Abstract
In the title compound, C7H8BNO3, the molecule lies on an inversion center leading to a statistical disorder of the B(OH)2 and CONH2 groups. In the crystal structure, molecules are linked by N—H⋯O and O—H⋯O hydrogen bonds, forming sheets parallel to the bc plane. The B(OH)2 and CONH2 groups are twisted out of the mean plane of the benzene ring by 23.9 (5) and 24.6 (6)°, respectively.
Related literature
For general background to the use of boronic acids in organic synthesis, as pharmaceutical agents and in crystal engineering see: Miyaura & Suzuki (1995 ▶); Suzuki (1999 ▶); Adams & Kauffman (2004 ▶); Barth et al. (2005 ▶); Minkkilä et al. (2008 ▶); Maly et al. (2006 ▶); Desiraju (1995 ▶); James et al. (2006 ▶).. For related structures, see: Cobbledick & Small (1972 ▶); Rodríguez-Cuamatzi et al. (2004 ▶). For hydrogen-bond motifs, see: Bernstein et al. (1995 ▶).
Experimental
Crystal data
C7H8BNO3
M r = 164.95
Triclinic,
a = 4.997 (2) Å
b = 5.351 (2) Å
c = 7.2967 (16) Å
α = 103.912 (13)°
β = 98.69 (2)°
γ = 93.136 (14)°
V = 186.36 (11) Å3
Z = 1
Mo Kα radiation
μ = 0.11 mm−1
T = 290 K
0.27 × 0.25 × 0.25 mm
Data collection
Enraf–Nonius CAD-4 diffractometer
2155 measured reflections
1078 independent reflections
755 reflections with I > 2σ(I)
R int = 0.054
3 standard reflections every 120 min intensity decay: 2%
Refinement
R[F 2 > 2σ(F 2)] = 0.053
wR(F 2) = 0.148
S = 1.03
1078 reflections
75 parameters
88 restraints
H-atom parameters constrained
Δρmax = 0.28 e Å−3
Δρmin = −0.23 e Å−3
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 ▶); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 ▶); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 ▶) and Mercury (Bruno et al., 2002 ▶); software used to prepare material for publication: WinGX (Farrugia, 1999 ▶).
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810014789/lh2998sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810014789/lh2998Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O1—H1⋯O2i | 0.82 | 1.96 | 2.77 (2) | 167 |
| O2—H2A⋯O1ii | 0.82 | 2.05 | 2.79 (2) | 149 |
| O2—H2A⋯O3iii | 0.82 | 2.00 | 2.73 (2) | 149 |
| N1—H1A⋯O3iv | 0.86 | 2.14 | 2.97 (3) | 160.7 |
| N1—H1B⋯O1v | 0.86 | 2.30 | 2.97 (2) | 135.7 |
| N1—H1B⋯O3vi | 0.86 | 2.18 | 2.90 (2) | 140.8 |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
; (v)
; (vi)
.
Acknowledgments
The authors wish to acknowledge NSFB grants RNI09/01 and DOO2/305.
supplementary crystallographic information
Comment
The title compound possesses two distinct functional groups: boronic acid and amide. Compounds containing the boronic acid moiety are important as precursors for organic transformations (Miyaura & Suzuki, 1995; Suzuki, 1999;) and recently attention has been focused on these types of compounds as potential pharmaceutical agents (Adams & Kauffman, 2004; Barth et al., 2005; Minkkilä et al., 2008). Amides are versatile precursors to many other functional groups and undergo many chemical reactions, usually through an attack on the carbonyl group. The title compound is a commercial product and we solved its crystal structure to verify the repeatability of the weak interactions already observed in the structures of terephthalamide and phenylboronic acid Cobbledick & Small, 1972; Rodríguez-Cuamatzi, P. et al., 2004. Self assembling based on hydrogen-bonding motifs is of general interest for crystal engineering, structural chemistry and biology (Maly et al., 2006; Desiraju, 1995).
The crystal structure of the studied compound contains molecules linked together by hydrogen bonds in sheets similar to those of terephthalamide (Cobbledick & Small, 1972) and 1,4-phenilboronic acid (Rodríguez-Cuamatzi et al., 2004) (Fig. 1). More over all tree compounds have similar triclinic lattice parameters and crystallize in the centrosymmetric P-1 space group. In the title compound, the location of the molecule on a center of symmetry leads to a statistical disorder of the B(OH)2 and CONH2 groups (Fig. 1). The B(OH)2 and CONH2 groups are out of the mean plane of the benzene ring by 23.9 (5)° and 24.6 (6)° respectively. Similar angle is reported for the amide group in terephthalamide (23°) while the one for 1,4 phenilboronic acid is greater (~35°). It should be noted that C—C (phenyl-amide) and C—B distances of 1.505 (6) Å and 1.546 (6)Å are restrained to match those in the terephthalamide molecule C—C (phenyl-amide) distance of 1.489 (5) Å and that of the 1,4-phenilboronic acid molecule with C—B of 1.564 (3) Å.
Both amide and boronic acid groups are involved in hydrogen bonds to form ring motifs marked by I and II (Fig. 2). Type I, R22(8) (Bernstein et al. 1995) connects opposite sides of molecules to chains. Type II links the chains to form sheets parallel to bc. However, two type of motifs linking the chains can be proposed: R44(8) (Fig. 2a) and R34(8) (Fig. 2b). Indeed, hydrogen bonding pattern can vary depending on the position of the hydrogen atoms attached to the B(OH)2 moiety (Fig. 3). The current position of H atoms for the B(OH)2 group (syn, anti) results from a SHELX AFIX 147 instruction. As a result the bonding interaction between the B(OH)2 and amide groups is forbidden, due to the short contact between hydrogen atoms linked to O1 and N1 (H1···H1A 1.272 Å). Thus the hydrogen bonding interactions in the chains are limited to "boronic-boronic" and "amid-amide". An alternative (anti, syn) positioning for H attached to O will permit hydrogen bonding between B(OH)2 and amid groups but an Fo map (Fig. 4) does not suggest an (anti, syn) conformation for the H atoms.
Experimental
The studied compound is a commercial product (Frontier Scientific). Colorless crystals of C7H8NBO3, were obtained after several days staying from 50% water:ethanol solution at 277K.
Refinement
All H atoms were placed in idealized positions (C—H = 0.93 Å, O—H = 0.82 Å and N—H = 0.86 Å) and were constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C, O or N). Disorder refinement required the introduction of appropriate series of restraints on bond lengths and planarity.
Figures
Fig. 1.
The molecule of title compound with the atom numbering scheme showing 50% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.
Fig. 2.
Two possible ways of molecular arrangement in the unit cell, showing the hydrogen-bonding interactions as dashed lines: type I connects opposite sides of molecules to chains and II links the chains together.
Fig. 3.
Possible conformations of the B(OH)2 functional group.
Fig. 4.
Fo electron density viewed perpendicular to the mean plane of the molecule.
Crystal data
| C7H8BNO3 | Z = 1 |
| Mr = 164.95 | F(000) = 86 |
| Triclinic, P1 | Dx = 1.470 Mg m−3 |
| Hall symbol: -P 1 | Melting point: not measured K |
| a = 4.997 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
| b = 5.351 (2) Å | Cell parameters from 22 reflections |
| c = 7.2967 (16) Å | θ = 18.0–19.8° |
| α = 103.912 (13)° | µ = 0.11 mm−1 |
| β = 98.69 (2)° | T = 290 K |
| γ = 93.136 (14)° | Prismatic, colorless |
| V = 186.36 (11) Å3 | 0.27 × 0.25 × 0.25 mm |
Data collection
| Enraf–Nonius CAD-4 diffractometer | Rint = 0.054 |
| Radiation source: fine-focus sealed tube | θmax = 30.0°, θmin = 2.9° |
| graphite | h = −7→7 |
| Non–profiled ω/2θ scans | k = −7→7 |
| 2155 measured reflections | l = −10→10 |
| 1078 independent reflections | 3 standard reflections every 120 min |
| 755 reflections with I > 2σ(I) | intensity decay: 2% |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.053 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.148 | H-atom parameters constrained |
| S = 1.03 | w = 1/[σ2(Fo2) + (0.0786P)2 + 0.0033P] where P = (Fo2 + 2Fc2)/3 |
| 1078 reflections | (Δ/σ)max = 0.001 |
| 75 parameters | Δρmax = 0.28 e Å−3 |
| 88 restraints | Δρmin = −0.23 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | Occ. (<1) | |
| B1 | −0.001 (3) | −0.298 (2) | 0.2892 (18) | 0.0268 (10) | 0.50 |
| O1 | −0.243 (3) | −0.393 (3) | 0.318 (3) | 0.0399 (19) | 0.50 |
| H1 | −0.2184 | −0.4584 | 0.4092 | 0.060* | 0.50 |
| O2 | 0.236 (2) | −0.334 (2) | 0.404 (2) | 0.0351 (15) | 0.50 |
| H2A | 0.3669 | −0.3158 | 0.3510 | 0.053* | 0.50 |
| C1 | 0.0096 (17) | 0.113 (2) | −0.1593 (16) | 0.0246 (10) | 0.50 |
| C2 | −0.2061 (18) | −0.068 (2) | −0.1647 (17) | 0.0314 (10) | 0.50 |
| H2 | −0.3512 | −0.1021 | −0.2661 | 0.038* | 0.50 |
| C3 | −0.207 (2) | −0.197 (2) | −0.0217 (17) | 0.0314 (10) | 0.50 |
| H3 | −0.3529 | −0.3166 | −0.0282 | 0.038* | 0.50 |
| C4 | 0.0069 (18) | −0.150 (2) | 0.1318 (16) | 0.0246 (10) | 0.50 |
| C5 | 0.2219 (19) | 0.029 (2) | 0.1375 (17) | 0.0314 (10) | 0.50 |
| H5 | 0.3670 | 0.0634 | 0.2389 | 0.038* | 0.50 |
| C6 | 0.223 (2) | 0.158 (2) | −0.0057 (17) | 0.0314 (10) | 0.50 |
| H6 | 0.3685 | 0.2776 | 0.0010 | 0.038* | 0.50 |
| C7 | 0.016 (2) | 0.256 (2) | −0.3128 (15) | 0.0268 (10) | 0.50 |
| O3 | 0.237 (3) | 0.341 (3) | −0.344 (3) | 0.0399 (19) | 0.50 |
| N1 | −0.212 (3) | 0.283 (3) | −0.415 (3) | 0.0351 (15) | 0.50 |
| H1A | −0.2112 | 0.3606 | −0.5051 | 0.042* | 0.50 |
| H1B | −0.3631 | 0.2237 | −0.3916 | 0.042* | 0.50 |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| B1 | 0.0340 (13) | 0.027 (3) | 0.024 (2) | 0.0062 (15) | 0.0098 (12) | 0.011 (2) |
| O1 | 0.0295 (7) | 0.054 (5) | 0.048 (4) | 0.002 (2) | 0.0081 (18) | 0.035 (4) |
| O2 | 0.0282 (18) | 0.046 (4) | 0.0412 (16) | 0.006 (2) | 0.0081 (15) | 0.029 (3) |
| C1 | 0.0301 (11) | 0.028 (3) | 0.020 (3) | 0.0076 (11) | 0.0089 (11) | 0.0097 (19) |
| C2 | 0.0331 (11) | 0.038 (3) | 0.024 (3) | −0.0005 (12) | −0.0004 (12) | 0.0137 (19) |
| C3 | 0.0329 (11) | 0.034 (3) | 0.030 (3) | −0.0018 (12) | 0.0048 (12) | 0.015 (2) |
| C4 | 0.0301 (11) | 0.028 (3) | 0.020 (3) | 0.0076 (11) | 0.0089 (11) | 0.0097 (19) |
| C5 | 0.0331 (11) | 0.038 (3) | 0.024 (3) | −0.0005 (12) | −0.0004 (12) | 0.0137 (19) |
| C6 | 0.0329 (11) | 0.034 (3) | 0.030 (3) | −0.0018 (12) | 0.0048 (12) | 0.015 (2) |
| C7 | 0.0340 (13) | 0.027 (3) | 0.024 (2) | 0.0062 (15) | 0.0098 (12) | 0.011 (2) |
| O3 | 0.0295 (7) | 0.054 (5) | 0.048 (4) | 0.002 (2) | 0.0081 (18) | 0.035 (4) |
| N1 | 0.0282 (18) | 0.046 (4) | 0.0412 (16) | 0.006 (2) | 0.0081 (15) | 0.029 (3) |
Geometric parameters (Å, °)
| B1—O1 | 1.351 (8) | C3—C4 | 1.391 (8) |
| B1—O2 | 1.393 (8) | C3—H3 | 0.9300 |
| B1—C4 | 1.546 (6) | C4—C5 | 1.391 (8) |
| O1—H1 | 0.8200 | C5—C6 | 1.384 (8) |
| O2—H2A | 0.8200 | C5—H5 | 0.9300 |
| C1—C6 | 1.388 (8) | C6—H6 | 0.9300 |
| C1—C2 | 1.397 (8) | C7—O3 | 1.246 (7) |
| C1—C7 | 1.505 (6) | C7—N1 | 1.298 (7) |
| C2—C3 | 1.384 (8) | N1—H1A | 0.8600 |
| C2—H2 | 0.9300 | N1—H1B | 0.8600 |
| O1—B1—O2 | 118.9 (15) | C5—C4—B1 | 122.2 (8) |
| O1—B1—C4 | 119.4 (13) | C6—C5—C4 | 120.8 (5) |
| O2—B1—C4 | 121.6 (12) | C6—C5—H5 | 119.6 |
| C6—C1—C2 | 117.8 (5) | C4—C5—H5 | 119.6 |
| C6—C1—C7 | 120.0 (7) | C5—C6—C1 | 121.2 (6) |
| C2—C1—C7 | 122.2 (7) | C5—C6—H6 | 119.4 |
| C3—C2—C1 | 121.1 (5) | C1—C6—H6 | 119.4 |
| C3—C2—H2 | 119.5 | O3—C7—N1 | 120.8 (16) |
| C1—C2—H2 | 119.5 | O3—C7—C1 | 120.4 (13) |
| C2—C3—C4 | 120.8 (5) | N1—C7—C1 | 118.8 (13) |
| C2—C3—H3 | 119.6 | C7—N1—H1A | 120.0 |
| C4—C3—H3 | 119.6 | C7—N1—H1B | 120.0 |
| C3—C4—C5 | 118.2 (5) | H1A—N1—H1B | 120.0 |
| C3—C4—B1 | 119.5 (8) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O1—H1···O2i | 0.82 | 1.96 | 2.77 (2) | 167 |
| O2—H2A···O1ii | 0.82 | 2.05 | 2.79 (2) | 149 |
| O2—H2A···O3iii | 0.82 | 2.00 | 2.73 (2) | 149 |
| N1—H1A···O3iv | 0.86 | 2.14 | 2.97 (3) | 160.7 |
| N1—H1B···O1v | 0.86 | 2.30 | 2.97 (2) | 135.7 |
| N1—H1B···O3vi | 0.86 | 2.18 | 2.90 (2) | 140.8 |
Symmetry codes: (i) −x, −y−1, −z+1; (ii) x+1, y, z; (iii) −x+1, −y, −z; (iv) −x, −y+1, −z−1; (v) −x−1, −y, −z; (vi) x−1, y, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2998).
References
- Adams, J. & Kauffman, M. (2004). Cancer Investig.22, 304–311. [DOI] [PubMed]
- Barth, R. F., Coderre, J. A., Gra, M., Vicente, H. & Blue, T. E. (2005). Clin. Cancer Res.11, 3987–4002. [DOI] [PubMed]
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. [DOI] [PubMed]
- Cobbledick, R. E. & Small, R. W. H. (1972). Acta Cryst. B28, 2893–2896.
- Desiraju, G. R. (1995). Angew. Chem. Int. Ed.34, 2311–2327.
- Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
- Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
- James, T. D., Phillips, M. D. & Shinkai, S. (2006). Boronic Acids in Saccharide Recognition London: Royal Society of Chemistry.
- Maly, K. E., Malek, N., Fournier, J.-H., Rodríguez-Cuamatzi, P., Maris, Th. & Wuest, J. D. (2006). Pure Appl. Chem.78, 1305–1321.
- Minkkilä, A., Saario, S. M., Käsnänen, H., Leppänen, J., Poso, A. & Nevalainen, T. (2008). J. Med. Chem.51, 7057–7060. [DOI] [PubMed]
- Miyaura, N. & Suzuki, A. (1995). Chem. Rev.95, 2457–2483.
- Rodríguez-Cuamatzi, P., Vargas-Díaz, G., Maris, T., Wuest, J. D. & Höpfl, H. (2004). Acta Cryst. E60, o1316–o1318.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Suzuki, A. (1999). J. Organomet. Chem.576, 147–168.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810014789/lh2998sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810014789/lh2998Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report




