Abstract
In the title compound, C19H13NO, the fused isoquinoline–pyrrole system is planar (r.m.s. deviation = 0.0249] Å) and makes a dihedral angle of 53.73 (9)° with the phenyl ring. An intramolecular C—H⋯O interaction generates an S(6) ring motif.
Related literature
For the biological activity of indolizine, see: Olden et al. (1991 ▶); Jaffrezou et al. (1992 ▶). For our work on the direct one-pot syntheses of pyrrolo[2,1-a]isoquinolines, see: Liu et al. (2010 ▶). For the preparation of pyrrolo[2,1-a]isoquinoline, see: Verna et al. (2009 ▶). For bond-length data, see: Allen et al. (1987 ▶).
Experimental
Crystal data
C19H13NO
M r = 271.30
Monoclinic,
a = 28.637 (6) Å
b = 4.0400 (8) Å
c = 11.824 (2) Å
β = 101.02 (3)°
V = 1342.7 (5) Å3
Z = 4
Mo Kα radiation
μ = 0.08 mm−1
T = 295 K
0.30 × 0.20 × 0.10 mm
Data collection
Enraf–Nonius CAD-4 diffractometer
Absorption correction: ψ scan (XCAD4; Harms & Wocadlo, 1995 ▶) T min = 0.976, T max = 0.992
2351 measured reflections
2351 independent reflections
1388 reflections with I > 2σ(I)
3 standard reflections every 200 reflections intensity decay: none
Refinement
R[F 2 > 2σ(F 2)] = 0.072
wR(F 2) = 0.139
S = 1.00
2351 reflections
190 parameters
H-atom parameters constrained
Δρmax = 0.23 e Å−3
Δρmin = −0.30 e Å−3
Data collection: CAD-4 Software (Enraf–Nonius, 1989 ▶); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 ▶); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 ▶).
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810017101/ds2027sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810017101/ds2027Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
---|---|---|---|---|
C19—H19A⋯O | 0.93 | 2.31 | 2.875 (4) | 119 |
Acknowledgments
The authors thank Xuzhou Normal University (08XLR07) for financial support. This work was also sponsored by the Qing Lan Project (08QLT001).
supplementary crystallographic information
Comment
The natural and many synthetic indolizines have a diversity of biological activity and are playing an increasingly important role in developing new pharmaceuticals [Olden et al., 1991; Jaffrezou et al., 1992]. Pyrrolo[2,1-a]- isoquinolines are 7,8- benzo- fused indolizines and occur in several marine alkaloids. The synthesis of these structures is drawing much recent research interest [Verna et al., 2009]. In our research work on the direct one pot syntheses of pyrrolo[2,1-a]isoquinolines [Liu et al., 2010], we have prepared the title compound, (I), as one of the products. As part of this study, we have undertaken an X-ray crystallographic analysis of (I) in order to confirm its structure. The bond lengths and angles of the title molecule (Fig. 1) are within normal ranges (Allen et al., 1987). he fused isoquinoline-pyrrole moiety is planar. The dihedral angle between the isoquinoline-pyrrole fused ring and benzene ring is 53.73 (9)°. Although atoms C8, C11 and C19 attached to atom N are all of sp2 hybridization, their different environments cause slight differences in the N—C8, N—C11 and N—C19 bond lengths, and in the C19— N—C11, C19— N—C8 , C11—N—C8 and C10—C11—N angles (Table 1). An intramolecular C—H···O weak hydrogen bond generating an S(6) ring is observed (Table 2). The crystal packing is stabilized by van der Waals forces.
Experimental
The compound (I) was prepared by the reaction of DMF solution of 2-(2-oxo-2- phenylethyl)isoquinolinium bromide with an excess amount of maleic acid in the presence of TPCD and potassium carbonate. After the reaction was completed, the mixture was isolated by chromatography on a silica gel column after evaporation of the solvent. Single crystals of (I) were obtained by slow evaporation from an petroleum ether-ethyl acetate(3:1) solvent system (yield 80%).
Refinement
The H atoms were geometrically placed and were treated as riding, with C—H = 0.93Å .
Figures
Fig. 1.
The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
Crystal data
C19H13NO | F(000) = 568 |
Mr = 271.30 | Dx = 1.342 Mg m−3 |
Monoclinic, P21/c | Melting point: 413 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 28.637 (6) Å | Cell parameters from 25 reflections |
b = 4.0400 (8) Å | θ = 9–12° |
c = 11.824 (2) Å | µ = 0.08 mm−1 |
β = 101.02 (3)° | T = 295 K |
V = 1342.7 (5) Å3 | Block, colourless |
Z = 4 | 0.30 × 0.20 × 0.10 mm |
Data collection
Enraf–Nonius CAD-4 diffractometer | 1388 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.0000 |
graphite | θmax = 25.0°, θmin = 1.5° |
ω/2θ scans | h = −34→33 |
Absorption correction: ψ scan (XCAD4; Harms & Wocadlo, 1995) | k = 0→4 |
Tmin = 0.976, Tmax = 0.992 | l = 0→14 |
2351 measured reflections | 3 standard reflections every 200 reflections |
2351 independent reflections | intensity decay: none |
Refinement
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.072 | H-atom parameters constrained |
wR(F2) = 0.139 | w = 1/[σ2(Fo2) + (0.015P)2 + 2.250P] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max < 0.001 |
2351 reflections | Δρmax = 0.23 e Å−3 |
190 parameters | Δρmin = −0.29 e Å−3 |
0 restraints | Absolute structure: (XCAD4; Harms & Wocadlo, 1995) |
Primary atom site location: structure-invariant direct methods |
Special details
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | ||
N | 0.22455 (9) | 0.5534 (7) | 0.9319 (2) | 0.0382 (7) | |
C11 | 0.19331 (11) | 0.4146 (9) | 0.9955 (3) | 0.0402 (9) | |
C7 | 0.31218 (12) | 0.5686 (10) | 0.9370 (3) | 0.0485 (10) | |
O | 0.30873 (9) | 0.6625 (9) | 0.8377 (2) | 0.0725 (10) | |
C12 | 0.14286 (12) | 0.4449 (10) | 0.9532 (3) | 0.0447 (9) | |
C3 | 0.36071 (11) | 0.5108 (10) | 1.0092 (3) | 0.0453 (9) | |
C8 | 0.27112 (11) | 0.4828 (9) | 0.9873 (3) | 0.0402 (9) | |
C19 | 0.20843 (12) | 0.7328 (10) | 0.8334 (3) | 0.0461 (9) | |
H19A | 0.2302 | 0.8309 | 0.7947 | 0.055* | |
C18 | 0.16185 (12) | 0.7680 (10) | 0.7927 (3) | 0.0513 (10) | |
H18A | 0.1517 | 0.8929 | 0.7265 | 0.062* | |
C2 | 0.37259 (12) | 0.6034 (10) | 1.1233 (3) | 0.0521 (10) | |
H2A | 0.3496 | 0.6935 | 1.1600 | 0.062* | |
C17 | 0.12699 (12) | 0.6158 (10) | 0.8496 (3) | 0.0483 (10) | |
C9 | 0.26796 (12) | 0.3050 (10) | 1.0848 (3) | 0.0458 (9) | |
H9A | 0.2936 | 0.2284 | 1.1389 | 0.055* | |
C10 | 0.22029 (12) | 0.2579 (10) | 1.0897 (3) | 0.0477 (10) | |
H10A | 0.2086 | 0.1416 | 1.1462 | 0.057* | |
C13 | 0.10950 (12) | 0.3043 (10) | 1.0117 (3) | 0.0528 (10) | |
H13A | 0.1197 | 0.1878 | 1.0798 | 0.063* | |
C14 | 0.06138 (14) | 0.3388 (13) | 0.9681 (4) | 0.0706 (14) | |
H14A | 0.0393 | 0.2498 | 1.0080 | 0.085* | |
C16 | 0.07802 (13) | 0.6403 (12) | 0.8072 (3) | 0.0628 (12) | |
H16A | 0.0672 | 0.7509 | 0.7382 | 0.075* | |
C6 | 0.45267 (14) | 0.4265 (12) | 1.1284 (4) | 0.0711 (13) | |
H6A | 0.4837 | 0.3990 | 1.1684 | 0.085* | |
C15 | 0.04577 (15) | 0.5046 (13) | 0.8655 (4) | 0.0711 (14) | |
H15A | 0.0134 | 0.5238 | 0.8361 | 0.085* | |
C4 | 0.39519 (13) | 0.3782 (11) | 0.9543 (3) | 0.0567 (11) | |
H4A | 0.3875 | 0.3207 | 0.8769 | 0.068* | |
C5 | 0.44071 (14) | 0.3323 (12) | 1.0152 (4) | 0.0684 (13) | |
H5A | 0.4635 | 0.2365 | 0.9792 | 0.082* | |
C1 | 0.41862 (13) | 0.5626 (12) | 1.1833 (3) | 0.0650 (12) | |
H1A | 0.4267 | 0.6263 | 1.2602 | 0.078* |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
N | 0.0359 (15) | 0.0496 (19) | 0.0307 (13) | 0.0024 (15) | 0.0101 (11) | −0.0003 (15) |
C11 | 0.0396 (19) | 0.048 (2) | 0.0360 (17) | −0.0023 (18) | 0.0148 (15) | −0.0037 (18) |
C7 | 0.046 (2) | 0.064 (3) | 0.0387 (18) | 0.013 (2) | 0.0169 (16) | 0.007 (2) |
O | 0.0555 (17) | 0.117 (3) | 0.0500 (15) | 0.0072 (19) | 0.0227 (13) | 0.0212 (19) |
C12 | 0.0393 (19) | 0.050 (2) | 0.047 (2) | −0.0018 (19) | 0.0148 (16) | −0.013 (2) |
C3 | 0.0328 (18) | 0.058 (3) | 0.049 (2) | 0.0002 (19) | 0.0162 (16) | 0.007 (2) |
C8 | 0.0398 (19) | 0.050 (2) | 0.0334 (17) | 0.0048 (18) | 0.0122 (14) | 0.0029 (18) |
C19 | 0.051 (2) | 0.057 (3) | 0.0318 (17) | 0.006 (2) | 0.0117 (15) | 0.0012 (19) |
C18 | 0.049 (2) | 0.064 (3) | 0.0399 (19) | 0.017 (2) | 0.0073 (16) | 0.009 (2) |
C2 | 0.043 (2) | 0.062 (3) | 0.054 (2) | −0.002 (2) | 0.0160 (17) | 0.000 (2) |
C17 | 0.0379 (19) | 0.061 (3) | 0.046 (2) | 0.008 (2) | 0.0071 (15) | −0.010 (2) |
C9 | 0.0394 (19) | 0.060 (3) | 0.0387 (18) | 0.008 (2) | 0.0095 (15) | 0.0068 (19) |
C10 | 0.045 (2) | 0.061 (3) | 0.0396 (18) | −0.007 (2) | 0.0161 (15) | 0.006 (2) |
C13 | 0.046 (2) | 0.057 (3) | 0.059 (2) | −0.008 (2) | 0.0191 (18) | −0.010 (2) |
C14 | 0.041 (2) | 0.091 (4) | 0.085 (3) | −0.015 (3) | 0.026 (2) | −0.028 (3) |
C16 | 0.046 (2) | 0.075 (3) | 0.064 (2) | 0.012 (2) | 0.0013 (19) | −0.008 (3) |
C6 | 0.040 (2) | 0.082 (4) | 0.090 (3) | −0.004 (2) | 0.008 (2) | 0.022 (3) |
C15 | 0.042 (2) | 0.083 (4) | 0.086 (3) | 0.003 (3) | 0.007 (2) | −0.027 (3) |
C4 | 0.046 (2) | 0.064 (3) | 0.066 (2) | 0.003 (2) | 0.0244 (19) | −0.002 (2) |
C5 | 0.048 (2) | 0.068 (3) | 0.097 (3) | 0.006 (2) | 0.033 (2) | 0.005 (3) |
C1 | 0.048 (2) | 0.085 (3) | 0.060 (2) | −0.012 (3) | 0.0059 (19) | 0.003 (3) |
Geometric parameters (Å, °)
N—C19 | 1.374 (4) | C17—C16 | 1.399 (5) |
N—C11 | 1.392 (4) | C9—C10 | 1.390 (4) |
N—C8 | 1.399 (4) | C9—H9A | 0.9300 |
C11—C10 | 1.382 (5) | C10—H10A | 0.9300 |
C11—C12 | 1.441 (4) | C13—C14 | 1.383 (5) |
C7—O | 1.220 (4) | C13—H13A | 0.9300 |
C7—C8 | 1.458 (4) | C14—C15 | 1.383 (6) |
C7—C3 | 1.504 (5) | C14—H14A | 0.9300 |
C12—C13 | 1.402 (5) | C16—C15 | 1.368 (6) |
C12—C17 | 1.404 (5) | C16—H16A | 0.9300 |
C3—C2 | 1.379 (5) | C6—C5 | 1.371 (5) |
C3—C4 | 1.388 (4) | C6—C1 | 1.385 (5) |
C8—C9 | 1.376 (4) | C6—H6A | 0.9300 |
C19—C18 | 1.336 (4) | C15—H15A | 0.9300 |
C19—H19A | 0.9300 | C4—C5 | 1.376 (5) |
C18—C17 | 1.444 (5) | C4—H4A | 0.9300 |
C18—H18A | 0.9300 | C5—H5A | 0.9300 |
C2—C1 | 1.382 (5) | C1—H1A | 0.9300 |
C2—H2A | 0.9300 | ||
C19—N—C11 | 121.6 (3) | C8—C9—C10 | 109.2 (3) |
C19—N—C8 | 129.8 (3) | C8—C9—H9A | 125.4 |
C11—N—C8 | 108.5 (3) | C10—C9—H9A | 125.4 |
C10—C11—N | 107.6 (3) | C11—C10—C9 | 107.8 (3) |
C10—C11—C12 | 133.4 (3) | C11—C10—H10A | 126.1 |
N—C11—C12 | 118.9 (3) | C9—C10—H10A | 126.1 |
O—C7—C8 | 123.0 (3) | C14—C13—C12 | 120.0 (4) |
O—C7—C3 | 119.4 (3) | C14—C13—H13A | 120.0 |
C8—C7—C3 | 117.4 (3) | C12—C13—H13A | 120.0 |
C13—C12—C17 | 119.5 (3) | C13—C14—C15 | 120.5 (4) |
C13—C12—C11 | 121.8 (3) | C13—C14—H14A | 119.7 |
C17—C12—C11 | 118.7 (3) | C15—C14—H14A | 119.7 |
C2—C3—C4 | 119.8 (3) | C15—C16—C17 | 121.2 (4) |
C2—C3—C7 | 122.8 (3) | C15—C16—H16A | 119.4 |
C4—C3—C7 | 117.2 (3) | C17—C16—H16A | 119.4 |
C9—C8—N | 106.9 (3) | C5—C6—C1 | 120.1 (4) |
C9—C8—C7 | 130.8 (3) | C5—C6—H6A | 119.9 |
N—C8—C7 | 122.1 (3) | C1—C6—H6A | 119.9 |
C18—C19—N | 120.8 (3) | C16—C15—C14 | 120.0 (4) |
C18—C19—H19A | 119.6 | C16—C15—H15A | 120.0 |
N—C19—H19A | 119.6 | C14—C15—H15A | 120.0 |
C19—C18—C17 | 121.2 (3) | C5—C4—C3 | 119.7 (4) |
C19—C18—H18A | 119.4 | C5—C4—H4A | 120.2 |
C17—C18—H18A | 119.4 | C3—C4—H4A | 120.2 |
C3—C2—C1 | 120.2 (4) | C6—C5—C4 | 120.5 (4) |
C3—C2—H2A | 119.9 | C6—C5—H5A | 119.7 |
C1—C2—H2A | 119.9 | C4—C5—H5A | 119.7 |
C16—C17—C12 | 118.8 (4) | C6—C1—C2 | 119.6 (4) |
C16—C17—C18 | 122.5 (4) | C6—C1—H1A | 120.2 |
C12—C17—C18 | 118.6 (3) | C2—C1—H1A | 120.2 |
C19—N—C11—C10 | −178.7 (3) | C13—C12—C17—C16 | −0.1 (6) |
C8—N—C11—C10 | −0.2 (4) | C11—C12—C17—C16 | 178.8 (4) |
C19—N—C11—C12 | 3.5 (5) | C13—C12—C17—C18 | 178.0 (4) |
C8—N—C11—C12 | −178.0 (3) | C11—C12—C17—C18 | −3.0 (5) |
C10—C11—C12—C13 | 1.4 (7) | C19—C18—C17—C16 | −178.2 (4) |
N—C11—C12—C13 | 178.5 (3) | C19—C18—C17—C12 | 3.8 (6) |
C10—C11—C12—C17 | −177.5 (4) | N—C8—C9—C10 | 1.2 (4) |
N—C11—C12—C17 | −0.4 (5) | C7—C8—C9—C10 | −173.2 (4) |
O—C7—C3—C2 | 138.8 (4) | N—C11—C10—C9 | 0.9 (4) |
C8—C7—C3—C2 | −46.0 (6) | C12—C11—C10—C9 | 178.2 (4) |
O—C7—C3—C4 | −36.8 (6) | C8—C9—C10—C11 | −1.3 (5) |
C8—C7—C3—C4 | 138.3 (4) | C17—C12—C13—C14 | −1.0 (6) |
C19—N—C8—C9 | 177.8 (3) | C11—C12—C13—C14 | −179.9 (4) |
C11—N—C8—C9 | −0.6 (4) | C12—C13—C14—C15 | 1.6 (7) |
C19—N—C8—C7 | −7.2 (6) | C12—C17—C16—C15 | 0.7 (6) |
C11—N—C8—C7 | 174.4 (3) | C18—C17—C16—C15 | −177.3 (4) |
O—C7—C8—C9 | 162.9 (4) | C17—C16—C15—C14 | −0.2 (7) |
C3—C7—C8—C9 | −12.1 (6) | C13—C14—C15—C16 | −1.0 (7) |
O—C7—C8—N | −10.8 (6) | C2—C3—C4—C5 | 1.7 (6) |
C3—C7—C8—N | 174.2 (3) | C7—C3—C4—C5 | 177.5 (4) |
C11—N—C19—C18 | −2.9 (5) | C1—C6—C5—C4 | 1.4 (7) |
C8—N—C19—C18 | 178.9 (4) | C3—C4—C5—C6 | −2.2 (7) |
N—C19—C18—C17 | −0.8 (6) | C5—C6—C1—C2 | −0.1 (7) |
C4—C3—C2—C1 | −0.4 (6) | C3—C2—C1—C6 | −0.4 (7) |
C7—C3—C2—C1 | −175.9 (4) |
Hydrogen-bond geometry (Å, °)
D—H···A | D—H | H···A | D···A | D—H···A |
C19—H19A···O | 0.93 | 2.31 | 2.875 (4) | 119 |
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2027).
References
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
- Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
- Jaffrezou, J. P., Levade, T., Thurneyssen, O., Chiron, M., Bordier, C., Attal, M., Chatelain, P. & Laurent, G. (1992). Cancer Res.52, 1352–1359. [PubMed]
- Liu, Y., Zhang, Y., Shen, Y.-M., Hu, H.-W. & Xu, J.-H. (2010). Org. Biomol. Chem. doi:10.1039/c000277a.
- Olden, K., Breton, P., Grzegorzevski, K., Yasuda, Y., Gause, B. L., Creaipe, O. A., Newton, S. A. & White, S. L. (1991). Pharmacol. Ther.50, 285–290. [DOI] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Verna, A. K., Kesharwani, T., Singh, J., Tandon, V. & Larock, R. C. (2009). Angew. Chem. Int. Ed.48, 1138–1143. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810017101/ds2027sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810017101/ds2027Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report