Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 May 26;66(Pt 6):m708. doi: 10.1107/S1600536810018799

catena-Poly[[diaqua­cadmium(II)]bis­(μ-2,2-dimethyl­butane­dioato-κ4 O,O′:O′′,O′′′)[diaqua­cadmium(II)]-μ-1,4-bis­(3-pyridylmeth­yl)piperazine-κ2 N 3:N 3′]

Amy L Pochodylo a, Robert L LaDuca a,*
PMCID: PMC2979442  PMID: 21579341

Abstract

In the title compound, [Cd2(C6H8O4)2(C16H20N4)(H2O)4]n, penta­gonal-bipyramidally coordinated CdII ions are connected into {Cd2(2,2-dimethyl­succinate)2(H2O)4} centrosymmetric dimeric clusters. In turn, these clusters are linked by tethering 1,4-bis­(3-pyridylmeth­yl)piperazine (3-bpmp) ligands into [Cd2(2,2-dimethyl­succinate)2(3-bpmp)(H2O)4]n coordination polymer chains. The chain motifs are oriented parallel to [1Inline graphic0]. Individual chains are connected into supra­molecular layers via O—H⋯N and O—H⋯O hydrogen-bonding mechanisms.

Related literature

For other dicarboxyl­ate coordination polymers containing 3-bpmp ligands, see: Johnston et al. (2008). For the preparation of 3-bpmp, see: Niu et al. (2001).graphic file with name e-66-0m708-scheme1.jpg

Experimental

Crystal data

  • [Cd2(C6H8O4)2(C16H20N4)(H2O)4]

  • M r = 426.74

  • Triclinic, Inline graphic

  • a = 9.275 (3) Å

  • b = 10.378 (3) Å

  • c = 10.625 (5) Å

  • α = 114.461 (3)°

  • β = 101.274 (3)°

  • γ = 106.687 (2)°

  • V = 831.6 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.34 mm−1

  • T = 173 K

  • 0.26 × 0.18 × 0.13 mm

Data collection

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.723, T max = 0.840

  • 12027 measured reflections

  • 3047 independent reflections

  • 2909 reflections with I > 2σ(I)

  • R int = 0.058

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.099

  • S = 1.16

  • 3047 reflections

  • 222 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.65 e Å−3

  • Δρmin = −1.07 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2007); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810018799/lh5049sup1.cif

e-66-0m708-sup1.cif (22.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810018799/lh5049Isup2.hkl

e-66-0m708-Isup2.hkl (149.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5C⋯O4 0.84 (4) 1.93 (2) 2.705 (3) 154 (4)
O5—H5D⋯O1i 0.83 (2) 1.99 (2) 2.744 (3) 152 (3)
O6—H6C⋯O3ii 0.85 (2) 1.84 (2) 2.679 (3) 171 (4)
O6—H6D⋯N2iii 0.83 (2) 2.03 (2) 2.851 (4) 173 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We gratefully acknowledge the donors of the American Chemical Society Petroleum Research Fund for funding this work. We also thank Anthony H. LaDuca for experimental assistance.

supplementary crystallographic information

Comment

Recently we have been investigating bis(3-pyridylmethyl)piperazine (3-bpmp) as a neutral dipodal tethering ligand for the construction of divalent metal coordination polymers in tandem with aromatic dicarboxylate ligands (Johnston et al., 2008). This chemistry has been extended into an aliphatic dicarboxylate system with the synthesis of the title compound.

The asymmetric unit of the title compound contains a CdII ion, one 2,2-dimethylsuccinate ligand, two aqua ligands, and one-half of a 3-bpmp ligand whose central piperazinyl ring is situated over a crystallographic inversion centre. The CdII ion is pentagonal bipyramidally coordinated in a {CdO6N} environment, with its apical positions occupied by aqua ligands. Its basal plane consists of two chelating carboxylate groups from two 2,2-dimethylsuccinate ligands and one pyridyl N donor atom from a 3-bpmp ligand. A pair of CdII ions is aggregated into a centrosymmetric {Cd2(H2O)4(2,2-dimethylsuccinate)2} dinuclear cluster (Fig. 1) by two bis(chelating) 2,2-dimethylsuccinate ligands, which adopt a gauche conformation.

{Cd2(H2O)4(2,2-dimethylsuccinate)2} dinuclear clusters are connected by tethering 3-bpmp ligands into one-dimensional [Cd2(2,2-dimethylsuccinate)2(H2O)4(3-bpmp)]n coordination polymer chains, which are oriented parallel to the (1 1 0) crystal direction (Fig. 2). The through-ligand Cd···Cd contact distance is 13.381 (6) Å. Individual chains are connected into supramolecular pseudo layers (Fig. 3) via O—H···N and O—H···O interactions (Table 1). Within the pseudo layers, aqua ligands (O6) donate hydrogen bonds to piperazinyl N atoms of 3-bpmp ligands and ligated 2,2-dimethylsuccinate carboxylate O atoms in neighboring chains. Neighboring pseudo layers stack into the three-dimensional crystal structure (Fig. 4) of the title compound by crystal packing forces.

Experimental

All starting materials were obtained commercially, except for 3-bpmp, which was prepared by a published procedure (Niu et al., 2001). A mixture of cadmium nitrate tetrahydrate (114 mg, 0.37 mmol), 2,2-dimethylsuccinic acid (54 mg, 0.37 mmol), 3-bpmp (199 mg, 0.742 mmol) and 10.0 g water (550 mmol) was placed into a 23 ml Teflon-lined Parr acid digestion bomb, which was then heated under autogenous pressure at 393 K for 72 h. Colourless blocks of the title compound (57 mg, 26% yield) were isolated after washing with distilled water and acetone, and drying in air.

Refinement

All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.95 Å, and refined in riding mode with Uiso = 1.2Ueq(C). The H atoms bound to the aqua ligand O atom were found in a difference Fourier map, restrained with with O—H = 0.85 Å and refined with Uiso = 1.2Ueq(O).

Figures

Fig. 1.

Fig. 1.

The coordination environment and dinuclear cluster of the title compound, showing 50% probability ellipsoids and partial atom numbering scheme. Hydrogen atom positions are shown as grey sticks. Color codes: violet Cd, red O, light blue N, black C. Symmetry code: (i) -x, -y + 1, -z + 1.

Fig. 2.

Fig. 2.

A single [Cd2(2,2-dimethylsuccinate)2(H2O)4 (3-bpmp)]n coordination polymer chain

Fig. 3.

Fig. 3.

Supramolecular layer of [Cd2(2,2-dimethylsuccinate)2(H2O)4 (3-bpmp)]n chains. Although the H atoms have been omitted the O—H···N and O—H···O hydrogen bonds are shown as dashed lines between the donor and acceptor atoms.

Fig. 4.

Fig. 4.

Stacking of supramolecular layers in the title compound.

Crystal data

[Cd2(C6H8O4)2(C16H20N4)(H2O)4] Z = 2
Mr = 426.74 F(000) = 432
Triclinic, P1 Dx = 1.704 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.275 (3) Å Cell parameters from 12027 reflections
b = 10.378 (3) Å θ = 2.3–25.4°
c = 10.625 (5) Å µ = 1.34 mm1
α = 114.461 (3)° T = 173 K
β = 101.274 (3)° Block, colourless
γ = 106.687 (2)° 0.26 × 0.18 × 0.13 mm
V = 831.6 (5) Å3

Data collection

Bruker APEXII diffractometer 3047 independent reflections
Radiation source: fine-focus sealed tube 2909 reflections with I > 2σ(I)
graphite Rint = 0.058
ω–φ scans θmax = 25.4°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −11→11
Tmin = 0.723, Tmax = 0.840 k = −12→12
12027 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099 H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.0539P)2 + 0.0373P] where P = (Fo2 + 2Fc2)/3
3047 reflections (Δ/σ)max < 0.001
222 parameters Δρmax = 0.65 e Å3
6 restraints Δρmin = −1.06 e Å3

Special details

Experimental. The largest peak of 0.645 e- Å3 was located 0.90 Å from Cd1. The largest hole of -1.065 e- Å3 was located 0.94 Å from Cd1.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cd1 0.18482 (2) 0.45331 (2) 0.36199 (2) 0.03562 (13)
O1 0.0456 (2) 0.6107 (3) 0.3511 (2) 0.0425 (5)
O2 −0.0444 (3) 0.3806 (3) 0.1510 (3) 0.0436 (5)
O3 −0.3418 (3) 0.5696 (3) 0.4297 (3) 0.0452 (5)
O4 −0.2497 (3) 0.3895 (3) 0.3798 (3) 0.0423 (5)
O5 −0.0262 (3) 0.2695 (3) 0.3722 (3) 0.0413 (5)
H5C −0.098 (4) 0.297 (5) 0.346 (4) 0.050*
H5D −0.007 (4) 0.295 (4) 0.461 (2) 0.050*
O6 0.4016 (3) 0.6335 (3) 0.3687 (3) 0.0389 (5)
H6C 0.483 (3) 0.611 (4) 0.379 (4) 0.047*
H6D 0.430 (4) 0.720 (3) 0.441 (3) 0.047*
N1 0.2421 (3) 0.2552 (3) 0.2065 (3) 0.0369 (5)
N2 0.5008 (3) 0.0578 (3) 0.3970 (3) 0.0367 (5)
C1 0.1678 (4) 0.1796 (4) 0.0587 (4) 0.0418 (7)
H1 0.0989 0.2150 0.0165 0.050*
C2 0.1890 (4) 0.0519 (4) −0.0333 (4) 0.0460 (8)
H2 0.1354 0.0005 −0.1376 0.055*
C3 0.2875 (4) −0.0005 (4) 0.0262 (4) 0.0435 (7)
H3 0.2997 −0.0904 −0.0364 0.052*
C4 0.3700 (4) 0.0788 (4) 0.1793 (4) 0.0375 (6)
C5 0.3413 (4) 0.2057 (4) 0.2633 (4) 0.0392 (7)
H5 0.3956 0.2609 0.3677 0.047*
C6 0.4891 (4) 0.0317 (4) 0.2474 (4) 0.0405 (7)
H6A 0.4588 −0.0801 0.1810 0.049*
H6B 0.5971 0.0900 0.2520 0.049*
C7 0.3498 (4) −0.0430 (4) 0.3945 (4) 0.0402 (7)
H7A 0.3231 −0.1530 0.3243 0.048*
H7B 0.2605 −0.0176 0.3595 0.048*
C8 0.6337 (4) 0.0216 (4) 0.4535 (4) 0.0400 (7)
H8A 0.7361 0.0906 0.4580 0.048*
H8B 0.6126 −0.0871 0.3846 0.048*
C9 −0.0570 (4) 0.5055 (4) 0.2235 (3) 0.0373 (7)
C10 −0.2056 (4) 0.5280 (4) 0.1593 (4) 0.0390 (7)
C11 −0.3507 (4) 0.4289 (4) 0.1793 (3) 0.0400 (7)
H11A −0.4454 0.4496 0.1483 0.048*
H11B −0.3787 0.3173 0.1142 0.048*
C12 −0.3141 (3) 0.4641 (4) 0.3390 (3) 0.0377 (7)
C13 −0.2436 (4) 0.4650 (4) −0.0073 (4) 0.0471 (8)
H13A −0.3426 0.4721 −0.0503 0.071*
H13B −0.2585 0.3561 −0.0552 0.071*
H13C −0.1540 0.5264 −0.0228 0.071*
C14 −0.1754 (4) 0.6995 (4) 0.2367 (4) 0.0478 (8)
H14A −0.0781 0.7601 0.2292 0.072*
H14B −0.1607 0.7363 0.3414 0.072*
H14C −0.2681 0.7121 0.1892 0.072*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd1 0.03706 (18) 0.03714 (18) 0.03548 (19) 0.01797 (13) 0.01430 (13) 0.01828 (14)
O1 0.0399 (12) 0.0476 (12) 0.0378 (12) 0.0189 (10) 0.0107 (10) 0.0205 (10)
O2 0.0480 (13) 0.0440 (12) 0.0446 (12) 0.0250 (10) 0.0183 (10) 0.0223 (11)
O3 0.0475 (13) 0.0516 (14) 0.0391 (12) 0.0263 (11) 0.0185 (10) 0.0197 (11)
O4 0.0431 (12) 0.0469 (12) 0.0427 (12) 0.0227 (10) 0.0174 (10) 0.0239 (11)
O5 0.0441 (13) 0.0429 (13) 0.0388 (13) 0.0205 (11) 0.0149 (11) 0.0205 (11)
O6 0.0414 (12) 0.0383 (12) 0.0373 (13) 0.0188 (10) 0.0139 (10) 0.0177 (11)
N1 0.0372 (13) 0.0380 (13) 0.0382 (14) 0.0173 (11) 0.0150 (11) 0.0194 (12)
N2 0.0397 (13) 0.0369 (13) 0.0395 (14) 0.0181 (11) 0.0170 (11) 0.0215 (12)
C1 0.0429 (17) 0.0438 (17) 0.0412 (17) 0.0193 (14) 0.0141 (14) 0.0230 (15)
C2 0.0541 (19) 0.0447 (18) 0.0343 (17) 0.0216 (15) 0.0125 (15) 0.0161 (15)
C3 0.0505 (18) 0.0384 (16) 0.0423 (18) 0.0214 (14) 0.0194 (15) 0.0175 (15)
C4 0.0427 (16) 0.0366 (15) 0.0379 (16) 0.0167 (13) 0.0190 (14) 0.0204 (13)
C5 0.0393 (16) 0.0405 (16) 0.0379 (16) 0.0172 (13) 0.0135 (13) 0.0193 (14)
C6 0.0492 (18) 0.0394 (16) 0.0417 (17) 0.0224 (14) 0.0221 (14) 0.0226 (15)
C7 0.0386 (15) 0.0405 (16) 0.0454 (17) 0.0177 (13) 0.0165 (13) 0.0234 (15)
C8 0.0404 (16) 0.0403 (16) 0.0456 (17) 0.0197 (13) 0.0181 (13) 0.0236 (14)
C9 0.0398 (16) 0.0461 (17) 0.0380 (16) 0.0211 (14) 0.0201 (14) 0.0264 (15)
C10 0.0426 (17) 0.0429 (17) 0.0370 (17) 0.0206 (14) 0.0142 (14) 0.0227 (15)
C11 0.0368 (16) 0.0447 (17) 0.0396 (17) 0.0207 (14) 0.0114 (13) 0.0205 (15)
C12 0.0316 (16) 0.0445 (18) 0.0385 (16) 0.0153 (14) 0.0144 (13) 0.0217 (15)
C13 0.053 (2) 0.058 (2) 0.0372 (17) 0.0269 (17) 0.0162 (15) 0.0268 (16)
C14 0.058 (2) 0.0441 (18) 0.052 (2) 0.0275 (16) 0.0221 (17) 0.0280 (16)

Geometric parameters (Å, °)

Cd1—O6 2.284 (2) C3—H3 0.9500
Cd1—N1 2.323 (3) C4—C5 1.386 (4)
Cd1—O5 2.364 (2) C4—C6 1.507 (5)
Cd1—O4i 2.374 (3) C5—H5 0.9500
Cd1—O1 2.378 (2) C6—H6A 0.9900
Cd1—O2 2.435 (2) C6—H6B 0.9900
Cd1—O3i 2.540 (2) C7—C8ii 1.506 (4)
O1—C9 1.268 (4) C7—H7A 0.9900
O2—C9 1.258 (4) C7—H7B 0.9900
O3—C12 1.256 (4) C8—C7ii 1.506 (4)
O4—C12 1.259 (4) C8—H8A 0.9900
O5—H5C 0.84 (4) C8—H8B 0.9900
O5—H5D 0.830 (18) C9—C10 1.539 (4)
O6—H6C 0.851 (18) C10—C14 1.528 (4)
O6—H6D 0.825 (18) C10—C13 1.532 (4)
N1—C5 1.336 (4) C10—C11 1.553 (5)
N1—C1 1.342 (4) C11—C12 1.523 (4)
N2—C6 1.474 (4) C11—H11A 0.9900
N2—C7 1.475 (4) C11—H11B 0.9900
N2—C8 1.478 (4) C13—H13A 0.9800
C1—C2 1.379 (5) C13—H13B 0.9800
C1—H1 0.9500 C13—H13C 0.9800
C2—C3 1.369 (5) C14—H14A 0.9800
C2—H2 0.9500 C14—H14B 0.9800
C3—C4 1.397 (5) C14—H14C 0.9800
H14B—C14—H14C 109.5 C5—C4—C6 122.3 (3)
O6—Cd1—N1 90.10 (9) C3—C4—C6 121.2 (3)
O6—Cd1—O5 175.51 (7) N1—C5—C4 124.1 (3)
N1—Cd1—O5 90.19 (9) N1—C5—H5 118.0
O6—Cd1—O4i 90.71 (8) C4—C5—H5 118.0
N1—Cd1—O4i 138.03 (8) N2—C6—C4 115.3 (3)
O5—Cd1—O4i 86.08 (8) N2—C6—H6A 108.5
O6—Cd1—O1 86.80 (8) C4—C6—H6A 108.5
N1—Cd1—O1 140.28 (8) N2—C6—H6B 108.5
O5—Cd1—O1 95.83 (8) C4—C6—H6B 108.5
O4i—Cd1—O1 81.63 (8) H6A—C6—H6B 107.5
O6—Cd1—O2 106.73 (8) N2—C7—C8ii 110.9 (3)
N1—Cd1—O2 88.92 (8) N2—C7—H7A 109.5
O5—Cd1—O2 77.76 (8) C8ii—C7—H7A 109.5
O4i—Cd1—O2 130.56 (8) N2—C7—H7B 109.5
O1—Cd1—O2 54.59 (7) C8ii—C7—H7B 109.5
O6—Cd1—O3i 95.93 (8) H7A—C7—H7B 108.1
N1—Cd1—O3i 85.50 (8) N2—C8—C7ii 111.1 (2)
O5—Cd1—O3i 79.62 (8) N2—C8—H8A 109.4
O4i—Cd1—O3i 52.70 (8) C7ii—C8—H8A 109.4
O1—Cd1—O3i 134.21 (7) N2—C8—H8B 109.4
O2—Cd1—O3i 156.67 (9) C7ii—C8—H8B 109.4
O6—Cd1—C9 98.97 (9) H8A—C8—H8B 108.0
N1—Cd1—C9 115.36 (9) O2—C9—O1 121.9 (3)
O5—Cd1—C9 84.95 (9) O2—C9—C10 119.1 (3)
O4i—Cd1—C9 105.92 (9) O1—C9—C10 118.9 (3)
O1—Cd1—C9 27.43 (8) O2—C9—Cd1 62.34 (16)
O2—Cd1—C9 27.24 (8) O1—C9—Cd1 59.80 (16)
O3i—Cd1—C9 154.14 (8) C10—C9—Cd1 171.7 (2)
C9—O1—Cd1 92.76 (18) C14—C10—C13 110.1 (3)
C9—O2—Cd1 90.42 (18) C14—C10—C9 110.8 (3)
C12—O3—Cd1i 89.11 (19) C13—C10—C9 109.0 (3)
C12—O4—Cd1i 96.79 (19) C14—C10—C11 111.3 (3)
Cd1—O5—H5C 96 (3) C13—C10—C11 107.9 (3)
Cd1—O5—H5D 107 (3) C9—C10—C11 107.5 (3)
H5C—O5—H5D 108 (3) C12—C11—C10 112.2 (3)
Cd1—O6—H6C 111 (3) C12—C11—H11A 109.2
Cd1—O6—H6D 110 (3) C10—C11—H11A 109.2
H6C—O6—H6D 106 (3) C12—C11—H11B 109.2
C5—N1—C1 118.2 (3) C10—C11—H11B 109.2
C5—N1—Cd1 120.3 (2) H11A—C11—H11B 107.9
C1—N1—Cd1 121.3 (2) O3—C12—O4 120.7 (3)
C6—N2—C7 111.3 (3) O3—C12—C11 120.6 (3)
C6—N2—C8 108.4 (2) O4—C12—C11 118.6 (3)
C7—N2—C8 108.8 (2) C10—C13—H13A 109.5
N1—C1—C2 121.6 (3) C10—C13—H13B 109.5
N1—C1—H1 119.2 H13A—C13—H13B 109.5
C2—C1—H1 119.2 C10—C13—H13C 109.5
C3—C2—C1 119.8 (3) H13A—C13—H13C 109.5
C3—C2—H2 120.1 H13B—C13—H13C 109.5
C1—C2—H2 120.1 C10—C14—H14A 109.5
C2—C3—C4 119.8 (3) C10—C14—H14B 109.5
C2—C3—H3 120.1 H14A—C14—H14B 109.5
C4—C3—H3 120.1 C10—C14—H14C 109.5
C5—C4—C3 116.5 (3) H14A—C14—H14C 109.5
O6—Cd1—O1—C9 116.54 (18) C5—C4—C6—N2 34.4 (4)
N1—Cd1—O1—C9 30.2 (2) C3—C4—C6—N2 −148.3 (3)
O5—Cd1—O1—C9 −67.12 (18) C6—N2—C7—C8ii 176.9 (2)
O4i—Cd1—O1—C9 −152.27 (18) C8—N2—C7—C8ii 57.5 (3)
O2—Cd1—O1—C9 3.36 (16) C6—N2—C8—C7ii −178.9 (2)
O3i—Cd1—O1—C9 −148.30 (17) C7—N2—C8—C7ii −57.7 (4)
O6—Cd1—O2—C9 −76.80 (18) Cd1—O2—C9—O1 6.1 (3)
N1—Cd1—O2—C9 −166.58 (17) Cd1—O2—C9—C10 −170.7 (2)
O5—Cd1—O2—C9 102.99 (18) Cd1—O1—C9—O2 −6.2 (3)
O4i—Cd1—O2—C9 29.1 (2) Cd1—O1—C9—C10 170.6 (2)
O1—Cd1—O2—C9 −3.38 (16) O6—Cd1—C9—O2 109.28 (17)
O3i—Cd1—O2—C9 117.4 (2) N1—Cd1—C9—O2 14.88 (19)
O6—Cd1—N1—C5 89.2 (2) O5—Cd1—C9—O2 −72.93 (17)
O5—Cd1—N1—C5 −86.3 (2) O4i—Cd1—C9—O2 −157.39 (16)
O4i—Cd1—N1—C5 −1.9 (3) O1—Cd1—C9—O2 174.0 (3)
O1—Cd1—N1—C5 174.34 (19) O3i—Cd1—C9—O2 −126.3 (2)
O2—Cd1—N1—C5 −164.0 (2) O6—Cd1—C9—O1 −64.73 (18)
O3i—Cd1—N1—C5 −6.7 (2) N1—Cd1—C9—O1 −159.13 (16)
C9—Cd1—N1—C5 −170.8 (2) O5—Cd1—C9—O1 113.06 (18)
O6—Cd1—N1—C1 −96.0 (2) O4i—Cd1—C9—O1 28.61 (18)
O5—Cd1—N1—C1 88.5 (2) O2—Cd1—C9—O1 −174.0 (3)
O4i—Cd1—N1—C1 172.8 (2) O3i—Cd1—C9—O1 59.7 (3)
O1—Cd1—N1—C1 −10.9 (3) O2—C9—C10—C14 −162.7 (3)
O2—Cd1—N1—C1 10.7 (2) O1—C9—C10—C14 20.4 (4)
O3i—Cd1—N1—C1 168.1 (2) O2—C9—C10—C13 −41.4 (4)
C9—Cd1—N1—C1 4.0 (3) O1—C9—C10—C13 141.7 (3)
C5—N1—C1—C2 1.5 (5) O2—C9—C10—C11 75.4 (3)
Cd1—N1—C1—C2 −173.4 (2) O1—C9—C10—C11 −101.5 (3)
N1—C1—C2—C3 0.2 (5) C14—C10—C11—C12 −68.5 (3)
C1—C2—C3—C4 −2.1 (5) C13—C10—C11—C12 170.5 (3)
C2—C3—C4—C5 2.1 (5) C9—C10—C11—C12 53.1 (3)
C2—C3—C4—C6 −175.2 (3) Cd1i—O3—C12—O4 8.2 (3)
C1—N1—C5—C4 −1.4 (5) Cd1i—O3—C12—C11 −169.0 (2)
Cd1—N1—C5—C4 173.5 (2) Cd1i—O4—C12—O3 −8.9 (3)
C3—C4—C5—N1 −0.4 (5) Cd1i—O4—C12—C11 168.4 (2)
C6—C4—C5—N1 176.9 (3) C10—C11—C12—O3 89.1 (3)
C7—N2—C6—C4 66.3 (3) C10—C11—C12—O4 −88.2 (3)
C8—N2—C6—C4 −174.1 (3)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O5—H5C···O4 0.84 (4) 1.93 (2) 2.705 (3) 154 (4)
O5—H5D···O1i 0.83 (2) 1.99 (2) 2.744 (3) 152 (3)
O6—H6C···O3iii 0.85 (2) 1.84 (2) 2.679 (3) 171 (4)
O6—H6D···N2iv 0.83 (2) 2.03 (2) 2.851 (4) 173 (4)

Symmetry codes: (i) −x, −y+1, −z+1; (iii) x+1, y, z; (iv) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5049).

References

  1. Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Johnston, L. L., Martin, D. P., Supkowski, R. M. & LaDuca, R. L. (2008). Inorg. Chim. Acta, 361, 2887–2894.
  3. Niu, Y., Hou, H., Wei, Y., Fan, Y., Zhu, Y., Du, C. & Xin, X. (2001). Inorg. Chem. Commun.4, 358–361.
  4. Palmer, D. (2007). CrystalMaker CrystalMaker Software, Bicester, England.
  5. Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810018799/lh5049sup1.cif

e-66-0m708-sup1.cif (22.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810018799/lh5049Isup2.hkl

e-66-0m708-Isup2.hkl (149.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES