Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 May 8;66(Pt 6):m626–m627. doi: 10.1107/S1600536810016223

Diaqua­bis(ethyl­enediamine-κ2 N,N′)copper(II) bis­(4-phenyl­benzoate) 2.66-hydrate

José A Fernandes a, Ana I Ramos a, Patrícia Silva a, Susana S Braga a, Paulo Ribeiro-Claro a, João Rocha a, Filipe A Almeida Paz a,*
PMCID: PMC2979460  PMID: 21579282

Abstract

In the title complex, [Cu(C2H8N2)2(H2O)2](C13H9O2)2·2.66H2O, the CuII centre (located at an inversion centre) is coordinated by two bidentate ethyl­enediamine (en) ligands and two water O atoms in a typical Jahn–Teller distorted octahedral geometry. The amino groups and the water mol­ecules are disordered over two distinct crystallographic positions with occupancies of 1/3 and 2/3. In the crystal, the cations and anions are disposed in alternating layers. One of the water mol­ecules of crystallization is disordered and the other has a fractional occupation. In the 2/3 occupancy component, water mol­ecules are organized into a chain composed of hexa­meric units inter­connected by carboxyl­ate bridges.

Related literature

For general background to reactions based on the copper cation, see: Graham et al. (2000); Majumder et al. (2006); Rao et al. (2004); Zhao et al. (2009). For examples of framework-type structures of hybrid materials comprising carboxyl­ate anions, see: Eddaoudi et al. (2001). For general background to crystal engineering approaches from our research group, see: Paz & Khimyak et al. (2002); Paz & Bond et al. (2002); Paz & Klinowski (2003); Paz et al. (2005); Shi et al. (2008). For a description of the graph-set notation for hydrogen-bonded aggregates, see: Grell et al. (1999).graphic file with name e-66-0m626-scheme1.jpg

Experimental

Crystal data

  • [Cu(C2H8N2)2(H2O)2](C13H9O2)2·2.66H2O

  • M r = 662.20

  • Monoclinic, Inline graphic

  • a = 6.1466 (6) Å

  • b = 34.984 (3) Å

  • c = 7.3101 (7) Å

  • β = 95.819 (4)°

  • V = 1563.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.76 mm−1

  • T = 150 K

  • 0.13 × 0.10 × 0.06 mm

Data collection

  • Bruker X8 Kappa CCD APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997) T min = 0.908, T max = 0.956

  • 26073 measured reflections

  • 4736 independent reflections

  • 3908 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.137

  • S = 1.10

  • 4736 reflections

  • 259 parameters

  • 15 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.66 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810016223/tk2668sup1.cif

e-66-0m626-sup1.cif (27.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810016223/tk2668Isup2.hkl

e-66-0m626-Isup2.hkl (232KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cu1—N1 2.019 (2)
Cu1—N1′ 2.035 (4)
Cu1—N2 2.006 (2)
Cu1—N2′ 2.008 (4)
Cu1—O1W 2.496 (4)
Cu1—O3W 2.605 (2)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2ii 0.92 2.13 2.986 (3) 154
N1—H1B⋯O2Wiii 0.92 2.32 3.093 (3) 141
N2—H2A⋯O2iii 0.92 2.16 3.037 (3) 158
N1′—H1E⋯O2Wiii 0.92 2.51 3.375 (4) 157
N1′—H1F⋯O1iii 0.92 2.20 3.087 (5) 161
N2′—H2E⋯O4Wiv 0.92 2.33 3.181 (9) 154
N2′—H2F⋯O2Wv 0.92 2.21 3.055 (5) 152
O1W—H1M⋯O2iii 0.95 (1) 1.92 (1) 2.844 (4) 163 (4)
O1W—H1N⋯O2vi 0.95 (1) 1.88 (1) 2.814 (4) 169 (4)
O2W—H2M⋯O2vii 0.95 (1) 1.73 (1) 2.668 (2) 168 (5)
O2W—H2N⋯O1viii 0.95 (1) 1.87 (2) 2.765 (2) 156 (5)
O3W—H3M⋯O2Wv 0.95 (1) 2.01 (1) 2.932 (3) 163 (3)
O3W—H3N⋯O1ix 0.95 (1) 1.82 (1) 2.721 (3) 158 (3)
O4W—H4M⋯O1x 0.95 (1) 1.91 2.8562 (17) 178

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic; (ix) Inline graphic; (x) Inline graphic.

Acknowledgments

We are grateful to the Fundação para a Ciência e a Tecnologia (FCT, Portugal) for their general financial support (R&D projects PTDC/QUI/65805/2006 and PDTC/QUI/69302/2006), for a post-doctoral research grant (under the former project), for the PhD grant SFRH/BD46601/2008, and also for specific funding toward the purchase of the single-crystal diffractometer.

supplementary crystallographic information

Comment

Carboxylate anions are widely used in the synthesis of coordination polymers (Eddaoudi et al., 2001). Our research group specialises on the design and preparation of these compounds (Paz & Khimyak et al., 2002; Paz et al., 2003; Paz et al., 2005; Shi et al., 2008) and following our previous interest in the biphenyldicarboxylate anion (bpdc2-) as a bridging ligand (Paz & Bond et al., 2002), we have recently started to use 4-phenylbenzoate (pb-). Given its ability to form stable coordination complexes, copper was chosen as metal centre for our preliminary studies (Graham et al., 2000; Majumder et al., 2006; Rao et al., 2004; Zhao et al., 2009). While reacting pb- with [Cu(en)2(H2O)2](NO3)2 we isolated as a secondary product, the title complex, (I), whose structure we wish to report now.

The asymmetric unit of (I) contains one 4-phenylbenzoate anion, 1.33 water molecules of crystallisation, and 1/2 of the [Cu(en)2(H2O)2]2+ cation; the latter is situated about a centre of inversion. The species are distributed in alternating layers along the b axis (Fig. 1a). An ordered hydrophobic layer is composed by the aromatic rings from pb- and occupies the unit cell regions located between ca. 0.1 < b < 0.4 and 0.6 < b < 0.9 (Fig. 1a). Along the c axis, these moieties are distributed in two alternating layers, from which the aromatic rings of a specific layer are off-set from those of the layers directly above and below, avoiding efficient π-π stacking (Fig. 1b). The two average planes containing the phenyl rings are mutually rotated by ca. 40°, which increases the distance between hydrogen atoms of neighbouring pb- anions.

The hydrophilic layer, which is formed by the carboxylate groups, the [Cu(en)2(H2O)2]2+ cations and the water molecules of crystallisation, exhibits extensive crystallographic disorder. On the one hand, the centrosymmetric cation has two possible mutually-tilted crystallographic positions (rates of occupancy of 1/3 and 2/3; see Fig. 2), which have in common the two carbon atoms and the Cu centre. For each possibility the Cu centre exhibits a typical octahedral coordination environment with a strong Jahn-Teller distortion: the Cu—N bonds (equatorial planes) range from 2.006 (2) to 2.035 (4) Å, and the Cu—Owater (apical positions) are either 2.601 (2) Å (2/3 occupancy) or 2.495 (4) Å (1/3 occupancy); however, the cis octahedral angles fall within a rather short range around the ideal value: 84.65 (15) – 95.35 (15) ° (Table 1).

The crystal structure is rich with a variety of hydrogen bonds due to the presence of amines, carboxylates and water molecules (both coordinated and uncoordinated). The formed hydrogen bonding sub-network is strongly affected by the aforementioned crystal disorder plus some additional disorder associated with the two uncoordinated water molecules (O2W and O4W). The coordinated O3W and uncoordinated O2W water molecules, plus the O1 oxygen atom of the carboxylate group are engaged in a series of strong [O···O distances ranging from 2.668 (2) to 2.932 (3) Å; Table 2] and rather directional [angles in the range 156 (5) – 168 (5) °; Table 2] O—H···O hydrogen bonds, forming an almost planar supramolecular hexagon (longest distance to the average plane of ca. 0.17 Å) with a graph set motif R64(12) (Grell et al., 1999) (Fig. 3). Remarkably, the carboxylate group further establishes bridges between adjacent supramolecular hexagons [O2W—H2M···O2 at 1.731 (10) Å; Fig. 3], leading to a 1-D hydrogen bonded chain running parallel the a axis (Fig. 3). The amino groups also participate in the hydrogen bonding network with rather directional interactions [angles are in the range 141 – 174 °; Table 2], even though the N···O distances with the O2 carboxylate atom and the water molecules are relatively long [N1···O2 2.986 (3) Å, N2···O2 3.037 (3) Å and N1···O2W 3.093 (3) Å].

Experimental

All chemicals were purchased from commercial sources and were used as received without any further purification. An aqueous solution of Cu(NO3)2.3H2O (Sigma-Aldrich, 0.80 g, 3.3 mmol, 5 ml) was added to a solution of ethylenediamine (Riedel-de Haën, 0.5 ml, 7.3 mmol) in water (5 ml). After 1 min, a deep-violet solution was formed. Slow evaporation of the aqueous solution yielded crystalline plates of [Cu(en)2(H2O)2](NO3)2 after 15 days.

An aqueous solution of KOH (Eka, 0.106 g, 1.89 mmol, 10 ml) was added to a suspension of 4-phenylbenzoic acid (Hpb, Sigma-Aldrich, 0.375 g, 0.945 mmol) in water (40 ml). The resulting solution was filtered and added to an aqueous solution of [Cu(en)2(H2O)2](NO3)2 (0.228 g, 0.945 mmol, 10 ml). The precipitation of a blue-violet powder was immediate. The slow evaporation of the aqueous solution yielded crystalline needles of the title complex after 60 days.

Selected FT—IR (KBr, cm-1): ν(NH2) = 3363s, 3307s, 3216s and 3138m; νasym(—COO-) = 1596vs, 1541vs and 1577vs; 1447m; νsym(—COO-) = 1395vs; 1101m; 1045s; γ(-CH, di-subs. Ph) = 838m and 800m; γ(-CH, mono-subs. Ph) = 751s; 694m; 525m; 461m.

Refinement

Hydrogen atoms bound to carbon and nitrogen were located at their idealized positions and were included in the final structural model in riding-motion approximation with: C—H = 0.95 Å (aromatic) and 0.95 Å (—CH2 moieties); N—H = 0.92 Å. The isotropic thermal displacement parameters for these atoms were fixed at 1.2 times Ueq of the respective parent atom.

H atoms associated with the four crystallographically independent water molecules were directly located from difference Fourier maps and included in the structure with the O—H and H···H distances restrained to 0.95 (1) and 1.55 (1) Å, respectively, in order to ensure a chemically reasonable geometry for these moieties. The Uiso of these H-atoms were fixed at 1.5 times Ueq of the parent O-atoms.

The crystallographically independent ethylendiamine moiety was found to be disordered over two distinct positions with rates of occupancy of 2/3 and 1/3, respectively (calculated from unrestrained refinements for the respective sites occupancies). The analogous pairs of carbon atoms of these moieties (C1 and C1'; C2 and C2') were located at the same crystallographic positions and were further included in the final structural model with identical anisotropic displacement parameters.

Figures

Fig. 1.

Fig. 1.

Perspective views along the (a) [001] and (b) [100] directions of the unit cell of the crystal packing of the title compound. Only the major contribution for the cation and water molecules of crystallisation are represented.

Fig. 2.

Fig. 2.

Octahedral coordination environments of the Cu centres. Symmetry transformations used to generate equivalent atoms: (i) 1-x, -y, -z.

Fig. 3.

Fig. 3.

Hydrogen bonding network solely composed by the major component of the title complex. The O—H···O bonds are depicted in violet, and N—H···O bonds are depicted in blue. The organic part of the pb- ligand has been omitted for clarity. Symmetry operations used to generate equivalent atoms have been omitted for simplicity.

Crystal data

[Cu(C2H8N2)2(H2O)2](C13H9O2)2·2.66H2O F(000) = 699
Mr = 662.20 Dx = 1.406 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 9591 reflections
a = 6.1466 (6) Å θ = 3.3–30.5°
b = 34.984 (3) Å µ = 0.76 mm1
c = 7.3101 (7) Å T = 150 K
β = 95.819 (4)° Needle, violet
V = 1563.8 (3) Å3 0.13 × 0.10 × 0.06 mm
Z = 2

Data collection

Bruker X8 Kappa CCD APEXII diffractometer 4736 independent reflections
Radiation source: fine-focus sealed tube 3908 reflections with I > 2σ(I)
graphite Rint = 0.034
ω/φ scans θmax = 30.5°, θmin = 3.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) h = −8→8
Tmin = 0.908, Tmax = 0.956 k = −47→49
26073 measured reflections l = −10→9

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137 H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0755P)2 + 0.5782P] where P = (Fo2 + 2Fc2)/3
4736 reflections (Δ/σ)max < 0.001
259 parameters Δρmax = 0.52 e Å3
15 restraints Δρmin = −0.66 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cu1 0.5000 0.0000 0.0000 0.02840 (11)
N1 0.6260 (4) 0.04498 (6) 0.1479 (3) 0.0285 (4) 0.67
H1A 0.5747 0.0453 0.2618 0.034* 0.67
H1B 0.7761 0.0434 0.1639 0.034* 0.67
N2 0.3249 (4) 0.03936 (6) −0.1506 (3) 0.0326 (5) 0.67
H2A 0.3829 0.0428 −0.2607 0.039* 0.67
H2B 0.1831 0.0310 −0.1755 0.039* 0.67
C1 0.5555 (4) 0.08119 (5) 0.0418 (3) 0.0337 (4) 0.67
H1C 0.5564 0.1032 0.1272 0.040* 0.67
H1D 0.6583 0.0867 −0.0506 0.040* 0.67
C2 0.3274 (3) 0.07512 (5) −0.0527 (3) 0.0336 (4) 0.67
H2C 0.2201 0.0744 0.0395 0.040* 0.67
H2D 0.2878 0.0963 −0.1393 0.040* 0.67
N1' 0.6818 (6) 0.04865 (12) 0.0030 (6) 0.0247 (8) 0.33
H1E 0.7995 0.0465 0.0907 0.030* 0.33
H1F 0.7345 0.0518 −0.1095 0.030* 0.33
N2' 0.2445 (6) 0.03581 (11) −0.0017 (6) 0.0237 (8) 0.33
H2E 0.1326 0.0280 −0.0866 0.028* 0.33
H2F 0.1935 0.0365 0.1123 0.028* 0.33
C1' 0.5555 (4) 0.08119 (5) 0.0418 (3) 0.0337 (4) 0.33
H1G 0.6207 0.1047 −0.0051 0.040* 0.33
H1H 0.5507 0.0839 0.1762 0.040* 0.33
C2' 0.3274 (3) 0.07512 (5) −0.0527 (3) 0.0336 (4) 0.33
H2G 0.3299 0.0769 −0.1876 0.040* 0.33
H2H 0.2282 0.0952 −0.0139 0.040* 0.33
O1W 0.4441 (9) −0.00131 (10) −0.3429 (6) 0.0369 (10) 0.33
H1M 0.467 (14) 0.0206 (7) −0.415 (6) 0.055* 0.33
H1N 0.473 (14) −0.0236 (7) −0.410 (7) 0.055* 0.33
O1 0.3256 (2) 0.42163 (4) 0.1362 (2) 0.0358 (3)
O2 −0.0141 (2) 0.42725 (4) 0.00400 (19) 0.0357 (3)
C3 0.1443 (3) 0.40764 (5) 0.0747 (2) 0.0281 (3)
C4 0.1163 (3) 0.36494 (5) 0.0880 (2) 0.0246 (3)
C5 0.2925 (3) 0.34223 (5) 0.1570 (2) 0.0279 (3)
H5 0.4286 0.3538 0.1973 0.034*
C6 0.2705 (3) 0.30293 (5) 0.1670 (2) 0.0281 (3)
H6 0.3920 0.2879 0.2144 0.034*
C7 0.0717 (3) 0.28509 (4) 0.1083 (2) 0.0236 (3)
C8 −0.1055 (3) 0.30806 (5) 0.0421 (2) 0.0265 (3)
H8 −0.2425 0.2965 0.0035 0.032*
C9 −0.0835 (3) 0.34750 (5) 0.0321 (2) 0.0272 (3)
H9 −0.2052 0.3627 −0.0132 0.033*
C10 0.0507 (3) 0.24284 (4) 0.1143 (2) 0.0245 (3)
C11 0.2192 (3) 0.21931 (5) 0.0648 (3) 0.0288 (3)
H11 0.3483 0.2304 0.0270 0.035*
C12 0.1993 (3) 0.17987 (5) 0.0705 (3) 0.0343 (4)
H12 0.3136 0.1642 0.0343 0.041*
C13 0.0136 (3) 0.16311 (5) 0.1287 (3) 0.0353 (4)
H13 0.0019 0.1361 0.1346 0.042*
C14 −0.1549 (3) 0.18613 (5) 0.1784 (3) 0.0325 (4)
H14 −0.2825 0.1748 0.2182 0.039*
C15 −0.1371 (3) 0.22569 (5) 0.1697 (2) 0.0283 (3)
H15 −0.2541 0.2412 0.2019 0.034*
O2W 0.5759 (3) 0.43249 (6) 0.8469 (2) 0.0544 (5)
H2M 0.716 (3) 0.4273 (15) 0.908 (4) 0.082* 0.67
H2N 0.474 (4) 0.4355 (17) 0.935 (3) 0.082* 0.67
H2O 0.563 (15) 0.4550 (11) 0.918 (8) 0.082* 0.33
H2P 0.510 (14) 0.4117 (13) 0.904 (9) 0.082* 0.33
O3W 0.1809 (3) −0.00801 (6) 0.2058 (3) 0.0345 (4) 0.67
H3M 0.124 (6) 0.0139 (5) 0.261 (4) 0.052* 0.67
H3N 0.184 (6) −0.0289 (5) 0.289 (3) 0.052* 0.67
O4W 0.0081 (8) 0.99783 (6) 0.3679 (12) 0.067 (2) 0.33
H4M 0.0656 0.9728 0.3644 0.101* 0.33
H4N 0.1242 (18) 1.01587 (19) 0.377 (17) 0.101* 0.33

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.03755 (18) 0.01744 (15) 0.02768 (18) 0.00265 (10) −0.00905 (12) −0.00195 (10)
N1 0.0365 (11) 0.0218 (9) 0.0259 (10) −0.0002 (8) −0.0038 (8) −0.0054 (8)
N2 0.0453 (13) 0.0211 (10) 0.0288 (11) 0.0044 (9) −0.0085 (9) −0.0006 (8)
C1 0.0507 (10) 0.0214 (8) 0.0297 (8) −0.0054 (7) 0.0080 (7) −0.0036 (6)
C2 0.0462 (10) 0.0230 (8) 0.0325 (9) 0.0091 (7) 0.0081 (8) 0.0035 (7)
N1' 0.0226 (17) 0.027 (2) 0.0234 (19) −0.0036 (14) −0.0015 (14) 0.0001 (15)
N2' 0.0203 (17) 0.0252 (18) 0.0253 (19) −0.0006 (14) 0.0018 (14) −0.0003 (15)
C1' 0.0507 (10) 0.0214 (8) 0.0297 (8) −0.0054 (7) 0.0080 (7) −0.0036 (6)
C2' 0.0462 (10) 0.0230 (8) 0.0325 (9) 0.0091 (7) 0.0081 (8) 0.0035 (7)
O1W 0.065 (3) 0.0230 (18) 0.0216 (18) −0.0027 (16) −0.0006 (18) 0.0007 (13)
O1 0.0410 (7) 0.0305 (6) 0.0368 (7) −0.0123 (5) 0.0081 (6) −0.0007 (5)
O2 0.0386 (7) 0.0244 (6) 0.0462 (9) 0.0002 (5) 0.0140 (6) 0.0015 (5)
C3 0.0374 (8) 0.0246 (7) 0.0247 (8) −0.0056 (6) 0.0143 (6) −0.0024 (6)
C4 0.0303 (7) 0.0227 (7) 0.0219 (7) −0.0030 (6) 0.0076 (6) −0.0022 (6)
C5 0.0277 (7) 0.0292 (8) 0.0267 (8) −0.0051 (6) 0.0015 (6) −0.0020 (6)
C6 0.0259 (7) 0.0298 (8) 0.0277 (8) 0.0004 (6) −0.0014 (6) −0.0001 (6)
C7 0.0263 (7) 0.0232 (7) 0.0211 (7) −0.0008 (5) 0.0020 (5) −0.0001 (6)
C8 0.0256 (7) 0.0236 (7) 0.0297 (8) −0.0031 (6) 0.0004 (6) 0.0004 (6)
C9 0.0278 (7) 0.0245 (7) 0.0293 (8) 0.0001 (6) 0.0036 (6) 0.0009 (6)
C10 0.0291 (7) 0.0233 (7) 0.0203 (7) −0.0007 (5) −0.0016 (5) 0.0013 (5)
C11 0.0287 (7) 0.0263 (8) 0.0307 (8) 0.0026 (6) −0.0006 (6) 0.0022 (6)
C12 0.0352 (9) 0.0266 (8) 0.0392 (10) 0.0074 (6) −0.0048 (7) −0.0010 (7)
C13 0.0442 (10) 0.0226 (8) 0.0368 (10) −0.0002 (7) −0.0076 (8) 0.0028 (7)
C14 0.0390 (9) 0.0274 (8) 0.0304 (9) −0.0064 (7) 0.0002 (7) 0.0028 (7)
C15 0.0319 (8) 0.0268 (8) 0.0260 (8) −0.0016 (6) 0.0028 (6) −0.0008 (6)
O2W 0.0487 (9) 0.0846 (13) 0.0313 (8) −0.0280 (9) 0.0115 (6) −0.0046 (8)
O3W 0.0367 (10) 0.0221 (8) 0.0430 (12) 0.0042 (7) −0.0037 (9) −0.0011 (8)
O4W 0.040 (3) 0.028 (2) 0.129 (7) −0.0058 (17) −0.009 (3) 0.004 (3)

Geometric parameters (Å, °)

Cu1—N1 2.019 (2) C3—C4 1.508 (2)
Cu1—N1' 2.035 (4) C4—C9 1.395 (2)
Cu1—N2 2.006 (2) C4—C5 1.395 (2)
Cu1—N2' 2.008 (4) C5—C6 1.384 (2)
Cu1—O1W 2.496 (4) C5—H5 0.9500
Cu1—O3W 2.605 (2) C6—C7 1.400 (2)
Cu1—N2i 2.006 (2) C6—H6 0.9500
Cu1—N2'i 2.008 (4) C7—C8 1.400 (2)
Cu1—N1i 2.019 (2) C7—C10 1.485 (2)
Cu1—N1'i 2.035 (4) C8—C9 1.389 (2)
Cu1—O1Wi 2.496 (4) C8—H8 0.9500
Cu1—O3Wi 2.605 (2) C9—H9 0.9500
N1—C1 1.525 (3) C10—C15 1.397 (2)
N1—H1A 0.9200 C10—C11 1.399 (2)
N1—H1B 0.9200 C11—C12 1.386 (2)
N2—C2 1.441 (3) C11—H11 0.9500
N2—H2A 0.9200 C12—C13 1.388 (3)
N2—H2B 0.9200 C12—H12 0.9500
C1—C2 1.514 (3) C13—C14 1.389 (3)
C1—H1C 0.9900 C13—H13 0.9500
C1—H1D 0.9900 C14—C15 1.390 (2)
C2—H2C 0.9900 C14—H14 0.9500
C2—H2D 0.9900 C15—H15 0.9500
N1'—H1E 0.9200 O2W—H2M 0.9500 (11)
N1'—H1F 0.9200 O2W—H2N 0.9500 (10)
N2'—H2E 0.9200 O2W—H2O 0.9500 (11)
N2'—H2F 0.9200 O2W—H2P 0.9500 (12)
O1W—H1M 0.9500 (10) O3W—H3M 0.9499 (10)
O1W—H1N 0.9500 (10) O3W—H3N 0.9500 (10)
O1—C3 1.258 (2) O4W—H4M 0.9457
O2—C3 1.258 (2) O4W—H4N 0.950 (2)
N2—Cu1—N1 85.08 (9) H2A—N2—H2B 108.1
N2—Cu1—N1i 94.92 (9) C2—C1—N1 108.52 (15)
N2'—Cu1—N1' 84.65 (15) C2—C1—Cu1 73.63 (9)
N2'—Cu1—N1'i 95.35 (15) C2—C1—H1C 110.0
N1'—Cu1—O1W 92.62 (15) N1—C1—H1C 110.0
N1'—Cu1—O1Wi 87.38 (15) Cu1—C1—H1C 145.9
N2i—Cu1—N2 180.00 (9) C2—C1—H1D 110.0
N2i—Cu1—N2'i 36.18 (14) N1—C1—H1D 110.0
N2—Cu1—N2'i 143.82 (14) Cu1—C1—H1D 101.4
N2i—Cu1—N2' 143.82 (14) H1C—C1—H1D 108.4
N2—Cu1—N2' 36.18 (14) N2—C2—C1 108.13 (16)
N2'i—Cu1—N2' 180.0 (3) C1—C2—Cu1 75.67 (9)
N2i—Cu1—N1i 85.08 (9) N2—C2—H2C 110.1
N2'i—Cu1—N1i 76.97 (13) C1—C2—H2C 110.1
N2'—Cu1—N1i 103.03 (13) Cu1—C2—H2C 98.7
N2i—Cu1—N1 94.92 (9) N2—C2—H2D 110.1
N2'i—Cu1—N1 103.03 (13) C1—C2—H2D 110.1
N2'—Cu1—N1 76.97 (13) Cu1—C2—H2D 147.5
N1i—Cu1—N1 180.00 (14) H2C—C2—H2D 108.4
N2i—Cu1—N1'i 72.26 (13) Cu1—N1'—H1E 109.4
N2—Cu1—N1'i 107.74 (13) Cu1—N1'—H1F 109.4
N2'i—Cu1—N1'i 84.65 (15) H1E—N1'—H1F 108.0
N1i—Cu1—N1'i 33.06 (14) Cu1—N2'—H2E 110.4
N1—Cu1—N1'i 146.94 (14) Cu1—N2'—H2F 110.4
N2i—Cu1—N1' 107.74 (13) H2E—N2'—H2F 108.6
N2—Cu1—N1' 72.26 (13) Cu1—O1W—H1M 122 (3)
N2'i—Cu1—N1' 95.35 (15) Cu1—O1W—H1N 121 (4)
N1i—Cu1—N1' 146.94 (14) H1M—O1W—H1N 109.34 (16)
N1—Cu1—N1' 33.06 (14) O2—C3—O1 123.74 (16)
N1'i—Cu1—N1' 180.00 (13) O2—C3—C4 118.56 (15)
N2i—Cu1—O1Wi 56.63 (12) O1—C3—C4 117.70 (16)
N2—Cu1—O1Wi 123.37 (12) C9—C4—C5 119.00 (15)
N2'i—Cu1—O1Wi 88.69 (17) C9—C4—C3 121.13 (15)
N2'—Cu1—O1Wi 91.31 (17) C5—C4—C3 119.86 (15)
N1i—Cu1—O1Wi 123.96 (11) C6—C5—C4 120.56 (15)
N1—Cu1—O1Wi 56.04 (11) C6—C5—H5 119.7
N1'i—Cu1—O1Wi 92.62 (15) C4—C5—H5 119.7
N2i—Cu1—O1W 123.37 (12) C5—C6—C7 120.87 (15)
N2—Cu1—O1W 56.63 (12) C5—C6—H6 119.6
N2'i—Cu1—O1W 91.31 (17) C7—C6—H6 119.6
N2'—Cu1—O1W 88.69 (17) C8—C7—C6 118.33 (15)
N1i—Cu1—O1W 56.04 (11) C8—C7—C10 120.99 (14)
N1—Cu1—O1W 123.96 (11) C6—C7—C10 120.68 (14)
N1'i—Cu1—O1W 87.38 (15) C9—C8—C7 120.77 (15)
O1Wi—Cu1—O1W 180.0 C9—C8—H8 119.6
N2i—Cu1—O3W 90.15 (9) C7—C8—H8 119.6
N2—Cu1—O3W 89.85 (9) C8—C9—C4 120.45 (15)
N2'i—Cu1—O3W 124.30 (13) C8—C9—H9 119.8
N2'—Cu1—O3W 55.70 (13) C4—C9—H9 119.8
N1i—Cu1—O3W 87.42 (8) C15—C10—C11 118.51 (15)
N1—Cu1—O3W 92.58 (8) C15—C10—C7 120.86 (15)
N1'i—Cu1—O3W 58.09 (13) C11—C10—C7 120.64 (15)
N1'—Cu1—O3W 121.91 (13) C12—C11—C10 120.55 (17)
O1Wi—Cu1—O3W 57.13 (13) C12—C11—H11 119.7
O1W—Cu1—O3W 122.87 (13) C10—C11—H11 119.7
N2i—Cu1—O3Wi 89.85 (9) C11—C12—C13 120.49 (17)
N2—Cu1—O3Wi 90.15 (9) C11—C12—H12 119.8
N2'i—Cu1—O3Wi 55.70 (13) C13—C12—H12 119.8
N2'—Cu1—O3Wi 124.30 (13) C12—C13—C14 119.58 (16)
N1i—Cu1—O3Wi 92.58 (8) C12—C13—H13 120.2
N1—Cu1—O3Wi 87.42 (8) C14—C13—H13 120.2
N1'i—Cu1—O3Wi 121.91 (13) C13—C14—C15 120.06 (17)
N1'—Cu1—O3Wi 58.09 (13) C13—C14—H14 120.0
O1Wi—Cu1—O3Wi 122.87 (13) C15—C14—H14 120.0
O1W—Cu1—O3Wi 57.13 (13) C14—C15—C10 120.80 (16)
O3W—Cu1—O3Wi 180.00 (5) C14—C15—H15 119.6
C1—N1—Cu1 107.53 (14) C10—C15—H15 119.6
C1—N1—H1A 110.2 H2M—O2W—H2N 109.33 (16)
Cu1—N1—H1A 110.2 H2M—O2W—H2O 91 (6)
C1—N1—H1B 110.2 H2N—O2W—H2O 56 (4)
Cu1—N1—H1B 110.2 H2M—O2W—H2P 93 (6)
H1A—N1—H1B 108.5 H2N—O2W—H2P 56 (4)
C2—N2—Cu1 110.19 (15) H2O—O2W—H2P 109.33 (17)
C2—N2—H2A 109.6 Cu1—O3W—H3M 119 (2)
Cu1—N2—H2A 109.6 Cu1—O3W—H3N 119 (2)
C2—N2—H2B 109.6 H3M—O3W—H3N 109.33 (16)
Cu1—N2—H2B 109.6 H4M—O4W—H4N 109.7
N2i—Cu1—N1—C1 168.87 (15) N2'i—Cu1—C2—N2 102.4 (3)
N2—Cu1—N1—C1 −11.13 (15) N2'—Cu1—C2—N2 −77.6 (3)
N2'i—Cu1—N1—C1 133.12 (18) N1i—Cu1—C2—N2 −19.2 (2)
N2'—Cu1—N1—C1 −46.88 (18) N1—Cu1—C2—N2 160.8 (2)
N1'i—Cu1—N1—C1 −126.5 (2) N1'i—Cu1—C2—N2 −59.0 (2)
N1'—Cu1—N1—C1 53.5 (2) N1'—Cu1—C2—N2 121.0 (2)
O1Wi—Cu1—N1—C1 −147.5 (2) O1Wi—Cu1—C2—N2 −157.5 (2)
O1W—Cu1—N1—C1 32.5 (2) O1W—Cu1—C2—N2 22.5 (2)
O3W—Cu1—N1—C1 −100.76 (15) O3W—Cu1—C2—N2 −102.02 (19)
O3Wi—Cu1—N1—C1 79.24 (15) O3Wi—Cu1—C2—N2 77.98 (19)
N2'i—Cu1—N2—C2 −121.7 (2) N2i—Cu1—C2—C1 39.2 (2)
N2'—Cu1—N2—C2 58.3 (2) N2—Cu1—C2—C1 −140.8 (2)
N1i—Cu1—N2—C2 163.71 (18) N2'i—Cu1—C2—C1 −38.4 (3)
N1—Cu1—N2—C2 −16.29 (18) N2'—Cu1—C2—C1 141.6 (3)
N1'i—Cu1—N2—C2 132.5 (2) N1i—Cu1—C2—C1 −160.01 (12)
N1'—Cu1—N2—C2 −47.5 (2) N1—Cu1—C2—C1 19.99 (12)
O1Wi—Cu1—N2—C2 27.0 (3) N1'i—Cu1—C2—C1 160.24 (18)
O1W—Cu1—N2—C2 −153.0 (3) N1'—Cu1—C2—C1 −19.76 (18)
O3W—Cu1—N2—C2 76.31 (18) O1Wi—Cu1—C2—C1 61.70 (16)
O3Wi—Cu1—N2—C2 −103.69 (18) O1W—Cu1—C2—C1 −118.30 (16)
Cu1—N1—C1—C2 35.43 (19) O3W—Cu1—C2—C1 117.21 (12)
N2i—Cu1—C1—C2 −158.57 (13) O3Wi—Cu1—C2—C1 −62.79 (12)
N2—Cu1—C1—C2 21.43 (13) O2—C3—C4—C9 −3.1 (2)
N2'i—Cu1—C1—C2 157.87 (17) O1—C3—C4—C9 176.50 (16)
N2'—Cu1—C1—C2 −22.13 (17) O2—C3—C4—C5 176.68 (16)
N1i—Cu1—C1—C2 35.0 (2) O1—C3—C4—C5 −3.7 (2)
N1—Cu1—C1—C2 −145.0 (2) C9—C4—C5—C6 1.0 (3)
N1'i—Cu1—C1—C2 −36.8 (3) C3—C4—C5—C6 −178.83 (15)
N1'—Cu1—C1—C2 143.2 (3) C4—C5—C6—C7 0.0 (3)
O1Wi—Cu1—C1—C2 −118.33 (16) C5—C6—C7—C8 −1.1 (3)
O1W—Cu1—C1—C2 61.67 (16) C5—C6—C7—C10 178.21 (16)
O3W—Cu1—C1—C2 −63.05 (12) C6—C7—C8—C9 1.0 (3)
O3Wi—Cu1—C1—C2 116.95 (12) C10—C7—C8—C9 −178.23 (16)
N2i—Cu1—C1—N1 −13.52 (19) C7—C8—C9—C4 0.0 (3)
N2—Cu1—C1—N1 166.48 (19) C5—C4—C9—C8 −1.0 (3)
N2'i—Cu1—C1—N1 −57.1 (2) C3—C4—C9—C8 178.81 (16)
N2'—Cu1—C1—N1 122.9 (2) C8—C7—C10—C15 −41.2 (2)
N1i—Cu1—C1—N1 180.0 C6—C7—C10—C15 139.60 (17)
N1'i—Cu1—C1—N1 108.2 (3) C8—C7—C10—C11 138.95 (17)
N1'—Cu1—C1—N1 −71.8 (3) C6—C7—C10—C11 −40.3 (2)
O1Wi—Cu1—C1—N1 26.7 (2) C15—C10—C11—C12 0.1 (2)
O1W—Cu1—C1—N1 −153.3 (2) C7—C10—C11—C12 −179.99 (16)
O3W—Cu1—C1—N1 81.99 (16) C10—C11—C12—C13 −1.2 (3)
O3Wi—Cu1—C1—N1 −98.01 (16) C11—C12—C13—C14 1.2 (3)
Cu1—N2—C2—C1 40.1 (2) C12—C13—C14—C15 0.0 (3)
N1—C1—C2—N2 −50.0 (2) C13—C14—C15—C10 −1.1 (3)
Cu1—C1—C2—N2 −26.13 (15) C11—C10—C15—C14 1.0 (2)
N1—C1—C2—Cu1 −23.88 (13) C7—C10—C15—C14 −178.88 (16)
N2i—Cu1—C2—N2 180.0

Symmetry codes: (i) −x+1, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O2ii 0.92 2.13 2.986 (3) 154
N1—H1B···O2Wiii 0.92 2.32 3.093 (3) 141
N2—H2A···O2iii 0.92 2.16 3.037 (3) 158
N1'—H1E···O2Wiii 0.92 2.51 3.375 (4) 157
N1'—H1F···O1iii 0.92 2.20 3.087 (5) 161
N2'—H2E···O4Wiv 0.92 2.33 3.181 (9) 154
N2'—H2F···O2Wv 0.92 2.21 3.055 (5) 152
O1W—H1M···O2iii 0.95 (1) 1.92 (1) 2.844 (4) 163 (4)
O1W—H1N···O2vi 0.95 (1) 1.88 (1) 2.814 (4) 169 (4)
O2W—H2M···O2vii 0.95 (1) 1.73 (1) 2.668 (2) 168 (5)
O2W—H2N···O1viii 0.95 (1) 1.87 (2) 2.765 (2) 156 (5)
O3W—H3M···O2Wv 0.95 (1) 2.01 (1) 2.932 (3) 163 (3)
O3W—H3N···O1ix 0.95 (1) 1.82 (1) 2.721 (3) 158 (3)
O4W—H4M···O1x 0.95 (1) 1.91 2.8562 (17) 178

Symmetry codes: (ii) x+1/2, −y+1/2, z+1/2; (iii) x+1/2, −y+1/2, z−1/2; (iv) −x, −y+1, −z; (v) x−1/2, −y+1/2, z−1/2; (vi) −x+1/2, y−1/2, −z−1/2; (vii) x+1, y, z+1; (viii) x, y, z+1; (ix) −x+1/2, y−1/2, −z+1/2; (x) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2668).

References

  1. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2005). SAINT-Plus Version 7.23a. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2006). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Eddaoudi, M., Moler, D. V., Li, H., Chen, B., Reineke, T. M., O’Keefe, M. & Yaghi, O. M. (2001). Acc. Chem. Res.34, 319–330. [DOI] [PubMed]
  5. Graham, P. M., Pike, R. D., Sabat, M., Bailey, R. D. & Pennington, W. T. (2000). Inorg. Chem.39, 5121–5132. [DOI] [PubMed]
  6. Grell, J., Bernstein, J. & Tinhofer, G. (1999). Acta Cryst. B55, 1030–1043. [DOI] [PubMed]
  7. Majumder, A., Gramlich, V., Rosair, G. M., Batten, S. R., Masuda, J. D., El Fallah, M. S., Ribas, J., Sutter, J. P., Desplanches, C. & Mitra, S. (2006). Cryst. Growth Des.6, 2355–2368.
  8. Paz, F. A. A., Bond, A. D., Khimyak, Y. Z. & Klinowski, J. (2002). New J. Chem.26, 381–383.
  9. Paz, F. A. A., Khimyak, Y. Z., Bond, A. D., Rocha, J. & Klinowski, J. (2002). Eur. J. Inorg. Chem. pp. 2823–2828.
  10. Paz, F. A. A. & Klinowski, J. (2003). CrystEngComm, 5, 238–244.
  11. Paz, F. A. A., Rocha, J., Klinowski, J., Trindade, T., Shi, F.-N. & Mafra, L. (2005). Prog. Solid State Chem.33, 113–125. [DOI] [PubMed]
  12. Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed.43, 1466–1496. [DOI] [PubMed]
  13. Sheldrick, G. M. (1997). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Shi, F.-N., Cunha-Silva, L., Sá Ferreira, R. A., Mafra, L., Trindade, T., Carlos, L. D., Paz, F. A. A. & Rocha, J. (2008). J. Am. Chem. Soc.130, 150–167. [DOI] [PubMed]
  16. Zhao, Z., He, X., Zhao, Y. M., Shao, M. & Zhu, S. R. (2009). Dalton Trans. pp. 2802–2811. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810016223/tk2668sup1.cif

e-66-0m626-sup1.cif (27.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810016223/tk2668Isup2.hkl

e-66-0m626-Isup2.hkl (232KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES