Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 May 26;66(Pt 6):o1466. doi: 10.1107/S1600536810018908

2-Chloro-N-(4-methyl­benzo­yl)benzene­sulfonamide

B Thimme Gowda a,*, Sabine Foro b, P A Suchetan a, Hartmut Fuess b
PMCID: PMC2979447  PMID: 21579534

Abstract

In the title compound, C14H12ClNO3S, the conformation of the N—H bond in the C—SO2—NH—C(O) segment is anti to the C=O bond. The dihedral angle between the sulfonyl benzene ring and the —SO2—NH—C—O segment is 89.4 (1)° and that between the sulfonyl and benzoyl benzene rings is 89.1 (2)°. The crystal structure features inversion-related dimers linked by pairs of N—H⋯O hydrogen bonds.

Related literature

For background to our study of the effect of ring and side-chain substituents on the crystal structures of N-aromatic sulfonamides and for similar structures, see: Gowda et al. (2010a,b ); Suchetan et al. (2010a,b ).graphic file with name e-66-o1466-scheme1.jpg

Experimental

Crystal data

  • C14H12ClNO3S

  • M r = 309.76

  • Monoclinic, Inline graphic

  • a = 8.0554 (8) Å

  • b = 23.209 (2) Å

  • c = 8.1199 (9) Å

  • β = 103.52 (1)°

  • V = 1476.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 299 K

  • 0.40 × 0.30 × 0.25 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.855, T max = 0.906

  • 6106 measured reflections

  • 3012 independent reflections

  • 2396 reflections with I > 2σ(I)

  • R int = 0.012

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058

  • wR(F 2) = 0.153

  • S = 1.07

  • 3012 reflections

  • 184 parameters

  • 19 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.54 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810018908/bq2212sup1.cif

e-66-o1466-sup1.cif (17.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810018908/bq2212Isup2.hkl

e-66-o1466-Isup2.hkl (147.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.84 (2) 2.14 (2) 2.970 (4) 169 (4)

Symmetry code: (i) Inline graphic.

Acknowledgments

PAS thanks the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, for the award of a research fellowship.

supplementary crystallographic information

Comment

Diaryl acylsulfonamides are known as potent antitumor agents against a broad spectrum of human tumor xenografts in nude mice. As a part of studying the effect of ring and the side chain substituents on the crystal structures of N-aromatic sulfonamides (Gowda et al., 2010a,b; Suchetan et al., 2010a,b), the structure of 2-chloro-N-(4-methylbenzoyl)benzenesulfonamide (I) has been determined (Fig.1). The conformations of the N—C bonds in the C—SO2—NH—C(O) segments have gauche torsions with respect to the SO bonds. Further, the conformation of the N—H bond in the C—SO2—NH—C(O) segment is anti to the C=O bond, similar to that observed in 2-methyl-N-(4-methylbenzoyl)-benzenesulfonamide (II) (Gowda et al., 2010a), 2-chloro-N-(3-methylbenzoyl)-benzenesulfonamide (III) (Suchetan et al., 2010b), 2-chloro-N-(2-methylbenzoyl)- benzenesulfonamide (IV) (Suchetan et al., 2010a) and 2-chloro-N-(benzoyl)-benzenesulfonamide (V) (Gowda et al., 2010b).

The molecules are twisted at the S atom with the torsional angle of 60.4 (3)°, compared to those of -53.1 (2)° and 61.2 (2)°, in the two molecules of (II), -66.5 (2)° in (III), -64.0 (2)° in (IV) and 66.7 (2)° in (V). The dihedral angle between the sulfonyl benzene ring and the —SO2—NH—C—O segment is 89.4 (1)°, compared to the values of 86.0 (1)° and 87.9 (1)° in the 2 molecules of (II), 88.4 (1)° in (III), 84.8 (1)° in (IV) and 87.3 (1)° in (V).

Furthermore, the dihedral angle between the sulfonyl and the benzoyl benzene ring is 89.1 (2)°, compared to the values of 88.1 (1)° (molecule 1) and 83.5 (1)° (molecule 2) of (II), 74.7 (1)° in (III), 78.7 (1)° in (IV) and 73.3 (1)° in (V).

The packing of molecules linked by of N—H···O(S) hydrogen bonds (Table 1) is shown in Fig. 2.

Experimental

The title compound was prepared by refluxing a mixture of 4-methylbenzoic acid, 2-chlorobenzenesulfonamide and phosphorous oxy chloride for 5 h on a water bath. The resultant mixture was cooled and poured into ice cold water. The solid, 2-chloro-N-(4-methylbenzoyl)benzenesulfonamide obtained was filtered, washed thoroughly with water and then dissolved in sodium bicarbonate solution. The compound was later reprecipitated by acidifying the filtered solution with dilute HCl. The filtered and dried compound was recrystallized to the constant melting point.

Prism like colorless single crystals of the title compound used in X-ray diffraction studies were grown from a slow evaporation of its toluene solution at room temperature.

Refinement

The H atoms of the NH groups were located in a difference map and later restrained to N—H = 0.86 (2) %A. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom). The Uij components of C4, C9 and C10 atoms were restrained to approximate isotropic behavior.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Molecular packing in the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C14H12ClNO3S F(000) = 640
Mr = 309.76 Dx = 1.394 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2713 reflections
a = 8.0554 (8) Å θ = 2.6–27.7°
b = 23.209 (2) Å µ = 0.41 mm1
c = 8.1199 (9) Å T = 299 K
β = 103.52 (1)° Prism, colourless
V = 1476.0 (3) Å3 0.40 × 0.30 × 0.25 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector 3012 independent reflections
Radiation source: fine-focus sealed tube 2396 reflections with I > 2σ(I)
graphite Rint = 0.012
Rotation method data acquisition using ω and phi scans θmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −10→7
Tmin = 0.855, Tmax = 0.906 k = −29→20
6106 measured reflections l = −7→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0583P)2 + 1.5332P] where P = (Fo2 + 2Fc2)/3
3012 reflections (Δ/σ)max = 0.009
184 parameters Δρmax = 0.43 e Å3
19 restraints Δρmin = −0.54 e Å3

Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.8834 (4) 0.06157 (12) 0.7360 (4) 0.0399 (6)
C2 0.8115 (5) 0.05804 (15) 0.8744 (5) 0.0609 (9)
C3 0.9088 (9) 0.0714 (2) 1.0333 (6) 0.1017 (18)
H3 0.8610 0.0693 1.1268 0.122*
C4 1.0737 (10) 0.0875 (3) 1.0534 (7) 0.112 (2)
H4 1.1389 0.0957 1.1614 0.135*
C5 1.1463 (6) 0.0921 (2) 0.9173 (7) 0.0901 (15)
H5 1.2589 0.1042 0.9325 0.108*
C6 1.0509 (4) 0.07867 (14) 0.7569 (5) 0.0564 (8)
H6 1.0995 0.0812 0.6639 0.068*
C7 0.6201 (4) 0.14562 (15) 0.4825 (5) 0.0553 (8)
C8 0.4601 (4) 0.17935 (14) 0.4640 (5) 0.0525 (8)
C9 0.4691 (6) 0.23742 (19) 0.4380 (8) 0.1039 (18)
H9 0.5712 0.2538 0.4266 0.125*
C10 0.3274 (6) 0.27170 (19) 0.4289 (9) 0.113 (2)
H10 0.3359 0.3110 0.4108 0.136*
C11 0.1739 (5) 0.24948 (16) 0.4456 (6) 0.0738 (12)
C12 0.1647 (4) 0.19155 (15) 0.4642 (6) 0.0667 (10)
H12 0.0615 0.1750 0.4714 0.080*
C13 0.3054 (4) 0.15666 (14) 0.4729 (5) 0.0581 (9)
H13 0.2950 0.1171 0.4849 0.070*
C14 0.0207 (6) 0.2878 (2) 0.4412 (8) 0.1062 (18)
H14A −0.0105 0.3071 0.3338 0.127*
H14B 0.0489 0.3159 0.5302 0.127*
H14C −0.0733 0.2648 0.4570 0.127*
N1 0.6050 (3) 0.08618 (12) 0.4850 (4) 0.0524 (7)
H1N 0.511 (3) 0.0699 (15) 0.482 (5) 0.063*
O1 0.8805 (3) 0.05469 (13) 0.4188 (3) 0.0701 (7)
O2 0.7012 (3) −0.01317 (10) 0.5312 (4) 0.0727 (8)
O3 0.7585 (3) 0.16727 (12) 0.4989 (5) 0.0902 (10)
Cl1 0.60112 (17) 0.03731 (6) 0.85557 (19) 0.1056 (5)
S1 0.77166 (9) 0.04311 (3) 0.52941 (10) 0.0470 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0441 (15) 0.0354 (14) 0.0400 (15) 0.0042 (12) 0.0098 (12) 0.0020 (12)
C2 0.083 (2) 0.0542 (19) 0.053 (2) 0.0150 (18) 0.0314 (18) 0.0112 (16)
C3 0.165 (6) 0.097 (4) 0.047 (2) 0.046 (4) 0.034 (3) 0.008 (2)
C4 0.140 (5) 0.105 (4) 0.067 (3) 0.035 (4) −0.027 (3) −0.023 (3)
C5 0.072 (3) 0.077 (3) 0.098 (4) −0.001 (2) −0.027 (3) −0.013 (3)
C6 0.0454 (17) 0.0522 (19) 0.067 (2) −0.0015 (14) 0.0028 (15) 0.0024 (16)
C7 0.0408 (17) 0.0527 (19) 0.072 (2) 0.0017 (14) 0.0127 (15) 0.0123 (16)
C8 0.0416 (16) 0.0453 (17) 0.070 (2) 0.0008 (13) 0.0113 (15) 0.0130 (15)
C9 0.062 (2) 0.058 (2) 0.194 (5) 0.0004 (19) 0.035 (3) 0.035 (3)
C10 0.079 (3) 0.049 (2) 0.214 (6) 0.010 (2) 0.040 (3) 0.038 (3)
C11 0.056 (2) 0.048 (2) 0.117 (4) 0.0122 (16) 0.019 (2) 0.020 (2)
C12 0.0449 (17) 0.050 (2) 0.107 (3) 0.0012 (15) 0.0212 (19) 0.007 (2)
C13 0.0466 (17) 0.0397 (17) 0.089 (3) −0.0005 (14) 0.0184 (17) 0.0054 (16)
C14 0.079 (3) 0.070 (3) 0.174 (6) 0.030 (2) 0.037 (3) 0.027 (3)
N1 0.0356 (13) 0.0464 (15) 0.0708 (18) 0.0023 (11) 0.0038 (12) −0.0026 (13)
O1 0.0647 (15) 0.106 (2) 0.0433 (13) 0.0244 (14) 0.0207 (11) 0.0014 (13)
O2 0.0460 (13) 0.0452 (14) 0.118 (2) 0.0032 (10) 0.0014 (13) −0.0245 (14)
O3 0.0441 (14) 0.0663 (17) 0.163 (3) −0.0014 (12) 0.0291 (16) 0.0272 (18)
Cl1 0.1019 (9) 0.1066 (9) 0.1379 (12) 0.0130 (7) 0.0877 (9) 0.0378 (8)
S1 0.0388 (4) 0.0499 (4) 0.0500 (4) 0.0057 (3) 0.0059 (3) −0.0087 (3)

Geometric parameters (Å, °)

C1—C6 1.378 (4) C9—C10 1.379 (6)
C1—C2 1.381 (4) C9—H9 0.9300
C1—S1 1.761 (3) C10—C11 1.376 (6)
C2—C3 1.379 (7) C10—H10 0.9300
C2—Cl1 1.734 (4) C11—C12 1.357 (5)
C3—C4 1.353 (8) C11—C14 1.515 (5)
C3—H3 0.9300 C12—C13 1.382 (5)
C4—C5 1.370 (8) C12—H12 0.9300
C4—H4 0.9300 C13—H13 0.9300
C5—C6 1.384 (6) C14—H14A 0.9600
C5—H5 0.9300 C14—H14B 0.9600
C6—H6 0.9300 C14—H14C 0.9600
C7—O3 1.201 (4) N1—S1 1.645 (3)
C7—N1 1.385 (4) N1—H1N 0.840 (19)
C7—C8 1.485 (4) O1—S1 1.420 (3)
C8—C9 1.369 (5) O2—S1 1.426 (3)
C8—C13 1.370 (4)
C6—C1—C2 120.1 (3) C11—C10—C9 122.0 (4)
C6—C1—S1 117.1 (2) C11—C10—H10 119.0
C2—C1—S1 122.8 (3) C9—C10—H10 119.0
C3—C2—C1 119.5 (4) C12—C11—C10 117.1 (4)
C3—C2—Cl1 118.3 (4) C12—C11—C14 121.3 (4)
C1—C2—Cl1 122.1 (3) C10—C11—C14 121.6 (4)
C4—C3—C2 120.2 (5) C11—C12—C13 121.4 (3)
C4—C3—H3 119.9 C11—C12—H12 119.3
C2—C3—H3 119.9 C13—C12—H12 119.3
C3—C4—C5 121.1 (5) C8—C13—C12 121.2 (3)
C3—C4—H4 119.5 C8—C13—H13 119.4
C5—C4—H4 119.5 C12—C13—H13 119.4
C4—C5—C6 119.6 (5) C11—C14—H14A 109.5
C4—C5—H5 120.2 C11—C14—H14B 109.5
C6—C5—H5 120.2 H14A—C14—H14B 109.5
C1—C6—C5 119.5 (4) C11—C14—H14C 109.5
C1—C6—H6 120.2 H14A—C14—H14C 109.5
C5—C6—H6 120.2 H14B—C14—H14C 109.5
O3—C7—N1 119.8 (3) C7—N1—S1 122.6 (2)
O3—C7—C8 123.5 (3) C7—N1—H1N 122 (3)
N1—C7—C8 116.7 (3) S1—N1—H1N 115 (3)
C9—C8—C13 117.9 (3) O1—S1—O2 119.06 (17)
C9—C8—C7 117.3 (3) O1—S1—N1 109.85 (16)
C13—C8—C7 124.8 (3) O2—S1—N1 104.63 (14)
C8—C9—C10 120.2 (4) O1—S1—C1 107.63 (15)
C8—C9—H9 119.9 O2—S1—C1 109.23 (16)
C10—C9—H9 119.9 N1—S1—C1 105.67 (14)
C6—C1—C2—C3 −0.4 (5) C9—C10—C11—C12 −2.8 (9)
S1—C1—C2—C3 177.8 (3) C9—C10—C11—C14 177.9 (6)
C6—C1—C2—Cl1 179.5 (3) C10—C11—C12—C13 2.5 (7)
S1—C1—C2—Cl1 −2.3 (4) C14—C11—C12—C13 −178.2 (5)
C1—C2—C3—C4 −0.3 (7) C9—C8—C13—C12 −3.1 (6)
Cl1—C2—C3—C4 179.8 (4) C7—C8—C13—C12 176.1 (4)
C2—C3—C4—C5 1.3 (8) C11—C12—C13—C8 0.4 (7)
C3—C4—C5—C6 −1.6 (8) O3—C7—N1—S1 6.5 (5)
C2—C1—C6—C5 0.1 (5) C8—C7—N1—S1 −171.8 (3)
S1—C1—C6—C5 −178.2 (3) C7—N1—S1—O1 −55.4 (3)
C4—C5—C6—C1 0.9 (6) C7—N1—S1—O2 175.7 (3)
O3—C7—C8—C9 10.5 (6) C7—N1—S1—C1 60.4 (3)
N1—C7—C8—C9 −171.3 (4) C6—C1—S1—O1 −4.7 (3)
O3—C7—C8—C13 −168.8 (4) C2—C1—S1—O1 177.0 (3)
N1—C7—C8—C13 9.5 (5) C6—C1—S1—O2 125.9 (2)
C13—C8—C9—C10 2.8 (8) C2—C1—S1—O2 −52.4 (3)
C7—C8—C9—C10 −176.5 (5) C6—C1—S1—N1 −122.0 (2)
C8—C9—C10—C11 0.2 (10) C2—C1—S1—N1 59.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O2i 0.84 (2) 2.14 (2) 2.970 (4) 169 (4)

Symmetry codes: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2212).

References

  1. Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010a). Acta Cryst. E66, o747. [DOI] [PMC free article] [PubMed]
  2. Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010b). Acta Cryst. E66, o794. [DOI] [PMC free article] [PubMed]
  3. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  6. Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010a). Acta Cryst. E66, o1281. [DOI] [PMC free article] [PubMed]
  7. Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010b). Acta Cryst. E66, o1292. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810018908/bq2212sup1.cif

e-66-o1466-sup1.cif (17.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810018908/bq2212Isup2.hkl

e-66-o1466-Isup2.hkl (147.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES