Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 May 8;66(Pt 6):o1283. doi: 10.1107/S1600536810015394

4-Chloro-N-(3,4-dimethyl­phen­yl)benzene­sulfonamide

B Thimme Gowda a,*, Sabine Foro b, P G Nirmala a, Hartmut Fuess b
PMCID: PMC2979417  PMID: 21579382

Abstract

In the title compound, C14H14ClNO2S, the angle between the sulfonyl and aniline benzene rings is 65.5 (1)°. The crystal structure features inversion dimers linked by pairs of N—H⋯O hydrogen bonds. The dimethyl­phenyl ring is disordered over two different orientations approximately related by a 180° rotation about the C—N bond, with occupancies of 0.643 (6) and 0.357 (6).

Related literature

For the preparation of the title compound, see: Shetty & Gowda (2005). For our studies of the effect of substituents on the structures of N-(ar­yl)aryl­sulfonamides, see: Gowda et al. (2009, 2010). For related structures, see: Gelbrich et al. (2007); Perlovich et al. (2006).graphic file with name e-66-o1283-scheme1.jpg

Experimental

Crystal data

  • C14H14ClNO2S

  • M r = 295.77

  • Monoclinic, Inline graphic

  • a = 13.5000 (9) Å

  • b = 12.4039 (8) Å

  • c = 8.7436 (7) Å

  • β = 104.492 (7)°

  • V = 1417.55 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 100 K

  • 0.44 × 0.34 × 0.22 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.839, T max = 0.915

  • 5943 measured reflections

  • 2890 independent reflections

  • 2309 reflections with I > 2σ(I)

  • R int = 0.015

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.107

  • S = 1.07

  • 2890 reflections

  • 194 parameters

  • 28 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810015394/ci5082sup1.cif

e-66-o1283-sup1.cif (19.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015394/ci5082Isup2.hkl

e-66-o1283-Isup2.hkl (141.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.85 (1) 2.10 (1) 2.949 (2) 174 (2)

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

As part of a study of substituent effects on the structures of N-(aryl)arylsulfonamides (Gowda et al., 2009, 2010), in the present work, the structure of 4-chloro-N-(3,4-dimethylphenyl)benzenesulfonamide, (I), has been determined (Fig. 1). The N1—C7 bond in the C—SO2—NH—C segment is gauche [C7—N1—S1—O2 = 64.1 (2)°] with respect to the S1═O1 bond and anti with respect to the S1═O2 bond [C7—N1—S1—O1 = -167.36 (18)°]. The molecule in (I) is bent at the S-atom with a C1—S1—N1—C7 torsion angle of -51.6 (2)°, compared to the value of -61.8 (2)° in 4-methyl-N-(3,4-dimethylphenyl)- benzenesulfonamide (II) (Gowda et al., 2009) and 57.8 (2)° in N-(3,4-dimethylphenyl)benzenesulfonamide (III) (Gowda et al., 2010)

The sulfonyl and the anilino benzene rings in (I) are tilted relative to each other by 65.5 (1)°, compared to the values of 47.8 (1)° in (II) and 65.4 (2)° (disordered sulfonyl ring A) and 57.8 (2)° (disordered sulfonyl ring B) in (III). The remaining bond parameters in (I) are similar to those observed in (II), (III) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007).

The crystal packing of molecules in (I) through pairs of N—H···O(S) hydrogen bonds (Table 1) is shown in Fig.2.

Experimental

A solution of p-chlorobenzene (10 g) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 273 K. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 4-chlorobenzenesulfonylchloride was treated with 3,4-dimethylaniline in the stoichiometric ratio and boiled for 10 min. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid 4-chloro-N-(3,4-dimethylphenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Shetty & Gowda, 2005). Prism like colourless single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement

The H atom of the NH group was located in a difference map and refined with a distance restraint of N—H = 0.86 (1) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

The dimethylphenyl ring is disordered such that atom C13 moves between atoms C9 and C11. Atoms C13 and C14 were refined using a split model. The corresponding site-occupation factors were refined so that their sum was unity [0.643 (6) and 0.357 (6)]. The corresponding bond distances in the disordered groups were restrained to be equal. The Uij parameters of these atoms were restrained to an approximate isotropic behavoir. Attempts to introduce disorder of the atoms C9, C10 and C11 were unsuccessful.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level. Only the major disorder component is shown.

Fig. 2.

Fig. 2.

Molecular packing of (I) with hydrogen bonding shown as dashed lines.

Crystal data

C14H14ClNO2S F(000) = 616
Mr = 295.77 Dx = 1.386 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2451 reflections
a = 13.5000 (9) Å θ = 2.4–27.3°
b = 12.4039 (8) Å µ = 0.41 mm1
c = 8.7436 (7) Å T = 100 K
β = 104.492 (7)° Prism, colourless
V = 1417.55 (17) Å3 0.44 × 0.34 × 0.22 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector 2890 independent reflections
Radiation source: fine-focus sealed tube 2309 reflections with I > 2σ(I)
graphite Rint = 0.015
Rotation method data acquisition using θ and φ scans θmax = 26.4°, θmin = 2.9°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −16→16
Tmin = 0.839, Tmax = 0.915 k = −15→13
5943 measured reflections l = −6→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0536P)2 + 0.6002P] where P = (Fo2 + 2Fc2)/3
2890 reflections (Δ/σ)max = 0.045
194 parameters Δρmax = 0.31 e Å3
28 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.90057 (14) 0.96543 (15) 0.2942 (2) 0.0261 (4)
C2 0.91759 (15) 1.07570 (16) 0.2922 (2) 0.0321 (4)
H2 0.9592 1.1047 0.2291 0.039*
C3 0.87384 (16) 1.14279 (16) 0.3821 (2) 0.0327 (5)
H3 0.8856 1.2183 0.3832 0.039*
C4 0.81360 (15) 1.09927 (17) 0.4694 (2) 0.0318 (4)
C5 0.79804 (19) 0.98936 (18) 0.4760 (3) 0.0414 (5)
H5 0.7575 0.9609 0.5409 0.050*
C6 0.84233 (17) 0.92178 (17) 0.3870 (2) 0.0361 (5)
H6 0.8327 0.8460 0.3897 0.043*
C7 0.75973 (16) 0.8915 (2) −0.0415 (3) 0.0441 (6)
C8 0.69977 (19) 0.9665 (3) −0.1406 (3) 0.0586 (7)
H8 0.7317 1.0233 −0.1833 0.070*
C9 0.5922 (2) 0.9596 (3) −0.1791 (4) 0.0778 (10)
H9 0.5524 1.0104 −0.2499 0.093* 0.357 (6)
C10 0.5445 (2) 0.8797 (4) −0.1148 (5) 0.0887 (13)
C11 0.6051 (3) 0.8072 (3) −0.0163 (5) 0.0808 (12)
H11 0.5728 0.7518 0.0287 0.097* 0.643 (6)
C12 0.7124 (2) 0.8098 (2) 0.0221 (3) 0.0588 (8)
H12 0.7516 0.7570 0.0899 0.071*
C13A 0.5254 (3) 1.0313 (5) −0.2823 (6) 0.0755 (17) 0.643 (6)
H13A 0.4543 1.0100 −0.2906 0.091* 0.643 (6)
H13B 0.5392 1.0286 −0.3870 0.091* 0.643 (6)
H13C 0.5364 1.1048 −0.2405 0.091* 0.643 (6)
C14A 0.4264 (5) 0.8913 (8) −0.1730 (11) 0.098 (3) 0.643 (6)
H14A 0.4056 0.8831 −0.2881 0.117* 0.643 (6)
H14B 0.4057 0.9626 −0.1439 0.117* 0.643 (6)
H14C 0.3933 0.8354 −0.1238 0.117* 0.643 (6)
N1 0.86904 (13) 0.89945 (15) −0.0097 (2) 0.0360 (4)
H1N 0.8902 (18) 0.9510 (14) −0.057 (3) 0.043*
O1 1.04407 (10) 0.92002 (12) 0.15306 (17) 0.0381 (4)
O2 0.93722 (13) 0.77276 (12) 0.2139 (2) 0.0474 (4)
Cl1 0.75301 (5) 1.18581 (5) 0.57252 (7) 0.04891 (19)
S1 0.94625 (4) 0.88149 (4) 0.16631 (6) 0.03178 (16)
C13B 0.5471 (7) 0.7346 (8) 0.0226 (12) 0.081 (3) 0.357 (6)
H13D 0.5895 0.6822 0.0938 0.097* 0.357 (6)
H13E 0.5083 0.6976 −0.0727 0.097* 0.357 (6)
H13F 0.4996 0.7690 0.0759 0.097* 0.357 (6)
C14B 0.4335 (8) 0.8452 (11) −0.1288 (16) 0.068 (3) 0.357 (6)
H14D 0.3982 0.8363 −0.2405 0.082* 0.357 (6)
H14E 0.3986 0.9005 −0.0816 0.082* 0.357 (6)
H14F 0.4328 0.7767 −0.0733 0.082* 0.357 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0273 (9) 0.0242 (9) 0.0267 (9) 0.0021 (7) 0.0063 (7) 0.0004 (8)
C2 0.0347 (10) 0.0279 (10) 0.0360 (11) −0.0018 (8) 0.0132 (9) 0.0033 (8)
C3 0.0381 (11) 0.0227 (10) 0.0354 (11) 0.0013 (8) 0.0057 (9) 0.0001 (8)
C4 0.0360 (11) 0.0337 (11) 0.0246 (9) 0.0057 (8) 0.0058 (8) −0.0054 (8)
C5 0.0579 (14) 0.0374 (12) 0.0368 (12) −0.0042 (10) 0.0265 (11) −0.0021 (10)
C6 0.0519 (13) 0.0252 (10) 0.0359 (11) −0.0019 (9) 0.0201 (10) 0.0013 (9)
C7 0.0324 (11) 0.0642 (16) 0.0390 (12) −0.0098 (10) 0.0153 (9) −0.0290 (12)
C8 0.0390 (13) 0.096 (2) 0.0401 (13) 0.0017 (13) 0.0079 (11) −0.0184 (14)
C9 0.0402 (15) 0.130 (3) 0.0553 (17) 0.0094 (18) −0.0033 (13) −0.028 (2)
C10 0.0359 (15) 0.141 (4) 0.089 (2) −0.026 (2) 0.0145 (17) −0.056 (3)
C11 0.0532 (18) 0.102 (3) 0.099 (3) −0.0467 (19) 0.0412 (18) −0.059 (2)
C12 0.0484 (14) 0.0672 (18) 0.0686 (18) −0.0250 (13) 0.0292 (13) −0.0355 (15)
C13A 0.043 (2) 0.114 (4) 0.065 (3) 0.005 (2) 0.005 (2) 0.016 (3)
C14A 0.043 (3) 0.123 (6) 0.114 (6) −0.017 (4) −0.003 (3) −0.029 (5)
N1 0.0312 (9) 0.0456 (11) 0.0351 (10) −0.0043 (8) 0.0158 (7) −0.0083 (8)
O1 0.0279 (7) 0.0451 (9) 0.0442 (9) 0.0049 (6) 0.0146 (6) 0.0041 (7)
O2 0.0592 (10) 0.0260 (8) 0.0676 (11) 0.0074 (7) 0.0355 (9) 0.0023 (8)
Cl1 0.0579 (4) 0.0490 (4) 0.0418 (3) 0.0103 (3) 0.0163 (3) −0.0153 (3)
S1 0.0315 (3) 0.0293 (3) 0.0384 (3) 0.0036 (2) 0.0160 (2) −0.0004 (2)
C13B 0.065 (5) 0.084 (6) 0.097 (6) −0.031 (4) 0.026 (4) 0.016 (5)
C14B 0.036 (5) 0.094 (7) 0.075 (6) −0.032 (5) 0.016 (4) 0.012 (5)

Geometric parameters (Å, °)

C1—C6 1.374 (3) C10—C14A 1.554 (7)
C1—C2 1.388 (3) C11—C13B 1.293 (8)
C1—S1 1.7490 (19) C11—C12 1.403 (4)
C2—C3 1.376 (3) C11—H11 0.95
C2—H2 0.95 C12—H12 0.95
C3—C4 1.358 (3) C13A—H13A 0.98
C3—H3 0.95 C13A—H13B 0.98
C4—C5 1.383 (3) C13A—H13C 0.98
C4—Cl1 1.733 (2) C14A—H14A 0.98
C5—C6 1.378 (3) C14A—H14B 0.98
C5—H5 0.95 C14A—H14C 0.98
C6—H6 0.95 N1—S1 1.6439 (19)
C7—C8 1.385 (4) N1—H1N 0.849 (10)
C7—C12 1.387 (4) O1—S1 1.4360 (14)
C7—N1 1.435 (3) O2—S1 1.4255 (16)
C8—C9 1.409 (4) C13B—H13D 0.98
C8—H8 0.95 C13B—H13E 0.98
C9—C10 1.377 (6) C13B—H13F 0.98
C9—C13A 1.418 (5) C14B—H14D 0.98
C9—H9 0.95 C14B—H14E 0.98
C10—C11 1.367 (6) C14B—H14F 0.98
C10—C14B 1.533 (10)
C6—C1—C2 121.11 (18) C12—C11—H11 118.1
C6—C1—S1 119.21 (15) C7—C12—C11 118.2 (3)
C2—C1—S1 119.53 (15) C7—C12—H12 120.9
C3—C2—C1 119.54 (19) C11—C12—H12 120.9
C3—C2—H2 120.2 C9—C13A—H13A 109.5
C1—C2—H2 120.2 C9—C13A—H13B 109.5
C4—C3—C2 118.92 (19) H13A—C13A—H13B 109.5
C4—C3—H3 120.5 C9—C13A—H13C 109.5
C2—C3—H3 120.5 H13A—C13A—H13C 109.5
C3—C4—C5 122.28 (19) H13B—C13A—H13C 109.5
C3—C4—Cl1 118.22 (16) C10—C14A—H14A 109.5
C5—C4—Cl1 119.49 (17) C10—C14A—H14B 109.5
C6—C5—C4 118.9 (2) H14A—C14A—H14B 109.5
C6—C5—H5 120.5 C10—C14A—H14C 109.5
C4—C5—H5 120.5 H14A—C14A—H14C 109.5
C1—C6—C5 119.14 (19) H14B—C14A—H14C 109.5
C1—C6—H6 120.4 C7—N1—S1 123.52 (15)
C5—C6—H6 120.4 C7—N1—H1N 114.3 (17)
C8—C7—C12 119.1 (2) S1—N1—H1N 110.2 (17)
C8—C7—N1 119.1 (2) O2—S1—O1 119.07 (10)
C12—C7—N1 121.8 (2) O2—S1—N1 108.71 (11)
C7—C8—C9 121.0 (3) O1—S1—N1 105.06 (9)
C7—C8—H8 119.5 O2—S1—C1 107.89 (9)
C9—C8—H8 119.5 O1—S1—C1 109.38 (9)
C10—C9—C8 120.4 (3) N1—S1—C1 105.98 (9)
C10—C9—C13A 115.0 (3) C11—C13B—H13D 109.5
C8—C9—C13A 124.6 (4) C11—C13B—H13E 109.5
C10—C9—H9 119.8 H13D—C13B—H13E 109.5
C8—C9—H9 119.8 C11—C13B—H13F 109.5
C11—C10—C9 117.6 (3) H13D—C13B—H13F 109.5
C11—C10—C14B 106.6 (6) H13E—C13B—H13F 109.5
C9—C10—C14B 135.8 (6) C10—C14B—H14D 109.5
C11—C10—C14A 132.1 (5) C10—C14B—H14E 109.5
C9—C10—C14A 110.3 (5) H14D—C14B—H14E 109.5
C13B—C11—C10 108.5 (6) C10—C14B—H14F 109.5
C13B—C11—C12 127.6 (6) H14D—C14B—H14F 109.5
C10—C11—C12 123.7 (3) H14E—C14B—H14F 109.5
C10—C11—H11 118.1
C6—C1—C2—C3 −1.3 (3) C14B—C10—C11—C13B 2.7 (9)
S1—C1—C2—C3 174.13 (15) C14A—C10—C11—C13B 4.3 (8)
C1—C2—C3—C4 −0.9 (3) C9—C10—C11—C12 −0.1 (5)
C2—C3—C4—C5 2.7 (3) C14B—C10—C11—C12 178.0 (7)
C2—C3—C4—Cl1 −176.19 (15) C14A—C10—C11—C12 179.6 (5)
C3—C4—C5—C6 −2.2 (3) C8—C7—C12—C11 −0.5 (3)
Cl1—C4—C5—C6 176.64 (17) N1—C7—C12—C11 −179.3 (2)
C2—C1—C6—C5 1.8 (3) C13B—C11—C12—C7 175.4 (7)
S1—C1—C6—C5 −173.69 (17) C10—C11—C12—C7 1.0 (4)
C4—C5—C6—C1 0.0 (3) C8—C7—N1—S1 138.1 (2)
C12—C7—C8—C9 −1.0 (4) C12—C7—N1—S1 −43.0 (3)
N1—C7—C8—C9 177.9 (2) C7—N1—S1—O2 64.1 (2)
C7—C8—C9—C10 1.9 (4) C7—N1—S1—O1 −167.36 (18)
C7—C8—C9—C13A −178.5 (4) C7—N1—S1—C1 −51.6 (2)
C8—C9—C10—C11 −1.4 (5) C6—C1—S1—O2 −16.05 (19)
C13A—C9—C10—C11 179.0 (4) C2—C1—S1—O2 168.43 (16)
C8—C9—C10—C14B −178.7 (9) C6—C1—S1—O1 −146.96 (16)
C13A—C9—C10—C14B 1.7 (10) C2—C1—S1—O1 37.52 (18)
C8—C9—C10—C14A 178.8 (4) C6—C1—S1—N1 100.26 (17)
C13A—C9—C10—C14A −0.8 (6) C2—C1—S1—N1 −75.27 (17)
C9—C10—C11—C13B −175.4 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.85 (1) 2.10 (1) 2.949 (2) 174 (2)

Symmetry codes: (i) −x+2, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5082).

References

  1. Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632. [DOI] [PubMed]
  2. Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Private communication (refcode CCDC 773498). CCDC, Union Road, Cambridge, England.
  3. Gowda, B. T., Foro, S., Nirmala, P. G., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o877. [DOI] [PMC free article] [PubMed]
  4. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  5. Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Shetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113–120.
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810015394/ci5082sup1.cif

e-66-o1283-sup1.cif (19.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015394/ci5082Isup2.hkl

e-66-o1283-Isup2.hkl (141.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES