Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 May 22;66(Pt 6):m695–m696. doi: 10.1107/S1600536810018398

Poly[[aquadi-μ3-malonato-hexaphenyl­ditin(IV)] acetone solvate]

Yip Foo Win a, Siang Guan Teoh b, M R Vikneswaran b, Jia Hao Goh c,, Hoong-Kun Fun c,*,§
PMCID: PMC2979483  PMID: 21579332

Abstract

The asymmetric unit of the title polymeric complex, {[Sn2=(C6H5)6(C3H2O4)(H2O)]·C3H6O}n, comprises of two Sn cations, one malonate anion and a non-coordinating acetone solvent mol­ecule. Both crystallographically independent Sn cations are five-coordinated by two O and three C atoms in a distorted trigonal-bipyrimidal geometry. One of the Sn cations is bridged by the malonate units, affording polymeric chains which run along [001]. Weak intra­molecular C—H⋯π inter­actions stabilize the mol­ecular structure. In the crystal structure, adjacent chains are inter­connected by inter­molecular O—H⋯O and C—H⋯O hydrogen bonds into a three-dimensional supra­molecular structure. A weak inter­molecular C—H⋯π inter­action is also observed.

Related literature

For general background to and applications of the title complex, see: Ng (1998); Ng & Kumar Das (1993); Ng et al. (1990); Samuel-Lewis et al. (1992). For a related bis­(triphenyl­tin) structure, see: Ng (1998). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).graphic file with name e-66-0m695-scheme1.jpg

Experimental

Crystal data

  • [Sn2(C6H5)6(C3H2O4)(H2O)]·C3H6O

  • M r = 878.12

  • Tetragonal, Inline graphic

  • a = 23.604 (3) Å

  • c = 13.8458 (18) Å

  • V = 7714.2 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.34 mm−1

  • T = 100 K

  • 0.22 × 0.13 × 0.04 mm

Data collection

  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.754, T max = 0.953

  • 68157 measured reflections

  • 8900 independent reflections

  • 7984 reflections with I > 2σ(I)

  • R int = 0.099

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.103

  • S = 1.17

  • 8900 reflections

  • 421 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.97 e Å−3

  • Δρmin = −1.07 e Å−3

  • Absolute structure: Flack (1983); 4262 Friedel pairs

  • Flack parameter: 0.04 (3)

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810018398/ng2776sup1.cif

e-66-0m695-sup1.cif (31.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810018398/ng2776Isup2.hkl

e-66-0m695-Isup2.hkl (435.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected interatomic distances (Å).

Sn1⋯O1 2.333 (4)
Sn1⋯O3i 2.148 (4)
Sn1⋯C1 2.124 (7)
Sn1⋯C7 2.132 (6)
Sn1⋯C13 2.133 (7)
Sn2⋯O2 2.164 (4)
Sn2⋯O1W 2.325 (4)
Sn2⋯C19 2.137 (7)
Sn2⋯C25 2.139 (7)
Sn2⋯C31 2.119 (7)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C31–C36 and C7–C12 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O4ii 0.86 1.90 2.663 (6) 148
C5—H5A⋯O5iii 0.93 2.59 3.38 (3) 144
C26—H26A⋯O4ii 0.93 2.50 3.356 (8) 154
C8—H8ACg1 0.93 2.83 3.701 (8) 157
C17—H17ACg2iv 0.93 2.79 3.571 (9) 142
C38—H38BCg2 0.97 2.97 3.613 (8) 125

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors thank Universiti Tunku Abdul Rahman (UTAR) for the UTAR Research Fund (Vote No. 6200/Y02) and Universiti Sains Malaysia (USM) for financial support as well as technical assistance and facilities. HKF and JHG thank USM for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship.

supplementary crystallographic information

Comment

The studies of organotin(IV) carboxylate derivative complexes of dicarboxylic acids have been documented since 1990s and various kind of bis(triorganostannyl) esters of substituted aliphatic dicarboxylic acids have been prepared (Ng, 1998; Ng & Kumar Das, 1993; Ng et al., 1990; Samuel-Lewis et al., 1992). Moreover, the crystal structure of bis[triphenyltin(IV)] succinate and its complexes have also been reported (Ng, 1998; Ng & Kumar Das, 1993). However, the crystal structure of bis[triphenyltin(IV)] derivative of malonic acid has not been reported. In this study, the structure of the title complex is similar to bis[triphenyltin(IV)] succinate. The exception is that the water molecule coordinates to the tin cation.

The asymmetric unit of the title polymeric complex comprises of two crystallographically independent Sn cations (Sn1 and Sn2) and a non-coordinating acetone solvent molecule (Fig. 1). Both Sn cations are five-coordinated by two O and three C atoms. The coordination geometries are distorted from the ideal trigonal bipyrimidal geometry, resulting in see-saw shaped geometries. The coordination environments are different for the two Sn cations (Fig. 2). The Sn1 cation is coordinated to three phenyl ligands and two carbonyl O atoms, forming one-dimensional polymeric chains along the [001] direction whereas the Sn2 cation is coordinated to three phenyl ligands, a water molecule and a carbonyl O atom. Further stabilization of the molecular structure is provided by the weak intramolecular C8—H8A···Cg1 and C38—H38B···Cg2 interactions (Table 2). The O—Sn1—O and O—Sn2—O angles are 174.03 (17) and 173.79 (18)°, respectively. Bond lengths of Sn—O and Sn—C are listed in Table 1. All bond lengths and angles are comparable to a closely related bis(triphenyltin) structure (Ng, 1998).

In the crystal structure (Fig. 3), adjacent polymeric chains are interconnected into a three-dimensional supramolecular structure by intermolecular O1W—H1W1···O4, C5—H5A···O5 and C26—H26A···O4 hydrogen bonds (Table 2). The crystal structure is further stabilized by weak intermolecular C17—H17A···Cg2 (Table 2) involving the centroid of the C7-C12 (Cg2) benzene ring.

Experimental

The title complex was obtained by heating under reflux a 2:1 molar mixture of triphenyltin(IV) hydroxide (4 mmol, 1.47 g) and malonic acid (2 mmol, 0.21 g) in acetone (60 ml) for 2 h. A clear transparent solution was isolated by filtration and kept in a bottle. Colourless single crystals (1.04 g, yield: 65 %) were obtained after a few days. M.p. 419.5 – 420.7 K. Anal. found for C42H40O6Sn2: C, 57.38; H, 4.69; Sn, 27.18 %. Calc. for C42H40O6Sn2: C, 57.45; H, 4.59; Sn, 27.03 %. FTIR as KBr disc (cm-1): ν(COO)as 1656, ν(COO)s 1335, ν(Sn-O) 633. 1H-NMR: δ: phenyl photons 7.41-7.48 (18H, m, Hmeta+para); 7.65-7.78 (12H, m, Hortho); CH2 3.59 (2H, s) ppm. 13C-NMR: δ: phenyl carbons Cipso 137.77, Cortho 136.78, Cmeta 128.88, Cpara 130.14, CH2 41.65, COO 173.34 ppm.

Refinement

The water molecule H atoms were located from the difference Fourier map and constrained to ride with the parent atom with Uiso = 1.5 Ueq(O). All other H atoms were placed in their calculated positions, with C—H = 0.93 – 0.97 Å, and refined using a riding model with Uiso = 1.2 or 1.5 Ueq(C). A rotating group model was used for the C40 and C42 methyl groups. In the acetone solvent molecule, all atoms were refined isotropically and the C—O and C—C distances were fixed at 1.20 (1) and 1.50 (1) Å, respectively. EADP restraints were also imposed on C4:C8 and C37:C39 atom pairs. 4262 Friedel pairs were used in the final refinement to determine the absolute structure. The highest residual electron density peak is located at 1.25 Å from C41 and the deepest hole is located at 0.84 Å from Sn1.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title polymeric complex, showing 30% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.

Fig. 2.

Fig. 2.

Part of the polymeric chain, showing the coordination environment of Sn cations. Non-coordinating acetone solvent molecule and H atoms have been omitted for clarity. Symmetry codes: (a) -x+1/2, -y+3/2, z-1/2 (b)-x+1/2, -y+3/2, z+1/2

Fig. 3.

Fig. 3.

The crystal structure of the title polymeric complex, viewed along the c axis, showing the polymeric chains being linked into a three-dimensional supramolecular structure. H atoms not involved in intermolecular hydrogen bonds (dashed lines) have been omitted for clarity.

Crystal data

[Sn2(C6H5)6(C3H2O4)(H2O)]·C3H6O Dx = 1.512 Mg m3
Mr = 878.12 Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4 Cell parameters from 9959 reflections
Hall symbol: I -4 θ = 2.4–29.2°
a = 23.604 (3) Å µ = 1.34 mm1
c = 13.8458 (18) Å T = 100 K
V = 7714.2 (17) Å3 Plate, colourless
Z = 8 0.22 × 0.13 × 0.04 mm
F(000) = 3520

Data collection

Bruker APEXII DUO CCD area-detector diffractometer 8900 independent reflections
Radiation source: fine-focus sealed tube 7984 reflections with I > 2σ(I)
graphite Rint = 0.099
φ and ω scans θmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −30→30
Tmin = 0.754, Tmax = 0.953 k = −30→30
68157 measured reflections l = −17→17

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051 H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.P)2 + 93.8407P] where P = (Fo2 + 2Fc2)/3
S = 1.17 (Δ/σ)max = 0.001
8900 reflections Δρmax = 0.97 e Å3
421 parameters Δρmin = −1.07 e Å3
3 restraints Absolute structure: Flack (1983); 4262 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.04 (3)

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sn1 0.217535 (17) 0.739451 (17) 0.13286 (3) 0.01387 (9)
Sn2 0.036022 (17) 0.791156 (19) 0.37080 (3) 0.01716 (10)
O1 0.15759 (19) 0.7609 (2) 0.2618 (3) 0.0145 (9)
O2 0.12560 (18) 0.8069 (2) 0.3907 (3) 0.0178 (10)
O3 0.2318 (2) 0.77354 (19) 0.5059 (3) 0.0156 (9)
O4 0.2431 (2) 0.8673 (2) 0.5045 (3) 0.0192 (10)
C1 0.1443 (3) 0.7032 (3) 0.0687 (5) 0.0186 (14)
C2 0.1082 (3) 0.6687 (3) 0.1211 (7) 0.0302 (17)
H2A 0.1146 0.6622 0.1865 0.036*
C3 0.0618 (4) 0.6435 (4) 0.0742 (7) 0.044 (2)
H3A 0.0370 0.6211 0.1099 0.053*
C4 0.0520 (3) 0.6508 (4) −0.0206 (6) 0.0311 (12)
H4A 0.0214 0.6329 −0.0501 0.037*
C5 0.0877 (4) 0.6850 (4) −0.0738 (6) 0.043 (2)
H5A 0.0808 0.6905 −0.1392 0.051*
C6 0.1346 (3) 0.7117 (4) −0.0299 (5) 0.0299 (18)
H6A 0.1587 0.7346 −0.0660 0.036*
C7 0.2330 (3) 0.8282 (3) 0.1215 (5) 0.0164 (13)
C8 0.1879 (3) 0.8657 (3) 0.1222 (7) 0.0311 (12)
H8A 0.1509 0.8523 0.1236 0.037*
C9 0.1984 (3) 0.9234 (3) 0.1208 (6) 0.0242 (16)
H9A 0.1682 0.9486 0.1171 0.029*
C10 0.2528 (3) 0.9440 (3) 0.1246 (7) 0.0337 (18)
H10A 0.2592 0.9828 0.1258 0.040*
C11 0.2972 (3) 0.9074 (3) 0.1267 (7) 0.0323 (16)
H11A 0.3340 0.9212 0.1293 0.039*
C12 0.2877 (3) 0.8498 (3) 0.1249 (7) 0.0256 (15)
H12A 0.3183 0.8250 0.1260 0.031*
C13 0.2702 (3) 0.6933 (3) 0.2302 (5) 0.0165 (13)
C14 0.3288 (3) 0.6913 (3) 0.2152 (5) 0.0228 (15)
H14A 0.3449 0.7104 0.1633 0.027*
C15 0.3635 (3) 0.6601 (4) 0.2795 (6) 0.0330 (19)
H15A 0.4026 0.6600 0.2713 0.040*
C16 0.3395 (4) 0.6300 (3) 0.3539 (6) 0.036 (2)
H16A 0.3623 0.6077 0.3935 0.044*
C17 0.2809 (3) 0.6324 (3) 0.3708 (6) 0.0316 (17)
H17A 0.2650 0.6129 0.4225 0.038*
C18 0.2473 (3) 0.6642 (3) 0.3096 (5) 0.0185 (14)
H18A 0.2086 0.6663 0.3212 0.022*
C19 0.0405 (3) 0.7008 (3) 0.3759 (5) 0.0203 (14)
C20 −0.0015 (4) 0.6672 (4) 0.3374 (6) 0.034 (2)
H20A −0.0334 0.6838 0.3097 0.041*
C21 0.0036 (5) 0.6079 (4) 0.3399 (7) 0.049 (3)
H21A −0.0252 0.5855 0.3147 0.059*
C22 0.0506 (4) 0.5827 (4) 0.3790 (8) 0.043 (2)
H22A 0.0539 0.5434 0.3802 0.052*
C23 0.0934 (4) 0.6165 (4) 0.4168 (7) 0.039 (2)
H23A 0.1255 0.5997 0.4430 0.047*
C24 0.0887 (3) 0.6751 (3) 0.4158 (5) 0.0251 (16)
H24A 0.1176 0.6973 0.4415 0.030*
C25 0.0251 (3) 0.8406 (3) 0.4989 (5) 0.0222 (16)
C26 −0.0171 (3) 0.8283 (3) 0.5668 (5) 0.0231 (16)
H26A −0.0421 0.7986 0.5556 0.028*
C27 −0.0219 (3) 0.8604 (3) 0.6510 (5) 0.0255 (17)
H27A −0.0494 0.8514 0.6966 0.031*
C28 0.0143 (4) 0.9055 (4) 0.6665 (6) 0.034 (2)
H28A 0.0108 0.9273 0.7221 0.041*
C29 0.0555 (3) 0.9182 (4) 0.5996 (6) 0.0315 (19)
H29A 0.0798 0.9485 0.6103 0.038*
C30 0.0609 (3) 0.8857 (3) 0.5161 (5) 0.0269 (17)
H30A 0.0890 0.8945 0.4714 0.032*
C31 0.0315 (3) 0.8320 (3) 0.2348 (5) 0.0178 (15)
C32 0.0313 (3) 0.8901 (3) 0.2256 (5) 0.0211 (16)
H32A 0.0314 0.9121 0.2813 0.025*
C33 0.0311 (3) 0.9169 (3) 0.1369 (7) 0.0265 (15)
H33A 0.0307 0.9563 0.1337 0.032*
C34 0.0316 (3) 0.8851 (4) 0.0528 (6) 0.0266 (18)
H34A 0.0312 0.9029 −0.0071 0.032*
C35 0.0327 (3) 0.8264 (4) 0.0589 (5) 0.0253 (17)
H35A 0.0338 0.8046 0.0030 0.030*
C36 0.0321 (3) 0.8009 (3) 0.1475 (5) 0.0247 (15)
H36A 0.0320 0.7615 0.1506 0.030*
C37 0.1639 (3) 0.7929 (3) 0.3331 (4) 0.0127 (9)
C38 0.2218 (3) 0.8202 (3) 0.3560 (5) 0.0157 (13)
H38A 0.2517 0.7985 0.3254 0.019*
H38B 0.2228 0.8583 0.3301 0.019*
C39 0.2319 (3) 0.8221 (3) 0.4648 (4) 0.0127 (9)
O1W −0.06172 (18) 0.7845 (2) 0.3536 (3) 0.0201 (11)
H1W1 −0.0802 0.7629 0.3919 0.030*
H2W1 −0.0759 0.8179 0.3609 0.030*
O5 0.1396 (14) 0.4466 (12) 0.798 (2) 0.357 (17)*
C40 0.1640 (7) 0.5374 (7) 0.8785 (16) 0.124 (6)*
H40A 0.2028 0.5338 0.8586 0.186*
H40B 0.1616 0.5339 0.9475 0.186*
H40C 0.1498 0.5738 0.8593 0.186*
C41 0.1293 (10) 0.4918 (11) 0.8319 (19) 0.179 (11)*
C42 0.0680 (10) 0.4962 (11) 0.861 (2) 0.214 (12)*
H42A 0.0490 0.4613 0.8469 0.321*
H42B 0.0503 0.5266 0.8265 0.321*
H42C 0.0657 0.5036 0.9294 0.321*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sn1 0.0163 (2) 0.0163 (2) 0.00904 (16) 0.00189 (17) 0.00150 (19) −0.00057 (19)
Sn2 0.0135 (2) 0.0274 (2) 0.01057 (17) 0.00137 (17) 0.00065 (19) −0.0023 (2)
O1 0.017 (2) 0.018 (2) 0.008 (2) −0.0039 (18) 0.0035 (18) −0.0030 (17)
O2 0.009 (2) 0.030 (3) 0.015 (2) 0.0023 (19) 0.0021 (17) −0.0051 (19)
O3 0.022 (3) 0.014 (2) 0.011 (2) −0.0023 (19) −0.0067 (18) 0.0026 (18)
O4 0.028 (3) 0.015 (2) 0.016 (2) 0.001 (2) 0.000 (2) −0.0035 (19)
C1 0.016 (3) 0.021 (4) 0.019 (3) 0.004 (3) −0.004 (3) −0.003 (3)
C2 0.024 (4) 0.030 (4) 0.036 (4) −0.010 (3) 0.000 (4) −0.004 (4)
C3 0.021 (4) 0.049 (6) 0.061 (6) −0.015 (4) 0.001 (4) −0.008 (5)
C4 0.025 (3) 0.031 (3) 0.037 (3) −0.001 (2) −0.005 (3) −0.010 (3)
C5 0.031 (5) 0.065 (7) 0.034 (5) 0.022 (5) −0.017 (4) −0.013 (4)
C6 0.027 (4) 0.044 (5) 0.019 (3) 0.009 (4) −0.003 (3) −0.009 (3)
C7 0.029 (3) 0.014 (3) 0.006 (3) −0.003 (3) −0.003 (3) 0.004 (3)
C8 0.025 (3) 0.031 (3) 0.037 (3) −0.001 (2) −0.005 (3) −0.010 (3)
C9 0.037 (4) 0.016 (3) 0.019 (4) 0.006 (3) 0.000 (3) 0.008 (3)
C10 0.043 (5) 0.017 (3) 0.041 (5) −0.006 (3) 0.009 (5) −0.003 (4)
C11 0.037 (4) 0.028 (4) 0.032 (4) −0.009 (3) 0.001 (4) 0.003 (4)
C12 0.024 (3) 0.017 (3) 0.035 (4) −0.001 (3) 0.008 (4) −0.005 (4)
C13 0.021 (3) 0.015 (3) 0.014 (3) 0.003 (3) −0.003 (3) −0.002 (3)
C14 0.022 (4) 0.022 (4) 0.024 (4) 0.001 (3) −0.004 (3) −0.005 (3)
C15 0.021 (4) 0.043 (5) 0.035 (4) 0.007 (4) −0.007 (3) −0.011 (4)
C16 0.050 (5) 0.027 (4) 0.032 (5) 0.012 (4) −0.019 (4) −0.012 (4)
C17 0.047 (4) 0.034 (4) 0.014 (3) 0.014 (3) 0.000 (4) −0.004 (4)
C18 0.019 (4) 0.018 (3) 0.019 (3) 0.003 (3) 0.005 (3) −0.001 (3)
C19 0.019 (3) 0.035 (4) 0.007 (3) 0.007 (3) 0.003 (3) −0.006 (3)
C20 0.033 (5) 0.034 (5) 0.036 (4) 0.006 (4) −0.004 (3) −0.013 (4)
C21 0.057 (6) 0.032 (5) 0.059 (7) −0.001 (5) −0.004 (5) −0.020 (4)
C22 0.054 (5) 0.031 (4) 0.045 (5) 0.020 (4) 0.010 (5) −0.004 (5)
C23 0.031 (5) 0.045 (5) 0.041 (5) 0.013 (4) 0.005 (4) 0.006 (4)
C24 0.019 (4) 0.034 (4) 0.022 (4) 0.012 (3) 0.002 (3) 0.009 (3)
C25 0.019 (4) 0.032 (4) 0.016 (3) 0.001 (3) 0.005 (3) −0.004 (3)
C26 0.015 (3) 0.036 (4) 0.018 (3) −0.008 (3) 0.004 (3) 0.001 (3)
C27 0.019 (3) 0.043 (5) 0.015 (4) 0.005 (3) 0.005 (3) −0.003 (3)
C28 0.026 (4) 0.050 (6) 0.026 (4) 0.002 (4) 0.000 (3) −0.016 (4)
C29 0.025 (4) 0.037 (5) 0.032 (4) −0.006 (4) 0.006 (3) −0.017 (3)
C30 0.024 (4) 0.033 (4) 0.024 (4) −0.003 (3) 0.008 (3) −0.010 (3)
C31 0.011 (3) 0.030 (4) 0.013 (3) 0.000 (3) 0.005 (3) 0.001 (3)
C32 0.019 (4) 0.029 (4) 0.016 (3) 0.001 (3) −0.003 (3) −0.007 (3)
C33 0.025 (4) 0.026 (4) 0.028 (4) 0.003 (3) 0.005 (4) 0.003 (4)
C34 0.023 (4) 0.039 (5) 0.019 (4) 0.003 (4) −0.001 (3) 0.004 (3)
C35 0.027 (4) 0.036 (5) 0.013 (3) 0.010 (4) −0.002 (3) 0.001 (3)
C36 0.021 (4) 0.023 (4) 0.030 (4) −0.001 (3) 0.000 (3) −0.002 (3)
C37 0.011 (2) 0.020 (2) 0.0064 (18) 0.0028 (18) −0.0038 (16) 0.0045 (17)
C38 0.019 (3) 0.019 (3) 0.010 (3) −0.004 (2) −0.003 (3) −0.002 (3)
C39 0.011 (2) 0.020 (2) 0.0064 (18) 0.0028 (18) −0.0038 (16) 0.0045 (17)
O1W 0.009 (2) 0.034 (3) 0.018 (3) 0.0001 (19) 0.0007 (18) 0.002 (2)

Geometric parameters (Å, °)

Sn1—C1 2.124 (7) C19—C20 1.378 (11)
Sn1—C7 2.132 (6) C19—C24 1.403 (9)
Sn1—C13 2.133 (7) C20—C21 1.405 (12)
Sn1—O3i 2.148 (4) C20—H20A 0.9300
Sn1—O1 2.333 (4) C21—C22 1.370 (13)
Sn2—C31 2.119 (7) C21—H21A 0.9300
Sn2—C19 2.137 (7) C22—C23 1.390 (13)
Sn2—C25 2.139 (7) C22—H22A 0.9300
Sn2—O2 2.164 (4) C23—C24 1.387 (12)
Sn2—O1W 2.325 (4) C23—H23A 0.9300
O1—C37 1.252 (8) C24—H24A 0.9300
O2—C37 1.249 (7) C25—C30 1.379 (11)
O3—C39 1.279 (8) C25—C26 1.400 (10)
O3—Sn1ii 2.148 (4) C26—C27 1.395 (10)
O4—C39 1.230 (8) C26—H26A 0.9300
C1—C2 1.384 (10) C27—C28 1.383 (12)
C1—C6 1.399 (10) C27—H27A 0.9300
C2—C3 1.406 (11) C28—C29 1.375 (11)
C2—H2A 0.9300 C28—H28A 0.9300
C3—C4 1.343 (13) C29—C30 1.394 (10)
C3—H3A 0.9300 C29—H29A 0.9300
C4—C5 1.380 (13) C30—H30A 0.9300
C4—H4A 0.9300 C31—C32 1.376 (11)
C5—C6 1.411 (12) C31—C36 1.414 (10)
C5—H5A 0.9300 C32—C33 1.382 (11)
C6—H6A 0.9300 C32—H32A 0.9300
C7—C8 1.385 (9) C33—C34 1.385 (12)
C7—C12 1.387 (9) C33—H33A 0.9300
C8—C9 1.384 (10) C34—C35 1.387 (12)
C8—H8A 0.9300 C34—H34A 0.9300
C9—C10 1.373 (10) C35—C36 1.368 (10)
C9—H9A 0.9300 C35—H35A 0.9300
C10—C11 1.358 (11) C36—H36A 0.9300
C10—H10A 0.9300 C37—C38 1.544 (9)
C11—C12 1.379 (9) C38—C39 1.525 (8)
C11—H11A 0.9300 C38—H38A 0.9700
C12—H12A 0.9300 C38—H38B 0.9700
C13—C14 1.401 (10) O1W—H1W1 0.8551
C13—C18 1.403 (9) O1W—H2W1 0.8618
C14—C15 1.416 (11) O5—C41 1.189 (10)
C14—H14A 0.9300 C40—C41 1.498 (10)
C15—C16 1.375 (12) C40—H40A 0.9600
C15—H15A 0.9300 C40—H40B 0.9600
C16—C17 1.403 (12) C40—H40C 0.9600
C16—H16A 0.9300 C41—C42 1.507 (10)
C17—C18 1.383 (10) C42—H42A 0.9600
C17—H17A 0.9300 C42—H42B 0.9600
C18—H18A 0.9300 C42—H42C 0.9600
Sn1···O1 2.333 (4) Sn2···O2 2.164 (4)
Sn1···O3i 2.148 (4) Sn2···O1W 2.325 (4)
Sn1···C1 2.124 (7) Sn2···C19 2.137 (7)
Sn1···C7 2.132 (6) Sn2···C25 2.139 (7)
Sn1···C13 2.133 (7) Sn2···C31 2.119 (7)
C1—Sn1—C7 120.3 (3) C19—C20—H20A 120.0
C1—Sn1—C13 122.2 (3) C21—C20—H20A 120.0
C7—Sn1—C13 116.7 (3) C22—C21—C20 120.8 (9)
C1—Sn1—O3i 93.1 (2) C22—C21—H21A 119.6
C7—Sn1—O3i 89.1 (2) C20—C21—H21A 119.6
C13—Sn1—O3i 96.9 (2) C21—C22—C23 119.2 (8)
C1—Sn1—O1 85.0 (2) C21—C22—H22A 120.4
C7—Sn1—O1 87.0 (2) C23—C22—H22A 120.4
C13—Sn1—O1 88.9 (2) C24—C23—C22 120.8 (8)
O3i—Sn1—O1 174.03 (17) C24—C23—H23A 119.6
C31—Sn2—C19 119.1 (3) C22—C23—H23A 119.6
C31—Sn2—C25 118.9 (3) C23—C24—C19 119.9 (8)
C19—Sn2—C25 121.5 (3) C23—C24—H24A 120.0
C31—Sn2—O2 94.9 (2) C19—C24—H24A 120.0
C19—Sn2—O2 96.8 (2) C30—C25—C26 118.7 (7)
C25—Sn2—O2 85.3 (2) C30—C25—Sn2 119.4 (5)
C31—Sn2—O1W 83.6 (2) C26—C25—Sn2 121.9 (6)
C19—Sn2—O1W 89.2 (2) C27—C26—C25 120.5 (7)
C25—Sn2—O1W 90.1 (2) C27—C26—H26A 119.8
O2—Sn2—O1W 173.79 (18) C25—C26—H26A 119.8
C37—O1—Sn1 131.5 (4) C28—C27—C26 119.8 (7)
C37—O2—Sn2 125.4 (4) C28—C27—H27A 120.1
C39—O3—Sn1ii 119.4 (4) C26—C27—H27A 120.1
C2—C1—C6 119.7 (7) C29—C28—C27 120.0 (7)
C2—C1—Sn1 121.3 (5) C29—C28—H28A 120.0
C6—C1—Sn1 118.9 (6) C27—C28—H28A 120.0
C1—C2—C3 119.1 (8) C28—C29—C30 120.3 (8)
C1—C2—H2A 120.4 C28—C29—H29A 119.9
C3—C2—H2A 120.4 C30—C29—H29A 119.9
C4—C3—C2 122.1 (9) C25—C30—C29 120.7 (7)
C4—C3—H3A 119.0 C25—C30—H30A 119.6
C2—C3—H3A 119.0 C29—C30—H30A 119.6
C3—C4—C5 119.4 (8) C32—C31—C36 116.1 (7)
C3—C4—H4A 120.3 C32—C31—Sn2 122.4 (5)
C5—C4—H4A 120.3 C36—C31—Sn2 121.5 (6)
C4—C5—C6 120.7 (8) C31—C32—C33 122.6 (7)
C4—C5—H5A 119.7 C31—C32—H32A 118.7
C6—C5—H5A 119.7 C33—C32—H32A 118.7
C1—C6—C5 119.0 (8) C32—C33—C34 119.9 (7)
C1—C6—H6A 120.5 C32—C33—H33A 120.1
C5—C6—H6A 120.5 C34—C33—H33A 120.1
C8—C7—C12 118.6 (6) C33—C34—C35 119.4 (7)
C8—C7—Sn1 119.8 (5) C33—C34—H34A 120.3
C12—C7—Sn1 121.2 (5) C35—C34—H34A 120.3
C9—C8—C7 119.5 (7) C36—C35—C34 119.6 (7)
C9—C8—H8A 120.3 C36—C35—H35A 120.2
C7—C8—H8A 120.3 C34—C35—H35A 120.2
C10—C9—C8 120.9 (7) C35—C36—C31 122.5 (7)
C10—C9—H9A 119.5 C35—C36—H36A 118.8
C8—C9—H9A 119.5 C31—C36—H36A 118.8
C11—C10—C9 119.8 (7) O2—C37—O1 125.3 (6)
C11—C10—H10A 120.1 O2—C37—C38 113.5 (5)
C9—C10—H10A 120.1 O1—C37—C38 121.2 (6)
C10—C11—C12 120.1 (7) C39—C38—C37 110.7 (5)
C10—C11—H11A 120.0 C39—C38—H38A 109.5
C12—C11—H11A 120.0 C37—C38—H38A 109.5
C11—C12—C7 120.9 (7) C39—C38—H38B 109.5
C11—C12—H12A 119.5 C37—C38—H38B 109.5
C7—C12—H12A 119.5 H38A—C38—H38B 108.1
C14—C13—C18 118.7 (6) O4—C39—O3 125.3 (6)
C14—C13—Sn1 119.9 (5) O4—C39—C38 120.1 (6)
C18—C13—Sn1 121.4 (5) O3—C39—C38 114.4 (6)
C13—C14—C15 119.7 (7) Sn2—O1W—H1W1 118.8
C13—C14—H14A 120.2 Sn2—O1W—H2W1 108.1
C15—C14—H14A 120.2 H1W1—O1W—H2W1 105.9
C16—C15—C14 120.1 (8) C41—C40—H40A 109.5
C16—C15—H15A 119.9 C41—C40—H40B 109.5
C14—C15—H15A 119.9 H40A—C40—H40B 109.5
C15—C16—C17 120.7 (8) C41—C40—H40C 109.5
C15—C16—H16A 119.7 H40A—C40—H40C 109.5
C17—C16—H16A 119.7 H40B—C40—H40C 109.5
C18—C17—C16 119.0 (8) O5—C41—C40 135 (3)
C18—C17—H17A 120.5 O5—C41—C42 111 (3)
C16—C17—H17A 120.5 C40—C41—C42 111 (2)
C17—C18—C13 121.7 (7) C41—C42—H42A 109.5
C17—C18—H18A 119.2 C41—C42—H42B 109.5
C13—C18—H18A 119.2 H42A—C42—H42B 109.5
C20—C19—C24 119.2 (7) C41—C42—H42C 109.5
C20—C19—Sn2 121.7 (6) H42A—C42—H42C 109.5
C24—C19—Sn2 119.0 (5) H42B—C42—H42C 109.5
C19—C20—C21 120.1 (8)
C1—Sn1—O1—C37 −166.9 (6) O2—Sn2—C19—C20 −159.2 (6)
C7—Sn1—O1—C37 −46.0 (6) O1W—Sn2—C19—C20 22.5 (6)
C13—Sn1—O1—C37 70.7 (6) C31—Sn2—C19—C24 117.4 (6)
C31—Sn2—O2—C37 −55.5 (6) C25—Sn2—C19—C24 −70.7 (6)
C19—Sn2—O2—C37 64.6 (5) O2—Sn2—C19—C24 17.9 (6)
C25—Sn2—O2—C37 −174.2 (6) O1W—Sn2—C19—C24 −160.4 (6)
C7—Sn1—C1—C2 −128.6 (6) C24—C19—C20—C21 1.2 (12)
C13—Sn1—C1—C2 40.5 (7) Sn2—C19—C20—C21 178.3 (7)
O3i—Sn1—C1—C2 140.6 (6) C19—C20—C21—C22 −1.0 (14)
O1—Sn1—C1—C2 −45.0 (6) C20—C21—C22—C23 0.2 (15)
C7—Sn1—C1—C6 55.4 (6) C21—C22—C23—C24 0.4 (14)
C13—Sn1—C1—C6 −135.5 (6) C22—C23—C24—C19 −0.3 (12)
O3i—Sn1—C1—C6 −35.4 (6) C20—C19—C24—C23 −0.6 (11)
O1—Sn1—C1—C6 138.9 (6) Sn2—C19—C24—C23 −177.8 (6)
C6—C1—C2—C3 −1.0 (11) C31—Sn2—C25—C30 −58.1 (7)
Sn1—C1—C2—C3 −177.0 (6) C19—Sn2—C25—C30 130.0 (6)
C1—C2—C3—C4 1.6 (14) O2—Sn2—C25—C30 34.9 (6)
C2—C3—C4—C5 −1.4 (14) O1W—Sn2—C25—C30 −140.9 (6)
C3—C4—C5—C6 0.7 (13) C31—Sn2—C25—C26 122.5 (6)
C2—C1—C6—C5 0.4 (11) C19—Sn2—C25—C26 −49.4 (7)
Sn1—C1—C6—C5 176.4 (6) O2—Sn2—C25—C26 −144.5 (7)
C4—C5—C6—C1 −0.2 (12) O1W—Sn2—C25—C26 39.7 (6)
C1—Sn1—C7—C8 34.8 (7) C30—C25—C26—C27 −1.4 (12)
C13—Sn1—C7—C8 −134.9 (6) Sn2—C25—C26—C27 178.0 (6)
O3i—Sn1—C7—C8 127.8 (6) C25—C26—C27—C28 1.7 (12)
O1—Sn1—C7—C8 −47.7 (6) C26—C27—C28—C29 −1.0 (13)
C1—Sn1—C7—C12 −152.9 (6) C27—C28—C29—C30 0.1 (13)
C13—Sn1—C7—C12 37.4 (7) C26—C25—C30—C29 0.5 (12)
O3i—Sn1—C7—C12 −59.9 (6) Sn2—C25—C30—C29 −178.9 (6)
O1—Sn1—C7—C12 124.6 (6) C28—C29—C30—C25 0.2 (13)
C12—C7—C8—C9 3.6 (12) C19—Sn2—C31—C32 −176.7 (6)
Sn1—C7—C8—C9 176.1 (6) C25—Sn2—C31—C32 11.2 (7)
C7—C8—C9—C10 −4.0 (13) O2—Sn2—C31—C32 −76.1 (6)
C8—C9—C10—C11 2.2 (14) O1W—Sn2—C31—C32 97.8 (7)
C9—C10—C11—C12 0.0 (15) C19—Sn2—C31—C36 −0.8 (7)
C10—C11—C12—C7 −0.3 (15) C25—Sn2—C31—C36 −172.9 (6)
C8—C7—C12—C11 −1.5 (13) O2—Sn2—C31—C36 99.8 (6)
Sn1—C7—C12—C11 −173.9 (7) O1W—Sn2—C31—C36 −86.3 (6)
C1—Sn1—C13—C14 129.2 (5) C36—C31—C32—C33 0.7 (11)
C7—Sn1—C13—C14 −61.3 (6) Sn2—C31—C32—C33 176.8 (6)
O3i—Sn1—C13—C14 31.2 (6) C31—C32—C33—C34 −0.6 (11)
O1—Sn1—C13—C14 −147.3 (5) C32—C33—C34—C35 −0.4 (11)
C1—Sn1—C13—C18 −50.4 (6) C33—C34—C35—C36 1.3 (12)
C7—Sn1—C13—C18 119.0 (6) C34—C35—C36—C31 −1.3 (12)
O3i—Sn1—C13—C18 −148.5 (5) C32—C31—C36—C35 0.2 (11)
O1—Sn1—C13—C18 33.0 (5) Sn2—C31—C36—C35 −175.9 (6)
C18—C13—C14—C15 0.3 (10) Sn2—O2—C37—O1 −10.4 (9)
Sn1—C13—C14—C15 −179.3 (5) Sn2—O2—C37—C38 168.2 (4)
C13—C14—C15—C16 2.6 (11) Sn1—O1—C37—O2 169.6 (4)
C14—C15—C16—C17 −3.8 (12) Sn1—O1—C37—C38 −8.9 (9)
C15—C16—C17—C18 2.0 (11) O2—C37—C38—C39 39.1 (8)
C16—C17—C18—C13 1.0 (11) O1—C37—C38—C39 −142.2 (6)
C14—C13—C18—C17 −2.1 (10) Sn1ii—O3—C39—O4 −24.6 (9)
Sn1—C13—C18—C17 177.5 (5) Sn1ii—O3—C39—C38 150.1 (4)
C31—Sn2—C19—C20 −59.7 (7) C37—C38—C39—O4 −125.3 (7)
C25—Sn2—C19—C20 112.2 (7) C37—C38—C39—O3 59.7 (7)

Symmetry codes: (i) −x+1/2, −y+3/2, z−1/2; (ii) −x+1/2, −y+3/2, z+1/2.

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C31–C36 and C7–C12 benzene rings, respectively.
D—H···A D—H H···A D···A D—H···A
O1W—H1W1···O4iii 0.86 1.90 2.663 (6) 148
C5—H5A···O5iv 0.93 2.59 3.38 (3) 144
C26—H26A···O4iii 0.93 2.50 3.356 (8) 154
C8—H8A···Cg1 0.93 2.83 3.701 (8) 157
C17—H17A···Cg2ii 0.93 2.79 3.571 (9) 142
C38—H38B···Cg2 0.97 2.97 3.613 (8) 125

Symmetry codes: (iii) y−1, −x+1, −z+1; (iv) −y+1/2, x+1/2, −z+1/2; (ii) −x+1/2, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2776).

References

  1. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Ng, S. W. (1998). Acta Cryst. C54, 745–750.
  5. Ng, S. W. & Kumar Das, V. G. (1993). Acta Cryst. C49, 754–756.
  6. Ng, S. W., Kumar Das, V. G., Hossain, M. B., Goerlitz, F. & van der Helm, D. (1990). J. Organomet. Chem.390, 19–28.
  7. Samuel-Lewis, A., Smith, P. J., Aupers, J. H., Hampson, D. & Povey, D. C. (1992). J. Organomet. Chem.437, 131–144.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810018398/ng2776sup1.cif

e-66-0m695-sup1.cif (31.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810018398/ng2776Isup2.hkl

e-66-0m695-Isup2.hkl (435.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES