Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 May 8;66(Pt 6):m616. doi: 10.1107/S1600536810015400

Poly[(μ6-2-methyl-3,5-dinitro­benzoato)potassium]

Muhammad Danish a,*, Iram Saleem a, Nazir Ahmad a, Wojciech Starosta b, Janusz Leciejewicz b
PMCID: PMC2979411  PMID: 21579275

Abstract

In the structure of the title coordination polymer, [K(C8H5N2O6)]n, each ligand bridges six K+ cations. The carboxyl­ate group coordinates both bidentately to one K+ ion and monodentately to two K+ ions, while one nitro group coordinates bidentately to a fourth K+ ion. The last two K+ ions are coordinated by the remaining nitro group, one in a bidentate fashion, the other monodentately through one O atom. This bridging mode results in a three-dimensional network. The coordination geometry of the K+ ion is represented by an irregular KO9 polyhedron. Very weak C—H⋯O inter­actions are observed in the crystal structure.

Related literature

Tin complexes with organic ligands have attracted considerable inter­est due to their biological activity, see, for example: Shahzadi et al. (2007). For the structure of a sodium(I) complex with the 2-methyl-3,5-dinitro-benzoate ligand, see: Danish et al. (2010). graphic file with name e-66-0m616-scheme1.jpg

Experimental

Crystal data

  • [K(C8H5N2O6)]

  • M r = 264.24

  • Monoclinic, Inline graphic

  • a = 8.1632 (16) Å

  • b = 16.998 (3) Å

  • c = 7.0684 (14) Å

  • β = 90.49 (3)°

  • V = 980.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.56 mm−1

  • T = 293 K

  • 0.43 × 0.32 × 0.22 mm

Data collection

  • Kuma KM-4 four-circle diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008) T min = 0.889, T max = 0.920

  • 3035 measured reflections

  • 2855 independent reflections

  • 2200 reflections with I > 2σ(I)

  • R int = 0.033

  • 3 standard reflections every 200 reflections intensity decay: 0.7%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.148

  • S = 1.06

  • 2855 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.72 e Å−3

Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810015400/ez2207sup1.cif

e-66-0m616-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015400/ez2207Isup2.hkl

e-66-0m616-Isup2.hkl (140.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O4i 0.93 2.59 3.518 (2) 174
C8—H81⋯O4ii 0.96 2.84 3.576 (3) 134
C8—H82⋯O2iii 0.96 2.78 3.610 (2) 146

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

MD is grateful to the Australian Government for the award of Endeavour Post Doctoral Fellowships for the years 2009–2010.

supplementary crystallographic information

Comment

Methyl-benzoic acids have been studied as precursors in the synthesis of biologically active tin(IV) complexes (Shahzadi et al., 2007). The structure of compound (1) is a three-dimensional polymeric network in which K+ ions are bridged by carboxylate and nitro-group O atoms of the ligand (Fig. 1). The ligand's carboxylate group coordinates bidentately to K1. Its oxygen atoms also coordinate to K1(i) and K1(ii) [symmetry codes: (i) x,-y-3/2,z-1/2; (ii) x,-y+3/2,z+1/2]. The planes formed by atoms K1/O1/K1(i)/O2(i) and K1/O2/K1(ii)/O1(ii), each with s.u.s of 0.1326 (2) Å, make angles of 8.7 (1)° with the C7/O1/O2 plane forming a zig-zag molecular ribbon. A three-dimensional network (Fig. 2) composed of the ribbons inter-connected by nitro-groups represents the stucture of the title compound. The N1/O3/O4 nitro-group coordinates bidentately to K1(vii); N2/O5/O6 is chelated to the K1(vi), however, the O6 atom is also linked to K1(iv). The carboxylic group C7/O1/O2 makes an angle of 38.0 (1)° to the methylbenzene ring, while the nitro-groups N1/O3/O4 and N2/O5/O6 are oriented at angles of 6.7 (1)° and 35.5 (1)°, respectively. K1 is nine-coordinate with a complicated geometry, while the coordination environment of a Na(I) ion in the complex with the same ligand consists of seven O atoms (Danish et al., 2010). Very weak interactions of the C—H···O type are also operating.

Experimental

50 ml of aqueous solution containing 0.008 mol of 2-methyl-3,5-dinitro benzoic acid was added dropwise to 50 ml of an aqueous solution of potassium hydroxide (0.008 mol) with constant stirring at room temperature. The mixture was refluxed for 3 hours, then brought to room temperature and concentrated under reduced pressure. A brown solid was purified by repeated crystallization from ethanol-ethyl acetate (1:1) mixture to obtain brown single crystals.

Refinement

H atoms attached to methyl and benzene-ring C atoms were positioned geometrically (C–H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

A structural unit of (1) with atom labelling scheme and 50% probability displacement ellipsoids. Symmetry codes: (i) x,-y-3/2,z-1/2; (ii) x,-y+3/2,z+1/2; (iii) -x,y-1/2,-z+3/2; (iv) -x+1,-y+2,-z+1; (v) -x+1,y-1/2,-z+1/2; (vi) -x+1,y+1/2;-z+1/2; (vii) -x,y+1/2,-z+3/2.

Fig. 2.

Fig. 2.

Packing diagram of the structure.

Crystal data

[K(C8H5N2O6)] F(000) = 536
Mr = 264.24 Dx = 1.790 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 8.1632 (16) Å θ = 6–15°
b = 16.998 (3) Å µ = 0.56 mm1
c = 7.0684 (14) Å T = 293 K
β = 90.49 (3)° Block, brown
V = 980.7 (3) Å3 0.43 × 0.32 × 0.22 mm
Z = 4

Data collection

Kuma KM-4 four-circle diffractometer 2200 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.033
graphite θmax = 30.1°, θmin = 2.4°
profile data from ω/2θ scans h = −11→0
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008) k = 0→23
Tmin = 0.889, Tmax = 0.920 l = −9→9
3035 measured reflections 3 standard reflections every 200 reflections
2855 independent reflections intensity decay: 0.7%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1144P)2 + 0.0549P] where P = (Fo2 + 2Fc2)/3
2855 reflections (Δ/σ)max = 0.001
155 parameters Δρmax = 0.72 e Å3
0 restraints Δρmin = −0.72 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
K1 0.30646 (5) 0.70455 (2) 0.53719 (5) 0.03281 (15)
C1 0.24609 (16) 0.97819 (8) 0.52276 (19) 0.0220 (3)
C7 0.26751 (18) 0.88921 (9) 0.5373 (2) 0.0246 (3)
C2 0.30932 (17) 1.02265 (9) 0.3727 (2) 0.0233 (3)
C6 0.16004 (17) 1.01430 (9) 0.6686 (2) 0.0255 (3)
H6 0.1179 0.9844 0.7670 0.031*
C3 0.28318 (19) 1.10416 (9) 0.3816 (2) 0.0266 (3)
O1 0.25937 (19) 0.85008 (8) 0.38860 (17) 0.0395 (3)
O6 0.39480 (19) 1.22199 (8) 0.2829 (2) 0.0471 (4)
O2 0.28968 (18) 0.86252 (8) 0.69897 (17) 0.0373 (3)
N1 0.04619 (18) 1.13215 (9) 0.8188 (2) 0.0346 (3)
N2 0.34771 (18) 1.15683 (9) 0.2343 (2) 0.0334 (3)
C5 0.13803 (18) 1.09462 (9) 0.6657 (2) 0.0270 (3)
O5 0.3523 (2) 1.13326 (10) 0.0711 (2) 0.0526 (4)
C8 0.4096 (2) 0.98522 (10) 0.2191 (2) 0.0319 (3)
H81 0.3405 0.9739 0.1120 0.048*
H83 0.4573 0.9373 0.2656 0.048*
H82 0.4951 1.0207 0.1819 0.048*
C4 0.20004 (19) 1.14170 (10) 0.5248 (2) 0.0295 (3)
H4 0.1866 1.1960 0.5261 0.035*
O3 0.0391 (2) 1.20350 (9) 0.8230 (3) 0.0503 (4)
O4 −0.0210 (2) 1.08967 (10) 0.9335 (2) 0.0533 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
K1 0.0473 (3) 0.0273 (2) 0.0239 (2) −0.00228 (13) 0.00711 (15) 0.00005 (11)
C1 0.0202 (6) 0.0239 (6) 0.0219 (6) 0.0009 (5) 0.0005 (5) −0.0003 (5)
C7 0.0229 (6) 0.0250 (7) 0.0259 (7) 0.0011 (5) 0.0041 (5) 0.0009 (5)
C2 0.0202 (6) 0.0269 (7) 0.0228 (6) −0.0014 (5) 0.0016 (5) −0.0004 (5)
C6 0.0217 (6) 0.0314 (8) 0.0234 (6) 0.0004 (5) 0.0042 (5) 0.0004 (5)
C3 0.0250 (7) 0.0270 (7) 0.0280 (7) −0.0014 (5) 0.0026 (5) 0.0045 (5)
O1 0.0608 (9) 0.0291 (6) 0.0285 (6) 0.0017 (6) 0.0010 (5) −0.0041 (5)
O6 0.0453 (8) 0.0310 (7) 0.0650 (10) −0.0058 (5) 0.0100 (7) 0.0082 (6)
O2 0.0520 (8) 0.0329 (6) 0.0270 (6) 0.0053 (5) 0.0035 (5) 0.0063 (5)
N1 0.0266 (7) 0.0394 (8) 0.0381 (7) 0.0041 (5) 0.0069 (5) −0.0106 (6)
N2 0.0282 (6) 0.0336 (7) 0.0385 (7) −0.0012 (5) 0.0023 (6) 0.0121 (6)
C5 0.0212 (6) 0.0312 (7) 0.0288 (7) 0.0029 (5) 0.0038 (5) −0.0050 (6)
O5 0.0650 (10) 0.0608 (10) 0.0321 (7) −0.0112 (8) 0.0014 (7) 0.0126 (6)
C8 0.0306 (7) 0.0386 (9) 0.0268 (7) −0.0033 (6) 0.0107 (6) −0.0039 (6)
C4 0.0261 (7) 0.0262 (7) 0.0361 (8) 0.0022 (5) 0.0028 (6) −0.0002 (6)
O3 0.0412 (8) 0.0410 (8) 0.0688 (10) −0.0005 (5) 0.0146 (7) −0.0228 (7)
O4 0.0585 (10) 0.0587 (9) 0.0432 (8) 0.0134 (7) 0.0271 (7) 0.0030 (7)

Geometric parameters (Å, °)

K1—O2i 2.6511 (13) C3—C4 1.380 (2)
K1—O1ii 2.6826 (13) C3—N2 1.473 (2)
K1—O1 2.7133 (14) O1—K1i 2.6826 (13)
K1—O2 2.9221 (14) O6—N2 1.221 (2)
K1—O3iii 2.9974 (18) O6—K1iv 3.0116 (18)
K1—O6iv 3.0115 (18) O6—K1vi 3.3541 (19)
K1—O4iii 3.0485 (18) O2—K1ii 2.6511 (13)
K1—O5v 3.1388 (19) N1—O3 1.214 (2)
K1—C7 3.1548 (17) N1—O4 1.220 (2)
K1—N1iii 3.2998 (16) N1—C5 1.468 (2)
K1—O6v 3.3541 (19) N1—K1vii 3.2997 (16)
K1—K1i 3.8572 (7) N2—O5 1.222 (2)
C1—C6 1.395 (2) C5—C4 1.377 (2)
C1—C2 1.4042 (19) O5—K1vi 3.1388 (19)
C1—C7 1.526 (2) C8—H81 0.9600
C7—O2 1.2414 (19) C8—H83 0.9600
C7—O1 1.2450 (19) C8—H82 0.9600
C2—C3 1.403 (2) C4—H4 0.9300
C2—C8 1.506 (2) O3—K1vii 2.9973 (18)
C6—C5 1.377 (2) O4—K1vii 3.0485 (17)
C6—H6 0.9300
O2i—K1—O1ii 132.80 (4) O3iii—K1—K1i 108.17 (4)
O2i—K1—O1 92.12 (4) O6iv—K1—K1i 102.38 (4)
O1ii—K1—O1 130.77 (4) O4iii—K1—K1i 108.96 (4)
O2i—K1—O2 138.23 (4) O5v—K1—K1i 85.65 (4)
O1ii—K1—O2 87.03 (4) C7—K1—K1i 66.58 (3)
O1—K1—O2 46.12 (4) N1iii—K1—K1i 116.03 (4)
O2i—K1—O3iii 104.67 (6) O6v—K1—K1i 48.76 (3)
O1ii—K1—O3iii 63.25 (5) C6—C1—C2 120.82 (14)
O1—K1—O3iii 90.14 (4) C6—C1—C7 116.39 (13)
O2—K1—O3iii 80.16 (5) C2—C1—C7 122.79 (12)
O2i—K1—O6iv 126.47 (5) O2—C7—O1 126.02 (16)
O1ii—K1—O6iv 82.79 (5) O2—C7—C1 116.09 (13)
O1—K1—O6iv 84.09 (5) O1—C7—C1 117.88 (14)
O2—K1—O6iv 59.62 (4) O2—C7—K1 67.84 (9)
O3iii—K1—O6iv 128.64 (5) O1—C7—K1 58.19 (9)
O2i—K1—O4iii 75.65 (5) C1—C7—K1 176.06 (10)
O1ii—K1—O4iii 66.40 (5) C3—C2—C1 116.14 (13)
O1—K1—O4iii 120.29 (5) C3—C2—C8 122.20 (13)
O2—K1—O4iii 121.57 (5) C1—C2—C8 121.51 (14)
O3iii—K1—O4iii 41.55 (5) C5—C6—C1 119.43 (14)
O6iv—K1—O4iii 148.60 (5) C5—C6—H6 120.3
O2i—K1—O5v 69.70 (5) C1—C6—H6 120.3
O1ii—K1—O5v 103.11 (5) C4—C3—C2 124.41 (14)
O1—K1—O5v 112.37 (5) C4—C3—N2 114.73 (15)
O2—K1—O5v 119.66 (5) C2—C3—N2 120.86 (14)
O3iii—K1—O5v 156.64 (5) C7—O1—K1i 163.63 (12)
O6iv—K1—O5v 62.99 (5) C7—O1—K1 98.86 (10)
O4iii—K1—O5v 116.73 (5) K1i—O1—K1 91.26 (4)
O2i—K1—C7 115.06 (4) N2—O6—K1iv 138.32 (12)
O1ii—K1—C7 109.20 (4) N2—O6—K1vi 87.65 (10)
O1—K1—C7 22.95 (4) K1iv—O6—K1vi 74.37 (4)
O2—K1—C7 23.17 (4) C7—O2—K1ii 173.37 (12)
O3iii—K1—C7 84.88 (4) C7—O2—K1 89.00 (10)
O6iv—K1—C7 70.65 (4) K1ii—O2—K1 87.45 (4)
O4iii—K1—C7 124.07 (5) O3—N1—O4 123.59 (16)
O5v—K1—C7 118.28 (5) O3—N1—C5 118.47 (16)
O2i—K1—N1iii 94.55 (5) O4—N1—C5 117.93 (16)
O1ii—K1—N1iii 56.83 (5) O3—N1—K1vii 65.06 (9)
O1—K1—N1iii 109.77 (5) O4—N1—K1vii 67.48 (10)
O2—K1—N1iii 100.25 (4) C5—N1—K1vii 147.35 (11)
O3iii—K1—N1iii 21.56 (4) O6—N2—O5 123.42 (15)
O6iv—K1—N1iii 136.87 (4) O6—N2—C3 117.79 (15)
O4iii—K1—N1iii 21.69 (4) O5—N2—C3 118.79 (15)
O5v—K1—N1iii 135.22 (5) C6—C5—C4 122.57 (14)
C7—K1—N1iii 106.43 (4) C6—C5—N1 119.15 (14)
O2i—K1—O6v 57.45 (4) C4—C5—N1 118.28 (15)
O1ii—K1—O6v 140.00 (5) N2—O5—K1vi 97.94 (12)
O1—K1—O6v 76.10 (4) C2—C8—H81 109.5
O2—K1—O6v 102.69 (4) C2—C8—H83 109.5
O3iii—K1—O6v 156.18 (5) H81—C8—H83 109.5
O6iv—K1—O6v 69.96 (4) C2—C8—H82 109.5
O4iii—K1—O6v 131.53 (4) H81—C8—H82 109.5
O5v—K1—O6v 38.52 (4) H83—C8—H82 109.5
C7—K1—O6v 89.20 (4) C5—C4—C3 116.61 (15)
N1iii—K1—O6v 151.93 (4) C5—C4—H4 121.7
O2i—K1—K1i 49.19 (3) C3—C4—H4 121.7
O1ii—K1—K1i 171.19 (3) N1—O3—K1vii 93.38 (10)
O1—K1—K1i 44.05 (3) N1—O4—K1vii 90.82 (11)
O2—K1—K1i 89.48 (3)

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x, −y+3/2, z+1/2; (iii) −x, y−1/2, −z+3/2; (iv) −x+1, −y+2, −z+1; (v) −x+1, y−1/2, −z+1/2; (vi) −x+1, y+1/2, −z+1/2; (vii) −x, y+1/2, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C6—H6···O4viii 0.93 2.59 3.518 (2) 174
C8—H81···O4ix 0.96 2.84 3.576 (3) 134
C8—H82···O2iv 0.96 2.78 3.610 (2) 146

Symmetry codes: (viii) −x, −y+2, −z+2; (ix) −x, −y+2, −z+1; (iv) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2207).

References

  1. Danish, M., Saleem, I., Ahmad, N., Raza, A. R., Starosta, W. & Leciejewicz, J. (2010). Acta Cryst. E66, m137. [DOI] [PMC free article] [PubMed]
  2. Kuma (1996). KM-4 Software Kuma Diffraction Ltd, Wrocław, Poland.
  3. Kuma (2001). DATAPROC Kuma Diffraction Ltd, Wrocław, Poland.
  4. Oxford Diffraction (2008). CrysAlis RED Oxford Diffraction Ltd, Yarnton, England
  5. Shahzadi, S., Shahid, K. & Ali, S. (2007). Russ. J. Coord. Chem.33, 403–411.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810015400/ez2207sup1.cif

e-66-0m616-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015400/ez2207Isup2.hkl

e-66-0m616-Isup2.hkl (140.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES