Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 May 8;66(Pt 6):o1251–o1252. doi: 10.1107/S1600536810015667

3-(2,3-Dimethyl-5-oxo-1-phenyl-2,5-di­hydro-1H-pyrazol-4-yl)sydnone

Jia Hao Goh a,, Hoong-Kun Fun a,*,§, Nithinchandra b, B Kalluraya b
PMCID: PMC2979459  PMID: 21579356

Abstract

In the title sydnone compound [systematic name: 3-(2,3-dimethyl-5-oxo-1-phenyl-2,5-dihydro-1H-pyrazol-4-yl)-1,2,3-oxadiazol-3-ium-5-olate], C13H12N4O3, the oxadiazole and pyrazole rings are essentially planar [maximum deviations = 0.006 (1) and 0.019 (1) Å, respectively] and are inclined at inter­planar angles of 37.84 (4) and 46.60 (4)°, respectively, with respect to the benzene ring. In the crystal, adjacent mol­ecules are inter­connected into a three-dimensional supra­molecular network via inter­molecular C—H⋯O hydrogen bonds. Weak inter­molecular π–π aromatic stacking inter­actions [centroid–centroid distance = 3.5251 (5) Å] further stabilize the crystal packing.

Related literature

For general background to and applications of sydnone derivatives, see: Baker et al. (1949); Hedge et al. (2008); Rai et al. (2008). For the preparation of 3-aryl sydnones, see Kalluraya et al. (2004); Rai et al. (2008). For related structures, see: Baker & Ollis (1957); Goh et al. (2009a,b , 2010a,b ). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).graphic file with name e-66-o1251-scheme1.jpg

Experimental

Crystal data

  • C13H12N4O3

  • M r = 272.27

  • Monoclinic, Inline graphic

  • a = 10.6525 (3) Å

  • b = 7.3014 (3) Å

  • c = 15.6828 (4) Å

  • β = 93.982 (1)°

  • V = 1216.83 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.56 × 0.17 × 0.08 mm

Data collection

  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.941, T max = 0.992

  • 44010 measured reflections

  • 6426 independent reflections

  • 4895 reflections with I > 2σ(I)

  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.125

  • S = 1.04

  • 6426 reflections

  • 229 parameters

  • All H-atom parameters refined

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810015667/sj2767sup1.cif

e-66-o1251-sup1.cif (18.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015667/sj2767Isup2.hkl

e-66-o1251-Isup2.hkl (314.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O3i 0.981 (14) 2.492 (13) 3.2155 (10) 130.4 (10)
C11—H11A⋯O2i 0.944 (13) 2.543 (13) 3.4163 (10) 153.9 (11)
C12—H12B⋯O2ii 0.984 (13) 2.369 (13) 3.3022 (10) 158.1 (11)
C13—H13A⋯O3iii 0.958 (14) 2.516 (15) 3.3606 (10) 147.0 (12)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship.

supplementary crystallographic information

Comment

Sydnones constitute a well-defined class of mesoionic compounds that contain a 1,2,3-oxadiazole ring system. The introduction of the concept of mesoionic structure for certain heterocyclic compounds in the year 1949 has proved to be fruitful development in heterocyclic chemistry (Baker et al., 1949). The study of sydnones still remains a field of interest because of their electronic structure and also because of the various types of biological activities displayed by some of them. Interest in sydnone derivatives has also been encouraged by the discovery that they exhibit various pharmacological activities (Hedge et al., 2008; Rai et al., 2008).

3-aryl sydnones are prepared by the cyclisation of N-nitroso-N-aryl glycines with acetic anhydride. These N-nitroso-N-aryl glycines were obtained by the nitrosation of N-substituted glycines. The N-substituted glycine was obtained by the hydrolysis of corresponding ester with sodiumhydroxide. The ester is in turn obtained by the reaction of appropriately substituted aniline with ethyl aceto acetate in absolute ethanol medium employing anhydrous sodium acetate as the catalyst (Kalluraya et al., 2004; Rai et al., 2008)

In the title sydnone compound (Fig. 1), the 1,2,3-oxadiazole (N3/N4/O1/C10/C11) and pyrazole (N1/N2/C7-C9) rings are essentially planar, with maximum deviations of 0.006 (1) and -0.019 (1) Å, respectively, at atoms N4 and N1. These two rings are inclined at interplanar angles of 37.84 (4) and 46.60 (4)°, respectively, with the C1-C6 benzene ring. As reported previously (Goh et al., 2010a,b), the exocyclic C10–O3 bond length of 1.2205 (9) Å is inconsistent with the formulation of Baker & Ollis (1957), which involves the delocalization of a positive charge in the 1,2,3-oxadiazole ring, and a negative charge in the exocyclic oxygen. The bond lengths (Allen et al., 1987) and angles are within normal range and comparable to those observed in closely related pyrazole (Goh et al., 2009a,b) and sydnone (Goh et al., 2010a,b) structures.

In the crystal packing, C1—H1A···O3, C13—H13A···O3, C11—H11A···O2 and C12—H12B···O2 hydrogen bonds (Table 1) form two different pairs of intermolecular bifurcated acceptor hydrogen bonds, which link the molecules into a three-dimensional supramolecular network. The crystal packing is further stabilized by weak intermolecular π–π aromatic stacking interactions [Cg1···Cg2ii = 3.5251 (5) Å, (ii) = -x+1, y-1/2, -z+1/2 where Cg1 and Cg2 are centroids of pyrazole and benzene rings, respectively].

Experimental

[(1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)(nitroso) amino]acetic acid (0.1 mol) was heated with acetic anhydride (0.5 mol) on a water bath for 2–4 h, the reaction mixture was kept aside at room temperature for overnight. It was then poured into ice cold water, filtered and washed with water, sodium bicarbonate solution (5 %) and again with water. The solid product was dried and crystallized from benzene. Single crystals suitable for X-ray analysis were obtained from a 1:2 mixture of DMF and ethanol by slow evaporation.

Refinement

All hydrogen atoms were located from difference Fourier map [range of C—H = 0.944 (13)–0.993 (16) Å] and allowed to refine freely.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the b axis, showing a three-dimensional supramolecular network. Hydrogen atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C13H12N4O3 F(000) = 568
Mr = 272.27 Dx = 1.486 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9368 reflections
a = 10.6525 (3) Å θ = 3.1–37.4°
b = 7.3014 (3) Å µ = 0.11 mm1
c = 15.6828 (4) Å T = 100 K
β = 93.982 (1)° Block, brown
V = 1216.83 (7) Å3 0.56 × 0.17 × 0.08 mm
Z = 4

Data collection

Bruker APEXII DUO CCD area-detector diffractometer 6426 independent reflections
Radiation source: fine-focus sealed tube 4895 reflections with I > 2σ(I)
graphite Rint = 0.048
φ and ω scans θmax = 37.6°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −18→18
Tmin = 0.941, Tmax = 0.992 k = −12→12
44010 measured reflections l = −26→26

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125 All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0663P)2 + 0.1919P] where P = (Fo2 + 2Fc2)/3
6426 reflections (Δ/σ)max = 0.001
229 parameters Δρmax = 0.55 e Å3
0 restraints Δρmin = −0.41 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.93586 (5) 1.20867 (9) 0.00540 (4) 0.02015 (12)
O2 0.51808 (5) 1.07724 (9) 0.11293 (4) 0.01697 (11)
O3 0.83681 (6) 1.19975 (11) −0.12824 (4) 0.02477 (14)
N1 0.59770 (5) 0.96695 (9) 0.24595 (4) 0.01428 (11)
N2 0.71755 (6) 0.94159 (9) 0.28563 (4) 0.01458 (11)
N3 0.79599 (6) 1.09624 (9) 0.08032 (4) 0.01374 (11)
N4 0.91049 (6) 1.16505 (11) 0.08800 (4) 0.01949 (13)
C1 0.37495 (7) 0.95237 (11) 0.26642 (5) 0.01608 (13)
C2 0.27426 (7) 0.99016 (12) 0.31562 (6) 0.01978 (14)
C3 0.29319 (8) 1.07726 (13) 0.39442 (6) 0.02155 (15)
C4 0.41384 (8) 1.12975 (12) 0.42404 (5) 0.01955 (14)
C5 0.51539 (7) 1.09504 (11) 0.37507 (5) 0.01622 (13)
C6 0.49514 (6) 1.00508 (10) 0.29691 (4) 0.01404 (12)
C7 0.80407 (6) 0.97734 (10) 0.22937 (5) 0.01404 (12)
C8 0.74125 (6) 1.03529 (10) 0.15426 (4) 0.01342 (12)
C9 0.60776 (6) 1.03268 (10) 0.16264 (4) 0.01363 (12)
C10 0.83202 (7) 1.16748 (12) −0.05217 (5) 0.01728 (13)
C11 0.74198 (7) 1.09301 (11) −0.00008 (5) 0.01608 (13)
C12 0.73637 (7) 0.82345 (12) 0.36075 (5) 0.01818 (14)
C13 0.93987 (7) 0.94884 (12) 0.25274 (5) 0.01862 (14)
H1A 0.3617 (12) 0.8870 (19) 0.2119 (9) 0.023 (3)*
H2A 0.1903 (13) 0.953 (2) 0.2965 (9) 0.030 (3)*
H3A 0.2226 (13) 1.100 (2) 0.4312 (9) 0.031 (3)*
H4A 0.4263 (14) 1.193 (2) 0.4800 (10) 0.035 (4)*
H5A 0.5999 (12) 1.134 (2) 0.3956 (8) 0.026 (3)*
H11A 0.6593 (12) 1.0502 (18) −0.0133 (9) 0.023 (3)*
H13A 0.9830 (14) 0.939 (2) 0.2013 (9) 0.033 (4)*
H13B 0.9704 (14) 1.055 (2) 0.2880 (10) 0.040 (4)*
H13C 0.9524 (14) 0.841 (2) 0.2879 (10) 0.036 (4)*
H12A 0.7723 (15) 0.894 (2) 0.4061 (10) 0.040 (4)*
H12B 0.6549 (12) 0.7786 (18) 0.3781 (8) 0.024 (3)*
H12C 0.7870 (14) 0.718 (2) 0.3489 (9) 0.033 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0160 (2) 0.0304 (3) 0.0140 (2) −0.0050 (2) 0.00113 (18) 0.0030 (2)
O2 0.0129 (2) 0.0238 (3) 0.0137 (2) 0.00159 (19) −0.00223 (17) −0.00001 (19)
O3 0.0216 (3) 0.0389 (4) 0.0139 (2) −0.0011 (2) 0.0019 (2) 0.0053 (2)
N1 0.0093 (2) 0.0214 (3) 0.0119 (2) 0.00001 (19) −0.00034 (18) 0.0004 (2)
N2 0.0103 (2) 0.0204 (3) 0.0128 (2) 0.00010 (19) −0.00083 (18) 0.0023 (2)
N3 0.0120 (2) 0.0165 (3) 0.0126 (2) −0.00043 (19) 0.00062 (18) −0.00050 (19)
N4 0.0159 (3) 0.0288 (4) 0.0138 (3) −0.0064 (2) 0.0007 (2) 0.0014 (2)
C1 0.0118 (3) 0.0194 (3) 0.0169 (3) 0.0000 (2) 0.0002 (2) 0.0015 (2)
C2 0.0124 (3) 0.0245 (4) 0.0227 (3) 0.0014 (2) 0.0026 (2) 0.0057 (3)
C3 0.0192 (3) 0.0260 (4) 0.0202 (3) 0.0055 (3) 0.0071 (3) 0.0056 (3)
C4 0.0232 (3) 0.0210 (3) 0.0150 (3) 0.0042 (3) 0.0047 (3) 0.0022 (3)
C5 0.0169 (3) 0.0183 (3) 0.0134 (3) −0.0001 (2) 0.0008 (2) 0.0002 (2)
C6 0.0119 (3) 0.0171 (3) 0.0132 (3) 0.0001 (2) 0.0016 (2) 0.0007 (2)
C7 0.0114 (2) 0.0171 (3) 0.0136 (3) 0.0003 (2) 0.0006 (2) 0.0003 (2)
C8 0.0116 (2) 0.0170 (3) 0.0116 (3) −0.0001 (2) 0.0009 (2) 0.0005 (2)
C9 0.0124 (3) 0.0165 (3) 0.0119 (3) −0.0003 (2) 0.0002 (2) −0.0008 (2)
C10 0.0145 (3) 0.0229 (3) 0.0144 (3) 0.0006 (2) 0.0006 (2) 0.0010 (2)
C11 0.0137 (3) 0.0219 (3) 0.0125 (3) −0.0006 (2) −0.0003 (2) 0.0008 (2)
C12 0.0169 (3) 0.0237 (4) 0.0138 (3) −0.0005 (3) −0.0008 (2) 0.0042 (3)
C13 0.0115 (3) 0.0256 (4) 0.0186 (3) 0.0024 (2) −0.0004 (2) 0.0030 (3)

Geometric parameters (Å, °)

O1—N4 1.3789 (9) C3—C4 1.3898 (13)
O1—C10 1.4108 (10) C3—H3A 0.993 (14)
O2—C9 1.2340 (9) C4—C5 1.3926 (11)
O3—C10 1.2205 (9) C4—H4A 0.992 (15)
N1—N2 1.3933 (8) C5—C6 1.3941 (10)
N1—C9 1.4030 (9) C5—H5A 0.978 (13)
N1—C6 1.4252 (9) C7—C8 1.3801 (10)
N2—C7 1.3450 (9) C7—C13 1.4821 (10)
N2—C12 1.4626 (10) C8—C9 1.4373 (10)
N3—N4 1.3169 (9) C10—C11 1.4113 (10)
N3—C11 1.3494 (10) C11—H11A 0.944 (13)
N3—C8 1.4060 (9) C12—H12A 0.939 (16)
C1—C6 1.3896 (10) C12—H12B 0.984 (13)
C1—C2 1.3916 (11) C12—H12C 0.964 (15)
C1—H1A 0.981 (13) C13—H13A 0.958 (15)
C2—C3 1.3920 (13) C13—H13B 0.993 (16)
C2—H2A 0.962 (15) C13—H13C 0.962 (16)
N4—O1—C10 110.85 (6) C5—C6—N1 120.48 (6)
N2—N1—C9 109.54 (5) N2—C7—C8 107.80 (6)
N2—N1—C6 119.34 (6) N2—C7—C13 120.80 (7)
C9—N1—C6 124.51 (6) C8—C7—C13 131.39 (7)
C7—N2—N1 109.25 (6) C7—C8—N3 126.63 (6)
C7—N2—C12 125.52 (6) C7—C8—C9 110.00 (6)
N1—N2—C12 120.54 (6) N3—C8—C9 123.32 (6)
N4—N3—C11 115.11 (6) O2—C9—N1 124.94 (6)
N4—N3—C8 118.67 (6) O2—C9—C8 131.77 (7)
C11—N3—C8 126.22 (6) N1—C9—C8 103.28 (6)
N3—N4—O1 104.05 (6) O3—C10—O1 120.01 (7)
C6—C1—C2 118.78 (7) O3—C10—C11 135.75 (7)
C6—C1—H1A 120.5 (8) O1—C10—C11 104.24 (6)
C2—C1—H1A 120.7 (8) N3—C11—C10 105.74 (6)
C1—C2—C3 120.87 (7) N3—C11—H11A 122.8 (8)
C1—C2—H2A 120.5 (9) C10—C11—H11A 131.5 (8)
C3—C2—H2A 118.6 (9) N2—C12—H12A 108.2 (10)
C4—C3—C2 119.75 (7) N2—C12—H12B 110.2 (8)
C4—C3—H3A 118.7 (8) H12A—C12—H12B 107.1 (12)
C2—C3—H3A 121.6 (9) N2—C12—H12C 111.3 (9)
C3—C4—C5 120.08 (8) H12A—C12—H12C 112.3 (13)
C3—C4—H4A 119.2 (9) H12B—C12—H12C 107.6 (12)
C5—C4—H4A 120.7 (9) C7—C13—H13A 108.6 (9)
C4—C5—C6 119.46 (7) C7—C13—H13B 107.8 (9)
C4—C5—H5A 119.9 (8) H13A—C13—H13B 111.8 (12)
C6—C5—H5A 120.7 (8) C7—C13—H13C 110.5 (9)
C1—C6—C5 121.04 (7) H13A—C13—H13C 111.3 (13)
C1—C6—N1 118.48 (7) H13B—C13—H13C 106.8 (13)
C9—N1—N2—C7 −3.85 (9) N2—C7—C8—N3 176.29 (7)
C6—N1—N2—C7 −156.60 (7) C13—C7—C8—N3 −5.07 (14)
C9—N1—N2—C12 −160.86 (7) N2—C7—C8—C9 −1.23 (9)
C6—N1—N2—C12 46.38 (10) C13—C7—C8—C9 177.42 (8)
C11—N3—N4—O1 −1.06 (9) N4—N3—C8—C7 −24.91 (12)
C8—N3—N4—O1 179.40 (6) C11—N3—C8—C7 155.61 (8)
C10—O1—N4—N3 1.21 (9) N4—N3—C8—C9 152.29 (8)
C6—C1—C2—C3 −0.73 (12) C11—N3—C8—C9 −27.19 (12)
C1—C2—C3—C4 0.93 (13) N2—N1—C9—O2 −176.15 (7)
C2—C3—C4—C5 −0.10 (13) C6—N1—C9—O2 −25.12 (12)
C3—C4—C5—C6 −0.92 (12) N2—N1—C9—C8 2.90 (8)
C2—C1—C6—C5 −0.31 (12) C6—N1—C9—C8 153.93 (7)
C2—C1—C6—N1 −179.62 (7) C7—C8—C9—O2 177.90 (8)
C4—C5—C6—C1 1.14 (12) N3—C8—C9—O2 0.29 (13)
C4—C5—C6—N1 −179.58 (7) C7—C8—C9—N1 −1.05 (8)
N2—N1—C6—C1 −152.08 (7) N3—C8—C9—N1 −178.67 (7)
C9—N1—C6—C1 59.49 (10) N4—O1—C10—O3 178.89 (8)
N2—N1—C6—C5 28.61 (11) N4—O1—C10—C11 −0.94 (9)
C9—N1—C6—C5 −119.82 (8) N4—N3—C11—C10 0.50 (10)
N1—N2—C7—C8 3.07 (9) C8—N3—C11—C10 180.00 (7)
C12—N2—C7—C8 158.67 (7) O3—C10—C11—N3 −179.50 (10)
N1—N2—C7—C13 −175.74 (7) O1—C10—C11—N3 0.29 (9)
C12—N2—C7—C13 −20.15 (12)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1A···O3i 0.981 (14) 2.492 (13) 3.2155 (10) 130.4 (10)
C11—H11A···O2i 0.944 (13) 2.543 (13) 3.4163 (10) 153.9 (11)
C12—H12B···O2ii 0.984 (13) 2.369 (13) 3.3022 (10) 158.1 (11)
C13—H13A···O3iii 0.958 (14) 2.516 (15) 3.3606 (10) 147.0 (12)

Symmetry codes: (i) −x+1, −y+2, −z; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+2, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2767).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Baker, W. & Ollis, W. D. (1957). Q. Rev. Chem. Soc.11, 15–29
  3. Baker, W., Ollis, W. D. & Poole, V. D. (1949). J. Chem. Soc. pp. 307–314.
  4. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  6. Goh, J. H., Fun, H.-K., Nithinchandra & Kalluraya, B. (2009a). Acta Cryst. E65, o3088–o3089. [DOI] [PMC free article] [PubMed]
  7. Goh, J. H., Fun, H.-K., Nithinchandra & Kalluraya, B. (2010a). Acta Cryst. E66, o1225–o1226. [DOI] [PMC free article] [PubMed]
  8. Goh, J. H., Fun, H.-K., Nithinchandra & Kalluraya, B. (2010b). Acta Cryst. E66, o1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goh, J. H., Fun, H.-K., Nithinchandra, Rai, N. S. & Kalluraya, B. (2009b). Acta Cryst. E65, o3099–o3100. [DOI] [PMC free article] [PubMed]
  10. Hedge, J. C., Girisha, K. S., Adhikari, A. & Kalluraya, B. (2008). Eur. J. Med. Chem.43, 2831–2834. [DOI] [PubMed]
  11. Kalluraya, B., Rai, G., Rai, N. S. & Shenoy, S. (2004). Indian J. Heterocycl. Chem.14, 127–130.
  12. Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem.43, 1715–1720. [DOI] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810015667/sj2767sup1.cif

e-66-o1251-sup1.cif (18.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015667/sj2767Isup2.hkl

e-66-o1251-Isup2.hkl (314.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES