Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 May 12;66(Pt 6):o1327. doi: 10.1107/S1600536810016697

N-Phenyl-6-(1H-pyrazol-1-yl)pyridazin-3-amine

Abdul Qayyum Ather a,b, M Nawaz Tahir c,*, Misbahul Ain Khan a, Muhammad Makshoof Athar d
PMCID: PMC2979482  PMID: 21579418

Abstract

The mol­ecule of title compound, C13H11N5, is essentially planar (r.m.s. deviation = 0.0440 Å) and an intra­molecular C—H⋯N hydrogen bond generates an S(6) motif. In the crystal, mol­ecules are connected into chains by inter­molecular N—H⋯N and C—H⋯N hydrogen bonds. In addition, π–π stacking inter­actions are observed between the pyrazole and pyridazine rings [inter­planar distance = 3.6859 (10) Å].

Related literature

For a related structure, see: Ather et al. (2009). For graph-set notation, see: Bernstein et al. (1995).graphic file with name e-66-o1327-scheme1.jpg

Experimental

Crystal data

  • C13H11N5

  • M r = 237.27

  • Orthorhombic, Inline graphic

  • a = 11.3533 (7) Å

  • b = 9.4214 (5) Å

  • c = 21.6603 (14) Å

  • V = 2316.9 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.30 × 0.22 × 0.18 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.982, T max = 0.988

  • 10085 measured reflections

  • 2754 independent reflections

  • 1571 reflections with I > 2σ(I)

  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.119

  • S = 0.99

  • 2754 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810016697/gk2271sup1.cif

e-66-o1327-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810016697/gk2271Isup2.hkl

e-66-o1327-Isup2.hkl (132.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N5i 0.86 2.22 3.071 (2) 173
C6—H6⋯N2 0.93 2.37 2.966 (3) 122
C8—H8⋯N3ii 0.93 2.60 3.265 (2) 129

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha. The authors also acknowledge the technical support provided by Bana Inter­national, Karachi, Pakistan.

supplementary crystallographic information

Comment

In continuation of our studies on pyrazolylpyridazine derivatives (Ather et al., 2009), the structure of title compound ( Fig. 1) is reported here.

The title compound contains pyrazole, pyridazine and benzene rings. The r. m. s. deviation of 0.044 Å shows that the molecule of title compound is essentially planar. There exist S(6) ring motif (Bernstein et al., 1995) due to C–H···N intramolecular H-bonding (Fig. 1). The molecules are stabilized in the form of infinite polymeric chains due to intermolecular H-bondings (Table 1) extending along the crystallographic b-axis (Fig. 2). The π–π interactions between the pyrazol and pyridazine ring are present at a distance of 3.6859 (10) Å.

Experimental

3-Chloro-6-(1H-pyrazole-1-yl)pyridazine (1 g, 5.5 mmol) was dissolved in xylene (15 ml). Aniline (0.516 g, 5.5 mmol) was added to the solution and refluxed for 12 h. The reaction was monitored by TLC. After the completion, the reaction mixture was concentrated under vacuum. Distilled water (50 ml) was added to the resulting concentrated mixture, which give rise to precipitate. The filtered precipitate was dried and recrystallized from chloroform to obtain the title compound (I).

Figures

Fig. 1.

Fig. 1.

View of the title compound with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radii. The dotted line indicates the intramolecular hydrogen bond.

Fig. 2.

Fig. 2.

Packing diagram of the title compound (PLATON: Spek, 2009) showing that infinite polymeric chains extend along the b-axis.

Crystal data

C13H11N5 F(000) = 992
Mr = 237.27 Dx = 1.360 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 2920 reflections
a = 11.3533 (7) Å θ = 2.6–27.9°
b = 9.4214 (5) Å µ = 0.09 mm1
c = 21.6603 (14) Å T = 296 K
V = 2316.9 (2) Å3 Prismatic, pale brown
Z = 8 0.30 × 0.22 × 0.18 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 2754 independent reflections
Radiation source: fine-focus sealed tube 1571 reflections with I > 2σ(I)
graphite Rint = 0.045
Detector resolution: 7.50 pixels mm-1 θmax = 27.9°, θmin = 2.6°
ω scan h = −14→14
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −12→8
Tmin = 0.982, Tmax = 0.988 l = −17→28
10085 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119 H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0546P)2 + 0.0495P] where P = (Fo2 + 2Fc2)/3
2754 reflections (Δ/σ)max < 0.001
163 parameters Δρmax = 0.13 e Å3
0 restraints Δρmin = −0.15 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.22072 (14) −0.09114 (16) 0.11333 (7) 0.0450 (4)
C2 0.17051 (16) −0.18861 (17) 0.07303 (8) 0.0588 (5)
H2 0.0892 −0.2008 0.0729 0.071*
C3 0.23913 (19) −0.2677 (2) 0.03321 (9) 0.0685 (5)
H3 0.2040 −0.3327 0.0066 0.082*
C4 0.35859 (18) −0.2505 (2) 0.03286 (9) 0.0676 (5)
H4 0.4052 −0.3027 0.0059 0.081*
C5 0.40882 (17) −0.1552 (2) 0.07273 (9) 0.0694 (5)
H5 0.4902 −0.1440 0.0727 0.083*
C6 0.34133 (15) −0.07516 (18) 0.11315 (9) 0.0579 (5)
H6 0.3772 −0.0112 0.1399 0.069*
C7 0.15904 (13) 0.08370 (16) 0.19601 (7) 0.0432 (4)
C8 0.05780 (14) 0.14252 (16) 0.22366 (8) 0.0499 (4)
H8 −0.0169 0.1139 0.2113 0.060*
C9 0.07086 (14) 0.24049 (17) 0.26820 (8) 0.0499 (4)
H9 0.0066 0.2824 0.2876 0.060*
C10 0.18694 (13) 0.27585 (16) 0.28379 (7) 0.0422 (4)
C11 0.31668 (15) 0.42876 (18) 0.34775 (9) 0.0561 (5)
H11 0.3892 0.4055 0.3305 0.067*
C12 0.29780 (17) 0.52176 (19) 0.39459 (9) 0.0608 (5)
H12 0.3537 0.5748 0.4159 0.073*
C13 0.17754 (17) 0.52036 (18) 0.40374 (8) 0.0596 (5)
H13 0.1392 0.5750 0.4333 0.072*
N1 0.14245 (11) −0.01684 (14) 0.15110 (6) 0.0493 (4)
H1 0.0698 −0.0383 0.1450 0.059*
N2 0.26728 (11) 0.12101 (13) 0.21296 (6) 0.0473 (4)
N3 0.27965 (11) 0.22007 (14) 0.25801 (6) 0.0468 (3)
N4 0.21109 (11) 0.37648 (13) 0.33089 (6) 0.0452 (3)
N5 0.12287 (12) 0.43206 (15) 0.36555 (7) 0.0558 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0436 (9) 0.0463 (9) 0.0452 (9) 0.0013 (7) −0.0012 (8) 0.0076 (8)
C2 0.0529 (10) 0.0656 (11) 0.0579 (11) −0.0040 (9) −0.0040 (9) −0.0029 (10)
C3 0.0790 (14) 0.0682 (12) 0.0583 (12) −0.0014 (11) −0.0065 (11) −0.0114 (10)
C4 0.0691 (14) 0.0739 (13) 0.0599 (12) 0.0118 (11) 0.0068 (10) −0.0065 (10)
C5 0.0490 (11) 0.0843 (13) 0.0748 (13) 0.0052 (10) 0.0041 (10) −0.0132 (12)
C6 0.0465 (10) 0.0645 (11) 0.0627 (12) −0.0005 (9) 0.0009 (9) −0.0095 (9)
C7 0.0336 (8) 0.0461 (9) 0.0499 (9) −0.0005 (7) −0.0016 (7) 0.0067 (8)
C8 0.0290 (8) 0.0585 (10) 0.0621 (11) −0.0005 (7) −0.0047 (8) −0.0022 (9)
C9 0.0313 (8) 0.0592 (10) 0.0593 (11) 0.0049 (7) 0.0002 (8) −0.0038 (9)
C10 0.0340 (8) 0.0457 (9) 0.0468 (9) 0.0011 (7) −0.0031 (7) 0.0051 (8)
C11 0.0400 (9) 0.0635 (11) 0.0648 (12) −0.0036 (8) −0.0072 (8) −0.0002 (10)
C12 0.0606 (12) 0.0602 (11) 0.0617 (12) −0.0044 (9) −0.0155 (10) −0.0052 (10)
C13 0.0632 (12) 0.0617 (11) 0.0540 (11) 0.0092 (9) −0.0080 (10) −0.0076 (9)
N1 0.0329 (7) 0.0563 (8) 0.0585 (9) −0.0031 (6) −0.0016 (6) −0.0046 (7)
N2 0.0337 (7) 0.0552 (8) 0.0531 (8) −0.0003 (6) −0.0012 (6) −0.0023 (7)
N3 0.0308 (7) 0.0557 (8) 0.0539 (8) 0.0006 (6) −0.0015 (6) −0.0007 (7)
N4 0.0347 (7) 0.0517 (8) 0.0491 (8) 0.0031 (6) −0.0038 (6) 0.0038 (7)
N5 0.0435 (8) 0.0649 (9) 0.0589 (10) 0.0100 (7) 0.0008 (7) −0.0042 (8)

Geometric parameters (Å, °)

C1—C6 1.378 (2) C8—H8 0.9300
C1—C2 1.389 (2) C9—C10 1.401 (2)
C1—N1 1.3961 (19) C9—H9 0.9300
C2—C3 1.381 (2) C10—N3 1.3022 (19)
C2—H2 0.9300 C10—N4 1.4194 (19)
C3—C4 1.366 (3) C11—N4 1.3465 (19)
C3—H3 0.9300 C11—C12 1.358 (2)
C4—C5 1.370 (2) C11—H11 0.9300
C4—H4 0.9300 C12—C13 1.380 (3)
C5—C6 1.387 (2) C12—H12 0.9300
C5—H5 0.9300 C13—N5 1.327 (2)
C6—H6 0.9300 C13—H13 0.9300
C7—N2 1.3300 (18) N1—H1 0.8600
C7—N1 1.371 (2) N2—N3 1.3574 (17)
C7—C8 1.410 (2) N4—N5 1.3570 (17)
C8—C9 1.343 (2)
C6—C1—C2 118.58 (16) C8—C9—C10 116.13 (15)
C6—C1—N1 125.41 (15) C8—C9—H9 121.9
C2—C1—N1 116.01 (15) C10—C9—H9 121.9
C3—C2—C1 121.18 (18) N3—C10—C9 124.14 (15)
C3—C2—H2 119.4 N3—C10—N4 114.93 (13)
C1—C2—H2 119.4 C9—C10—N4 120.92 (14)
C4—C3—C2 119.97 (18) N4—C11—C12 107.35 (16)
C4—C3—H3 120.0 N4—C11—H11 126.3
C2—C3—H3 120.0 C12—C11—H11 126.3
C3—C4—C5 119.20 (18) C11—C12—C13 104.92 (16)
C3—C4—H4 120.4 C11—C12—H12 127.5
C5—C4—H4 120.4 C13—C12—H12 127.5
C4—C5—C6 121.63 (18) N5—C13—C12 112.29 (16)
C4—C5—H5 119.2 N5—C13—H13 123.9
C6—C5—H5 119.2 C12—C13—H13 123.9
C1—C6—C5 119.44 (17) C7—N1—C1 132.45 (13)
C1—C6—H6 120.3 C7—N1—H1 113.8
C5—C6—H6 120.3 C1—N1—H1 113.8
N2—C7—N1 120.37 (14) C7—N2—N3 118.41 (13)
N2—C7—C8 122.16 (15) C10—N3—N2 120.13 (13)
N1—C7—C8 117.46 (14) C11—N4—N5 111.46 (14)
C9—C8—C7 119.03 (15) C11—N4—C10 127.68 (14)
C9—C8—H8 120.5 N5—N4—C10 120.86 (13)
C7—C8—H8 120.5 C13—N5—N4 103.98 (14)
C6—C1—C2—C3 −0.4 (2) C6—C1—N1—C7 −1.0 (3)
N1—C1—C2—C3 179.63 (15) C2—C1—N1—C7 178.96 (16)
C1—C2—C3—C4 −0.2 (3) N1—C7—N2—N3 −179.41 (13)
C2—C3—C4—C5 0.6 (3) C8—C7—N2—N3 −0.6 (2)
C3—C4—C5—C6 −0.5 (3) C9—C10—N3—N2 0.0 (2)
C2—C1—C6—C5 0.5 (3) N4—C10—N3—N2 179.08 (12)
N1—C1—C6—C5 −179.48 (15) C7—N2—N3—C10 0.3 (2)
C4—C5—C6—C1 −0.1 (3) C12—C11—N4—N5 −0.26 (19)
N2—C7—C8—C9 0.6 (2) C12—C11—N4—C10 179.96 (14)
N1—C7—C8—C9 179.46 (14) N3—C10—N4—C11 6.3 (2)
C7—C8—C9—C10 −0.3 (2) C9—C10—N4—C11 −174.63 (16)
C8—C9—C10—N3 0.0 (2) N3—C10—N4—N5 −173.47 (13)
C8—C9—C10—N4 −179.01 (13) C9—C10—N4—N5 5.6 (2)
N4—C11—C12—C13 0.03 (19) C12—C13—N5—N4 −0.37 (19)
C11—C12—C13—N5 0.2 (2) C11—N4—N5—C13 0.39 (18)
N2—C7—N1—C1 −4.1 (3) C10—N4—N5—C13 −179.82 (14)
C8—C7—N1—C1 177.09 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···N5i 0.86 2.22 3.071 (2) 173
C6—H6···N2 0.93 2.37 2.966 (3) 122
C8—H8···N3ii 0.93 2.60 3.265 (2) 129

Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) x−1/2, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2271).

References

  1. Ather, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2009). Acta Cryst. E65, o1628. [DOI] [PMC free article] [PubMed]
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed.34, 1555–1573.
  3. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810016697/gk2271sup1.cif

e-66-o1327-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810016697/gk2271Isup2.hkl

e-66-o1327-Isup2.hkl (132.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES