0.628
8575 measured reflections
3120 independent reflections
3034 reflections with I > 2σ(I)
R int = 0.026
Refinement
R[F 2 > 2σ(F 2)] = 0.018
wR(F 2) = 0.041
S = 1.02
3120 reflections
191 parameters
1 restraint
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.59 e Å−3
Δρmin = −0.29 e Å−3
Absolute structure: Flack (1983 ▶), 1480 Friedel pairs
Flack parameter: 0.027 (7)
Data collection: APEX2 (Bruker, 2009 ▶); cell refinement: SAINT (Bruker, 2009 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 ▶).
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810015230/rz2436sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015230/rz2436Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O2—H1O2⋯O1i | 0.82 | 1.76 | 2.5641 (19) | 169 |
| N1—H1N1⋯O1 | 0.89 (3) | 1.84 (3) | 2.6129 (18) | 143 (3) |
| C7—H7A⋯O2 | 0.95 (2) | 2.12 (2) | 2.794 (2) | 127.1 (18) |
| C11—H11A⋯Br1ii | 0.96 (3) | 2.89 (3) | 3.6982 (19) | 143.1 (19) |
Symmetry codes: (i)
; (ii)
.
Acknowledgments
The authors thank the Malaysian Government, the Ministry of Science, Technology and Innovation (MOSTI) and Universiti Sains Malaysia for the RU research grants (PKIMIA/815002 and PKIMIA/811120). NEE would like to acknowledge Universiti Sains Malaysia for a post-doctoral fellowship. The International University of Africa (Sudan) is acknowledged for providing study leave to NEE. The authors thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.
supplementary crystallographic information
Comment
Much attention has been given to Schiff base ligands due to their applications such as in coordination chemistry (Kagkelari et al., 2009), chelated boron catalyst (Wei & Atwood, 1998), pharmacological activities, anticancer (Dao et al., 2000), anti-HIV (Sriram et al., 2006), antibacterial and antifungal (Karthikeyan et al., 2006) activities. We have reported the crystal structures of Schiff base ligands which existed in a zwitterionic form i.e 2-((E)-{2-[(E)-2,3-dihydroxybenzylideneamino]-5-methylphenyl}- iminiomethyl)-6-hydroxyphenolate (Eltayeb et al., 2009) and (E)-4-allyl-2-{[(2-hydroxyphenyl)iminio]methyl}-6-methoxyphenolate (Eltayeb et al., 2010). Herein we report the crystal structure of the title zwitterionic Schiff base ligand (I).
The molecule of (I) (Fig. 1), C13H9BrNO2, crystallizes in a zwitterionic form with cationic iminium and anionic enolate, and exists in a trans configuration about the C═N bond [1.310 (2) Å]; the torsion angle C8–N1–C7–C6 is 179.25 (17)°. The molecule is almost planar with the dihedral angle between the two benzene rings of 2.31 (9)°. The hydroxy group is co-planar with the attached C8–C13 benzene ring with the r.m.s. of 0.0102 (2) Å for the seven non H atoms. Intramolecular N—H···O hydrogen bond between the NH+ and the phenolate O- generates an S(6) ring motif (Fig. 1; Table 1) which help to stabilize the planarity of the molecule (Bernstein et al., 1995). The bond distances are in normal ranges (Allen et al., 1987) and comparable with those found in related structures (Eltayeb et al., 2009, 2010; Tan & Liu, 2009).
In the crystal packing (Fig. 2), the zwitterions are linked through O2–H1O2···O1 hydrogen bonds into chains along the [101] and these chains are further connected through C11—H11A···Br1 interactions into a 2-D network perpendicular to the (101)-plane. The crystal is stabilized by O—H···O and weak C—H···Br interactions (Table 1). C···C [3.572 (3)-3.592 (3) Å] and C···Br [3.5633 (19)-3.7339 (18) Å] short contacts are observed.
Experimental
The title compound was synthesized by adding 5-bromo-2-hydroxybenzaldehyde (0.402 g, 2 mmol) to a solution of 2-aminophenol (0.218 g, 2 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for half an hour. The resultant yellow solution was filtered and the filtrate was evaporated to give a yellow solid product. Yellow needle-shaped single crystals of the title compound suitable for x-ray structure determination were obtained from ethanol by slow evaporation at room temperature after nine days.
Refinement
Hydroxyl H atom was placed in calculated positions with d(O—H) = 0.82 Å and the Uiso values was constrained to be 1.5Ueq of the carrier atom. The remaining H atoms were located from the difference map and isotropically refined. The highest residual electron density peak is located at 0.80 Å from Br1 and the deepest hole is located at 0.99 Å from Br1. The crystal studied was a twin with twin law 1 0 0, 0 1 0, 0 0 1, leading to a distribution (refined BASF parameter) of 0.09919/0.90081 (2).
Figures
Fig. 1.
The molecular structure of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen bond is shown as dashed lines.
Fig. 2.
The crystal packing showing 2-D networks perpendicular to the (101)-plane.
Crystal data
| C13H10BrNO2 | F(000) = 292 |
| Mr = 291.12 | Dx = 1.773 Mg m−3 |
| Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: P 2yb | Cell parameters from 3120 reflections |
| a = 4.6387 (3) Å | θ = 1.1–30.0° |
| b = 18.9379 (13) Å | µ = 3.74 mm−1 |
| c = 6.2270 (4) Å | T = 100 K |
| β = 90.144 (3)° | Needle, yellow |
| V = 547.02 (6) Å3 | 0.43 × 0.14 × 0.14 mm |
| Z = 2 |
Data collection
| Bruker APEXII DUO CCD area-detector diffractometer | 3120 independent reflections |
| Radiation source: sealed tube | 3034 reflections with I > 2σ(I) |
| graphite | Rint = 0.026 |
| φ and ω scans | θmax = 30.0°, θmin = 1.1° |
| Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −6→6 |
| Tmin = 0.295, Tmax = 0.628 | k = −26→26 |
| 8575 measured reflections | l = −8→8 |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.018 | H atoms treated by a mixture of independent and constrained refinement |
| wR(F2) = 0.041 | w = 1/[σ2(Fo2) + (0.0035P)2] where P = (Fo2 + 2Fc2)/3 |
| S = 1.02 | (Δ/σ)max < 0.001 |
| 3120 reflections | Δρmax = 0.59 e Å−3 |
| 191 parameters | Δρmin = −0.29 e Å−3 |
| 1 restraint | Absolute structure: Flack (1983), 1480 Friedel pairs |
| Primary atom site location: structure-invariant direct methods | Flack parameter: 0.027 (7) |
Special details
| Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Br1 | 0.00526 (4) | 0.442840 (15) | 0.87673 (2) | 0.01554 (4) | |
| O1 | 0.5191 (3) | 0.66300 (7) | 0.29008 (19) | 0.0152 (2) | |
| O2 | 1.1314 (3) | 0.70088 (8) | 1.0194 (2) | 0.0166 (3) | |
| H1O2 | 1.2697 | 0.6925 | 1.0976 | 0.025* | |
| N1 | 0.8565 (3) | 0.69973 (8) | 0.6076 (2) | 0.0121 (3) | |
| H1N1 | 0.802 (6) | 0.6976 (16) | 0.470 (5) | 0.026 (7)* | |
| C1 | 0.4132 (4) | 0.61426 (10) | 0.4149 (3) | 0.0126 (3) | |
| C2 | 0.1934 (4) | 0.56695 (10) | 0.3446 (3) | 0.0140 (3) | |
| H2A | 0.133 (6) | 0.5756 (14) | 0.207 (4) | 0.020 (6)* | |
| C3 | 0.0797 (4) | 0.51628 (10) | 0.4781 (3) | 0.0138 (3) | |
| H3A | −0.064 (6) | 0.4852 (14) | 0.440 (4) | 0.021 (6)* | |
| C4 | 0.1776 (4) | 0.51058 (9) | 0.6919 (3) | 0.0129 (3) | |
| C5 | 0.3894 (4) | 0.55482 (9) | 0.7685 (3) | 0.0125 (3) | |
| H5A | 0.450 (6) | 0.5535 (16) | 0.905 (4) | 0.026 (7)* | |
| C6 | 0.5112 (4) | 0.60653 (9) | 0.6331 (3) | 0.0122 (3) | |
| C7 | 0.7261 (4) | 0.65154 (9) | 0.7227 (3) | 0.0123 (3) | |
| H7A | 0.787 (5) | 0.6470 (12) | 0.868 (4) | 0.009 (5)* | |
| C8 | 1.0707 (4) | 0.74911 (9) | 0.6695 (3) | 0.0117 (3) | |
| C9 | 1.2064 (4) | 0.74952 (9) | 0.8722 (3) | 0.0125 (3) | |
| C10 | 1.4149 (4) | 0.80132 (10) | 0.9137 (3) | 0.0148 (3) | |
| H10A | 1.494 (6) | 0.8047 (15) | 1.048 (5) | 0.022 (6)* | |
| C11 | 1.4940 (4) | 0.84982 (10) | 0.7569 (3) | 0.0159 (3) | |
| H11A | 1.639 (6) | 0.8847 (13) | 0.786 (4) | 0.018 (6)* | |
| C12 | 1.3635 (4) | 0.84799 (10) | 0.5548 (3) | 0.0160 (3) | |
| H12A | 1.427 (7) | 0.8788 (17) | 0.453 (5) | 0.036 (8)* | |
| C13 | 1.1523 (4) | 0.79797 (9) | 0.5130 (3) | 0.0139 (3) | |
| H13A | 1.045 (5) | 0.7956 (13) | 0.368 (3) | 0.014 (6)* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Br1 | 0.01876 (7) | 0.01522 (7) | 0.01262 (6) | −0.00425 (9) | −0.00307 (5) | 0.00324 (8) |
| O1 | 0.0161 (6) | 0.0183 (6) | 0.0113 (5) | −0.0031 (5) | −0.0034 (5) | 0.0033 (5) |
| O2 | 0.0167 (6) | 0.0224 (7) | 0.0106 (6) | −0.0044 (5) | −0.0054 (5) | 0.0042 (5) |
| N1 | 0.0122 (7) | 0.0140 (7) | 0.0102 (7) | −0.0004 (5) | −0.0033 (5) | 0.0003 (5) |
| C1 | 0.0122 (7) | 0.0150 (8) | 0.0106 (7) | 0.0001 (6) | −0.0012 (5) | −0.0002 (6) |
| C2 | 0.0156 (8) | 0.0172 (8) | 0.0092 (8) | −0.0007 (6) | −0.0030 (6) | −0.0007 (6) |
| C3 | 0.0136 (8) | 0.0141 (8) | 0.0137 (8) | −0.0022 (6) | −0.0024 (6) | −0.0018 (6) |
| C4 | 0.0142 (8) | 0.0120 (7) | 0.0126 (8) | −0.0007 (6) | −0.0003 (6) | 0.0015 (6) |
| C5 | 0.0150 (8) | 0.0137 (8) | 0.0087 (8) | 0.0011 (6) | −0.0030 (6) | 0.0007 (6) |
| C6 | 0.0116 (7) | 0.0140 (7) | 0.0109 (7) | 0.0014 (6) | −0.0014 (6) | −0.0021 (6) |
| C7 | 0.0123 (8) | 0.0139 (8) | 0.0108 (8) | 0.0003 (6) | −0.0020 (6) | −0.0007 (6) |
| C8 | 0.0114 (7) | 0.0114 (7) | 0.0122 (7) | 0.0001 (6) | −0.0033 (5) | −0.0010 (6) |
| C9 | 0.0127 (7) | 0.0146 (8) | 0.0103 (7) | 0.0003 (6) | −0.0012 (6) | −0.0007 (6) |
| C10 | 0.0146 (8) | 0.0174 (9) | 0.0123 (8) | −0.0012 (6) | −0.0044 (6) | −0.0020 (6) |
| C11 | 0.0141 (8) | 0.0154 (8) | 0.0182 (8) | −0.0021 (7) | −0.0016 (7) | −0.0017 (6) |
| C12 | 0.0172 (9) | 0.0147 (8) | 0.0161 (8) | −0.0007 (7) | −0.0011 (6) | 0.0022 (7) |
| C13 | 0.0128 (8) | 0.0160 (8) | 0.0129 (8) | 0.0008 (6) | −0.0026 (6) | 0.0011 (6) |
Geometric parameters (Å, °)
| Br1—C4 | 1.9011 (18) | C5—C6 | 1.411 (2) |
| O1—C1 | 1.304 (2) | C5—H5A | 0.89 (2) |
| O2—C9 | 1.346 (2) | C6—C7 | 1.424 (2) |
| O2—H1O2 | 0.8200 | C7—H7A | 0.95 (2) |
| N1—C7 | 1.310 (2) | C8—C13 | 1.397 (2) |
| N1—C8 | 1.417 (2) | C8—C9 | 1.409 (2) |
| N1—H1N1 | 0.89 (3) | C9—C10 | 1.401 (2) |
| C1—C2 | 1.425 (2) | C10—C11 | 1.391 (3) |
| C1—C6 | 1.439 (2) | C10—H10A | 0.92 (3) |
| C2—C3 | 1.376 (3) | C11—C12 | 1.396 (3) |
| C2—H2A | 0.91 (3) | C11—H11A | 0.96 (3) |
| C3—C4 | 1.409 (2) | C12—C13 | 1.387 (3) |
| C3—H3A | 0.92 (3) | C12—H12A | 0.91 (3) |
| C4—C5 | 1.376 (3) | C13—H13A | 1.03 (2) |
| C9—O2—H1O2 | 109.5 | N1—C7—C6 | 121.74 (16) |
| C7—N1—C8 | 129.42 (16) | N1—C7—H7A | 116.6 (14) |
| C7—N1—H1N1 | 111.3 (19) | C6—C7—H7A | 121.6 (14) |
| C8—N1—H1N1 | 119.2 (18) | C13—C8—C9 | 120.02 (16) |
| O1—C1—C2 | 122.15 (15) | C13—C8—N1 | 115.98 (15) |
| O1—C1—C6 | 121.08 (16) | C9—C8—N1 | 123.97 (16) |
| C2—C1—C6 | 116.76 (16) | O2—C9—C10 | 122.23 (15) |
| C3—C2—C1 | 121.85 (16) | O2—C9—C8 | 119.39 (15) |
| C3—C2—H2A | 125.0 (16) | C10—C9—C8 | 118.39 (16) |
| C1—C2—H2A | 113.1 (17) | C11—C10—C9 | 121.08 (16) |
| C2—C3—C4 | 120.08 (16) | C11—C10—H10A | 119.3 (18) |
| C2—C3—H3A | 124.6 (16) | C9—C10—H10A | 119.6 (17) |
| C4—C3—H3A | 115.3 (16) | C10—C11—C12 | 120.15 (17) |
| C5—C4—C3 | 120.59 (16) | C10—C11—H11A | 120.5 (15) |
| C5—C4—Br1 | 120.14 (13) | C12—C11—H11A | 119.4 (15) |
| C3—C4—Br1 | 119.24 (13) | C13—C12—C11 | 119.38 (17) |
| C4—C5—C6 | 120.14 (16) | C13—C12—H12A | 122 (2) |
| C4—C5—H5A | 122 (2) | C11—C12—H12A | 118 (2) |
| C6—C5—H5A | 118 (2) | C12—C13—C8 | 120.94 (16) |
| C5—C6—C7 | 117.51 (15) | C12—C13—H13A | 122.2 (13) |
| C5—C6—C1 | 120.57 (16) | C8—C13—H13A | 116.8 (13) |
| C7—C6—C1 | 121.89 (16) | ||
| O1—C1—C2—C3 | −179.04 (17) | C1—C6—C7—N1 | −3.8 (3) |
| C6—C1—C2—C3 | 0.1 (3) | C7—N1—C8—C13 | −175.04 (17) |
| C1—C2—C3—C4 | 0.8 (3) | C7—N1—C8—C9 | 7.1 (3) |
| C2—C3—C4—C5 | −0.8 (3) | C13—C8—C9—O2 | −178.12 (16) |
| C2—C3—C4—Br1 | 177.31 (14) | N1—C8—C9—O2 | −0.3 (3) |
| C3—C4—C5—C6 | 0.0 (3) | C13—C8—C9—C10 | 2.3 (3) |
| Br1—C4—C5—C6 | −178.09 (13) | N1—C8—C9—C10 | −179.92 (17) |
| C4—C5—C6—C7 | 178.93 (16) | O2—C9—C10—C11 | 178.26 (18) |
| C4—C5—C6—C1 | 0.8 (3) | C8—C9—C10—C11 | −2.1 (3) |
| O1—C1—C6—C5 | 178.25 (17) | C9—C10—C11—C12 | 0.6 (3) |
| C2—C1—C6—C5 | −0.8 (2) | C10—C11—C12—C13 | 0.8 (3) |
| O1—C1—C6—C7 | 0.2 (3) | C11—C12—C13—C8 | −0.6 (3) |
| C2—C1—C6—C7 | −178.85 (16) | C9—C8—C13—C12 | −0.9 (3) |
| C8—N1—C7—C6 | 179.25 (17) | N1—C8—C13—C12 | −178.91 (16) |
| C5—C6—C7—N1 | 178.12 (16) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O2—H1O2···O1i | 0.82 | 1.76 | 2.5641 (19) | 169 |
| N1—H1N1···O1 | 0.89 (3) | 1.84 (3) | 2.6129 (18) | 143 (3) |
| C7—H7A···O2 | 0.95 (2) | 2.12 (2) | 2.794 (2) | 127.1 (18) |
| C11—H11A···Br1ii | 0.96 (3) | 2.89 (3) | 3.6982 (19) | 143.1 (19) |
Symmetry codes: (i) x+1, y, z+1; (ii) −x+2, y+1/2, −z+2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2436).
References
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl 34, 1555–1573.
- Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
- Dao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem 35, 805–813. [DOI] [PubMed]
- Eltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2010). Acta Cryst. E66, o934–o935. [DOI] [PMC free article] [PubMed]
- Eltayeb, N. E., Teoh, S. G., Yeap, C. S., Fun, H.-K. & Adnan, R. (2009). Acta Cryst. E65, o2065–o2066. [DOI] [PMC free article] [PubMed]
- Flack, H. D. (1983). Acta Cryst. A39, 876–881.
- Kagkelari, A., Papaefstahiou, G. S., Raptopoulou, C. P. & Zafiropoulos, T. F. (2009). Polyhedron, 28, 3279–3283.
- Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem 14, 7482–7489. [DOI] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Sriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett 16, 2127–2129. [DOI] [PubMed]
- Tan, G.-X. & Liu, X.-C. (2009). Acta Cryst. E65, o559. [DOI] [PMC free article] [PubMed]
- Wei, P. & Atwood, D. A. (1998). Inorg. Chem 37, 4934–4938. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810015230/rz2436sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015230/rz2436Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


