Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 May 8;66(Pt 6):o1282. doi: 10.1107/S1600536810015916

N-(2-Chloro­phen­yl)-2,4-dimethyl­benzene­sulfonamide

B Thimme Gowda a,*, Sabine Foro b, P G Nirmala a, Hartmut Fuess b
PMCID: PMC2979443  PMID: 21579381

Abstract

In the title compound, C14H14ClNO2S, the conformation of the N—C bond in the C—SO2—NH—C segment has gauche torsions with respect to the S=O bonds. The mol­ecule is bent at the S atom with a C—SO2—NH—C torsion angle of −54.9 (2)°. The sulfonyl and aniline benzene rings are rotated relative to each other by 75.7 (1)°. An intra­molecular N—H⋯Cl hydrogen bond is present. In the crystal, inter­molecular N—H⋯O hydrogen-bonding inter­actions are observed and the mol­ecules are packed into chains parallel to the b axis.

Related literature

For the preparation of the title compound, see: Savitha & Gowda (2006). For related structures, see: Gelbrich et al. (2007); Gowda et al. (2009a,b , 2010); Nirmala et al. (2009); Perlovich et al. (2006).graphic file with name e-66-o1282-scheme1.jpg

Experimental

Crystal data

  • C14H14ClNO2S

  • M r = 295.77

  • Orthorhombic, Inline graphic

  • a = 10.574 (1) Å

  • b = 16.269 (2) Å

  • c = 16.859 (2) Å

  • V = 2900.2 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 299 K

  • 0.38 × 0.34 × 0.24 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.862, T max = 0.909

  • 18999 measured reflections

  • 2922 independent reflections

  • 2330 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.102

  • S = 1.05

  • 2922 reflections

  • 178 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810015916/rz2441sup1.cif

e-66-o1282-sup1.cif (18.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015916/rz2441Isup2.hkl

e-66-o1282-Isup2.hkl (143.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.85 (1) 2.20 (1) 3.010 (2) 159 (2)
N1—H1N⋯Cl1 0.85 (1) 2.63 (2) 2.9822 (18) 106 (2)

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

As part of a study of the substituent effects on the structures of N-(aryl)-arylsulfonamides (Gowda et al. , 2009a,b, 2010), in the present work the structure of 2,4-dimethyl-N-(2-chlorophenyl)benzenesulfonamide (I) has been determined (Fig. 1). The conformation of the N—C bond in the C—SO2—NH—C segment has gauche torsions with respect to the S═O bonds. The molecule is bent at the S atom with the C1—SO2—NH—C7 torsion angle of -54.9 (2)°, compared to the values of 71.6 (1)° in 2,4-dimethyl-N-(2-methylphenyl)benzenesulfonamide (II) (Nirmala et al., 2009), 74.8 (4)° in 4-chloro-2-methyl-N-(2-chlorophenyl)benzenesulfonamide (III) (Gowda et al., 2009b), -46.1 (3)° (molecule 1) and 47.7 (3)° (molecule 2) in the two molecules of 2,4-dimethyl-N-(phenyl)benzenesulfonamide (IV) (Gowda et al., 2009a) and -54.8 (2)° in N-(2-chlorophenyl)-4-methylbenzenesulfonamide (V) (Gowda et al., 2010).

The two benzene rings in (I) are tilted relative to each other by 75.7 (1)°, compared to the values of 47.0 (1)° (II), 45.5 (2)° in (III), 67.5 (1)° in molecule 1 and 72.9 (1)° in molecule 2 of (IV), and 71.6 (1)° in (V). The other bond parameters in (I) are similar to those observed in (II), (III), (IV), (V) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007).

The structure shows simultaneous N—H···Cl intramolecular and N—H···O intermolecular H-bonding (Table 1). The crystal packing of molecules in (I) via N—H···O(S) hydrogen bonds is shown in Fig.2.

Experimental

A solution of 1,3-xylene (1,3-dimethylbenzene) (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0 °C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 2,4-dimethylbenzenesulfonylchloride was treated with 2-chloroaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 cc). The resultant solid 2,4-dimethyl-N-(2-chlorophenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Savitha & Gowda, 2006). The prism like colourless single crystals used in X-ray diffraction studies were grown by slow evaporation of an ethanol solution at room temperature.

Refinement

The H atom of the NH group was located in a difference map and later restrained to N—H = 0.86 (1) %A. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Molecular packing of (I) with hydrogen bonding shown as dashed lines.

Crystal data

C14H14ClNO2S F(000) = 1232
Mr = 295.77 Dx = 1.355 Mg m3
Orthorhombic, Pbcn Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2ab Cell parameters from 2348 reflections
a = 10.574 (1) Å θ = 2.6–27.8°
b = 16.269 (2) Å µ = 0.40 mm1
c = 16.859 (2) Å T = 299 K
V = 2900.2 (6) Å3 Prism, colourless
Z = 8 0.38 × 0.34 × 0.24 mm

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector 2922 independent reflections
Radiation source: fine-focus sealed tube 2330 reflections with I > 2σ(I)
graphite Rint = 0.026
Rotation method data acquisition using ω and phi scans θmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −8→13
Tmin = 0.862, Tmax = 0.909 k = −19→19
18999 measured reflections l = −20→20

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0452P)2 + 1.1956P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.003
2922 reflections Δρmax = 0.23 e Å3
178 parameters Δρmin = −0.27 e Å3
1 restraint Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0063 (6)

Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.31380 (18) 0.39372 (11) 0.32739 (11) 0.0470 (4)
C2 0.2828 (2) 0.47702 (12) 0.31522 (12) 0.0543 (5)
C3 0.3721 (2) 0.53467 (14) 0.33864 (15) 0.0707 (6)
H3 0.3530 0.5900 0.3318 0.085*
C4 0.4873 (3) 0.51455 (17) 0.37137 (16) 0.0809 (7)
C5 0.5148 (3) 0.43261 (18) 0.38187 (19) 0.0872 (8)
H5 0.5921 0.4175 0.4038 0.105*
C6 0.4290 (2) 0.37243 (15) 0.36013 (15) 0.0670 (6)
H6 0.4490 0.3173 0.3676 0.080*
C7 0.10341 (18) 0.31392 (11) 0.44692 (10) 0.0465 (4)
C8 0.0207 (2) 0.35953 (11) 0.49298 (11) 0.0499 (5)
C9 0.0269 (3) 0.35663 (14) 0.57551 (12) 0.0660 (6)
H9 −0.0305 0.3863 0.6059 0.079*
C10 0.1184 (3) 0.30960 (14) 0.61177 (12) 0.0712 (7)
H10 0.1237 0.3083 0.6668 0.085*
C11 0.2011 (3) 0.26496 (15) 0.56722 (13) 0.0687 (6)
H11 0.2633 0.2338 0.5921 0.082*
C12 0.1932 (2) 0.26568 (14) 0.48522 (12) 0.0629 (6)
H12 0.2485 0.2336 0.4555 0.076*
C13 0.1609 (2) 0.50496 (15) 0.27754 (16) 0.0766 (7)
H13A 0.0907 0.4846 0.3078 0.092*
H13B 0.1560 0.4841 0.2244 0.092*
H13C 0.1583 0.5639 0.2764 0.092*
C14 0.5812 (3) 0.5810 (2) 0.3941 (3) 0.1248 (13)
H14A 0.5396 0.6217 0.4260 0.150*
H14B 0.6140 0.6063 0.3470 0.150*
H14C 0.6494 0.5570 0.4237 0.150*
N1 0.09250 (16) 0.31599 (11) 0.36289 (9) 0.0538 (4)
H1N 0.0245 (14) 0.3331 (13) 0.3411 (12) 0.065*
O1 0.15450 (14) 0.32896 (10) 0.22493 (7) 0.0610 (4)
O2 0.27871 (14) 0.23745 (8) 0.31126 (9) 0.0625 (4)
Cl1 −0.09351 (6) 0.42128 (4) 0.44867 (3) 0.0714 (2)
S1 0.21116 (5) 0.31295 (3) 0.30076 (3) 0.04739 (16)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0497 (11) 0.0479 (10) 0.0435 (9) 0.0042 (8) 0.0033 (8) −0.0029 (8)
C2 0.0586 (12) 0.0515 (11) 0.0528 (11) 0.0071 (9) 0.0096 (9) −0.0013 (9)
C3 0.0839 (17) 0.0502 (12) 0.0779 (16) −0.0034 (12) 0.0141 (14) −0.0051 (11)
C4 0.0782 (17) 0.0775 (17) 0.0872 (18) −0.0189 (14) −0.0004 (15) −0.0105 (14)
C5 0.0599 (14) 0.0923 (19) 0.109 (2) −0.0086 (14) −0.0208 (15) 0.0019 (16)
C6 0.0587 (13) 0.0597 (13) 0.0825 (16) 0.0057 (11) −0.0130 (12) 0.0024 (11)
C7 0.0548 (11) 0.0488 (10) 0.0358 (9) −0.0121 (9) −0.0039 (8) 0.0009 (8)
C8 0.0643 (12) 0.0432 (9) 0.0423 (9) −0.0129 (9) −0.0035 (9) −0.0022 (8)
C9 0.0950 (18) 0.0603 (13) 0.0428 (11) −0.0148 (12) 0.0070 (11) −0.0098 (9)
C10 0.112 (2) 0.0645 (14) 0.0372 (10) −0.0271 (14) −0.0138 (12) 0.0084 (10)
C11 0.0886 (17) 0.0681 (14) 0.0494 (12) −0.0103 (13) −0.0191 (12) 0.0122 (10)
C12 0.0715 (14) 0.0687 (14) 0.0487 (11) 0.0044 (11) −0.0093 (10) 0.0056 (10)
C13 0.0767 (16) 0.0623 (14) 0.0907 (18) 0.0212 (13) −0.0013 (14) 0.0076 (12)
C14 0.110 (3) 0.110 (3) 0.154 (3) −0.048 (2) −0.006 (2) −0.023 (2)
N1 0.0493 (10) 0.0769 (12) 0.0352 (8) 0.0021 (9) −0.0043 (7) 0.0025 (8)
O1 0.0647 (9) 0.0840 (10) 0.0342 (7) 0.0007 (8) −0.0022 (6) −0.0054 (6)
O2 0.0747 (10) 0.0478 (8) 0.0650 (9) 0.0094 (7) −0.0006 (8) −0.0098 (6)
Cl1 0.0827 (4) 0.0706 (4) 0.0610 (3) 0.0138 (3) −0.0051 (3) −0.0124 (3)
S1 0.0538 (3) 0.0511 (3) 0.0372 (2) 0.0036 (2) −0.0007 (2) −0.00583 (18)

Geometric parameters (Å, °)

C1—C6 1.381 (3) C9—C10 1.376 (3)
C1—C2 1.409 (3) C9—H9 0.9300
C1—S1 1.7624 (19) C10—C11 1.363 (3)
C2—C3 1.388 (3) C10—H10 0.9300
C2—C13 1.508 (3) C11—C12 1.385 (3)
C3—C4 1.377 (4) C11—H11 0.9300
C3—H3 0.9300 C12—H12 0.9300
C4—C5 1.376 (4) C13—H13A 0.9600
C4—C14 1.518 (4) C13—H13B 0.9600
C5—C6 1.385 (3) C13—H13C 0.9600
C5—H5 0.9300 C14—H14A 0.9600
C6—H6 0.9300 C14—H14B 0.9600
C7—C8 1.385 (3) C14—H14C 0.9600
C7—C12 1.391 (3) N1—S1 1.6352 (17)
C7—N1 1.422 (2) N1—H1N 0.854 (9)
C8—C9 1.394 (3) O1—S1 1.4357 (14)
C8—Cl1 1.739 (2) O2—S1 1.4319 (14)
C6—C1—C2 120.29 (19) C9—C10—H10 119.9
C6—C1—S1 117.24 (16) C10—C11—C12 120.5 (2)
C2—C1—S1 122.47 (15) C10—C11—H11 119.8
C3—C2—C1 116.8 (2) C12—C11—H11 119.8
C3—C2—C13 119.8 (2) C11—C12—C7 120.6 (2)
C1—C2—C13 123.37 (19) C11—C12—H12 119.7
C4—C3—C2 123.7 (2) C7—C12—H12 119.7
C4—C3—H3 118.1 C2—C13—H13A 109.5
C2—C3—H3 118.1 C2—C13—H13B 109.5
C5—C4—C3 118.0 (2) H13A—C13—H13B 109.5
C5—C4—C14 121.3 (3) C2—C13—H13C 109.5
C3—C4—C14 120.7 (3) H13A—C13—H13C 109.5
C4—C5—C6 120.8 (2) H13B—C13—H13C 109.5
C4—C5—H5 119.6 C4—C14—H14A 109.5
C6—C5—H5 119.6 C4—C14—H14B 109.5
C1—C6—C5 120.4 (2) H14A—C14—H14B 109.5
C1—C6—H6 119.8 C4—C14—H14C 109.5
C5—C6—H6 119.8 H14A—C14—H14C 109.5
C8—C7—C12 118.24 (17) H14B—C14—H14C 109.5
C8—C7—N1 119.64 (17) C7—N1—S1 125.12 (14)
C12—C7—N1 122.10 (18) C7—N1—H1N 120.3 (16)
C7—C8—C9 120.8 (2) S1—N1—H1N 112.4 (15)
C7—C8—Cl1 120.47 (14) O2—S1—O1 118.28 (9)
C9—C8—Cl1 118.77 (17) O2—S1—N1 109.24 (9)
C10—C9—C8 119.7 (2) O1—S1—N1 104.16 (9)
C10—C9—H9 120.1 O2—S1—C1 107.52 (9)
C8—C9—H9 120.1 O1—S1—C1 110.40 (9)
C11—C10—C9 120.2 (2) N1—S1—C1 106.67 (9)
C11—C10—H10 119.9
C6—C1—C2—C3 −0.9 (3) Cl1—C8—C9—C10 −178.55 (16)
S1—C1—C2—C3 −179.84 (16) C8—C9—C10—C11 −1.1 (3)
C6—C1—C2—C13 178.1 (2) C9—C10—C11—C12 −0.7 (4)
S1—C1—C2—C13 −0.9 (3) C10—C11—C12—C7 2.0 (4)
C1—C2—C3—C4 0.9 (3) C8—C7—C12—C11 −1.4 (3)
C13—C2—C3—C4 −178.1 (2) N1—C7—C12—C11 −179.9 (2)
C2—C3—C4—C5 −0.5 (4) C8—C7—N1—S1 144.02 (16)
C2—C3—C4—C14 178.8 (3) C12—C7—N1—S1 −37.6 (3)
C3—C4—C5—C6 0.0 (4) C7—N1—S1—O2 61.07 (19)
C14—C4—C5—C6 −179.3 (3) C7—N1—S1—O1 −171.66 (16)
C2—C1—C6—C5 0.5 (3) C7—N1—S1—C1 −54.86 (19)
S1—C1—C6—C5 179.5 (2) C6—C1—S1—O2 −6.68 (19)
C4—C5—C6—C1 0.0 (4) C2—C1—S1—O2 172.29 (15)
C12—C7—C8—C9 −0.4 (3) C6—C1—S1—O1 −137.03 (17)
N1—C7—C8—C9 178.06 (18) C2—C1—S1—O1 41.94 (19)
C12—C7—C8—Cl1 179.82 (15) C6—C1—S1—N1 110.40 (17)
N1—C7—C8—Cl1 −1.7 (2) C2—C1—S1—N1 −70.63 (18)
C7—C8—C9—C10 1.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.85 (1) 2.20 (1) 3.010 (2) 159 (2)
N1—H1N···Cl1 0.85 (1) 2.63 (2) 2.9822 (18) 106 (2)

Symmetry codes: (i) −x, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2441).

References

  1. Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632. [DOI] [PubMed]
  2. Gowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009a). Acta Cryst. E65, o576. [DOI] [PMC free article] [PubMed]
  3. Gowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009b). Acta Cryst. E65, o717. [DOI] [PMC free article] [PubMed]
  4. Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o188. [DOI] [PMC free article] [PubMed]
  5. Nirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2009). Acta Cryst. E65, o3210. [DOI] [PMC free article] [PubMed]
  6. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  7. Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.
  8. Savitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 60, 600–606.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810015916/rz2441sup1.cif

e-66-o1282-sup1.cif (18.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015916/rz2441Isup2.hkl

e-66-o1282-Isup2.hkl (143.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES