Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 May 8;66(Pt 6):o1289–o1290. doi: 10.1107/S1600536810015552

(2E)-1-(1,3-Benzodioxol-5-yl)-3-(2-bromo­phen­yl)prop-2-en-1-one

Hongqi Li a,*, R S Rathore b, K Prakash Kamath c, H S Yathirajan d, B Narayana e
PMCID: PMC2979485  PMID: 21579387

Abstract

The mol­ecule of the title compound, C16H11BrO3, is essentially planar with a maximum deviation of 0.178 (4) Å and the configuration of the keto group with respect to the olefinic double bond is typically s-cis. In the crystal structure, inter­molecular Br⋯O inter­actions [3.187 (3)Å] give rise to chains parallel to the b axis. Adjacent chains are further linked along the a axis by C—H⋯π inter­actions. The crystal studied was a racemic twin with a 0.595 (13):0.405 (13) ratio.

Related literature

For chalcones, see: Di Carlo et al. (1999); Sarojini et al. (2006); Yarishkin et al. (2008). For halogen-bonding inter­actions, see: Thallapally et al. (2002); Metrangolo et al. (2005); Riley et al. (2009). For related structures, see: Harrison et al. (2006); Rathore et al. (2006); Li et al. (2008); Jasinski et al. (2010). For racemic twinning, see: Flack (1983); Flack & Bernardinelli (2000); Gömez et al. (2010).graphic file with name e-66-o1289-scheme1.jpg

Experimental

Crystal data

  • C16H11BrO3

  • M r = 331.16

  • Orthorhombic, Inline graphic

  • a = 5.0434 (2) Å

  • b = 12.9354 (4) Å

  • c = 20.8916 (7) Å

  • V = 1362.93 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.02 mm−1

  • T = 296 K

  • 0.53 × 0.19 × 0.16 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.576, T max = 0.653

  • 17031 measured reflections

  • 2674 independent reflections

  • 2437 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.086

  • S = 1.06

  • 2674 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.52 e Å−3

  • Absolute structure: Flack (1983), 1086 Bijvoet pairs

  • Flack parameter: 0.595 (13)

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810015552/rz2432sup1.cif

e-66-o1289-sup1.cif (18.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015552/rz2432Isup2.hkl

e-66-o1289-Isup2.hkl (128.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg3 is the centroid of the C10–C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16BCg3i 0.97 2.76 3.563 (4) 141

Symmetry code: (i) Inline graphic.

Acknowledgments

Mangalore University and the Bioinformatics Infrastructure Facility, University of Hyderabad, are gratefully acknowledged. BN thanks UGC–SAP for financial support. RSR thanks the CSIR, New Delhi, for support under the scientist’s pool scheme.

supplementary crystallographic information

Comment

Chalcones possess many interesting biological and pharmacological properties. They are highly reactive substances of varied nature. Recently, it is shown that few of the derivatives are able to block voltage-dependent potassium channels (Yarishkin et al., 2008). Chalcones have been also implicated in organic nonlinear optical materials for their SHG conversion efficiency (Sarojini et al., 2006). The radical quenching property of the phenolic groups present in many chalcones or chalcone-rich plant extracts has led to their use as drugs or food preservatives (Di Carlo et al., 1999). We earlier reported structures of chalcone derivatives (Harrison et al., 2006; Rathore et al., 2006; Jasinski et al., 2010; Li et al., 2008). In continuation of the study, we have synthesized a new chalcone analog, C16H11BrO3, (I), and discuss its crytal structure herein.

The crystal of (I) studied was racemically twinned in a 0.595 (13):0.405 (13) ratio. Similar racemic twinning in Br-containing compounds was observed by Gömez et al. (2010). The skeleton of (I) is essentially planar possessing two intramolecular short contacts. The bifurcated C1—H7···(Br1, O1) promote planarity of the molecular skeleton (Table 1). The configuration of the keto group with respect to the olefinic double bond is typically s-cis, with the C7—C8—C9—O1 torsion angle of -1.6 (7)° (Rathore et al., 2006).

Crystal packing is characterized by halogen···oxygen interactions between molecules related by 2-fold screw axis, with the Br1 ···O2i distance of 3.187 (3)Å [symmetry code (i): 0.5+x, 0.5-y, -z] and the C1—Br1···O2 angle of 170.6 (1)°. The Br···O interaction leads to a one-dimensional chain along b axis. Crystal packing is shown in Fig 2. Br···O interactions have previously been employed for crystal engineering purposes (Thallapally et al., 2002). Halogen bonding between halogen atoms (Lewis acid) and neutral or anionic Lewis base, has been subject of great interest in recent years, primarily due to their unique noncovalent bonding characteristics (Metrangolo et al., 2005; Riley et al., 2009). The crystal structure additionally contains a C—H···π short contact, giving rise to an alternate linear pattern along the a axis (Table 1).

Experimental

The title compound was prepared as follows: to a mixture of 1-(1,3-benzodioxol-5-yl)ethanone (1.64 g, 0.01 mol) and 2-bromobenzaldehyde (1.85 g, 0.01 mol) in 30 ml ethanol, 10 ml of 10 % sodium hydroxide solution was added and stirred at 5-10° C for 3 hours. The precipitate formed was collected by filtration and purified by recrystallization from ethanol. Final yield 79%; m.p. 390-392° K. Crystals suitable for X-ray analysis were grown from (1:1 v/v) mixture of toluene and acetone by slow evaporation method. Anal.: calc. for C16H11BrO3 : C 58.03 , H 3.35; found: C 57.93, H 3.31.

Refinement

All H atoms were stereochemically fixed and refined using a riding option with C(Sp2)—H = 0.93 Å, C(methylene)—H = 0.97 Å, and Uiso(H) = 1.2 Ueq(C). The residual electron density observed in the vicinity of Br is due to the result of rotation of the bromophenyl moiety about the C6—C7 bond. The disorder could not be reliably refined presumably due to very low occupancy of other conformers. The crystal studied was treated as an inversion twin leading to twin fractions of 0.595 (13):0.405 (13).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at 30% probability level. Dotted lines indicate intramolecular hydrogen bonds.

Fig. 2.

Fig. 2.

Molecular packing of the title compound showing the halogen···oxygen interactions (dashed lines) forming one-dimensional chains along the b axis.

Crystal data

C16H11BrO3 Dx = 1.614 Mg m3
Mr = 331.16 Melting point = 390–392 K
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 7488 reflections
a = 5.0434 (2) Å θ = 2.5–25.7°
b = 12.9354 (4) Å µ = 3.02 mm1
c = 20.8916 (7) Å T = 296 K
V = 1362.93 (8) Å3 Block, colorless
Z = 4 0.53 × 0.19 × 0.16 mm
F(000) = 664

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 2674 independent reflections
Radiation source: fine-focus sealed tube 2437 reflections with I > 2σ(I)
graphite Rint = 0.023
φ and ω scans θmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −6→6
Tmin = 0.576, Tmax = 0.653 k = −13→15
17031 measured reflections l = −25→25

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034 H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0412P)2 + 0.7667P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.001
2674 reflections Δρmax = 0.64 e Å3
182 parameters Δρmin = −0.51 e Å3
0 restraints Absolute structure: Flack (1983), 1086 Bijvoet pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.595 (13)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.74414 (9) 0.52368 (3) 0.425085 (18) 0.07369 (16)
O1 0.0651 (6) 0.5167 (2) 0.25271 (15) 0.0779 (9)
O2 −0.6166 (5) 0.26394 (18) 0.06042 (12) 0.0586 (6)
O3 −0.6165 (5) 0.44083 (18) 0.07678 (11) 0.0554 (5)
C1 0.7744 (7) 0.3802 (2) 0.40661 (13) 0.0493 (7)
C2 0.9616 (7) 0.3239 (3) 0.44092 (16) 0.0610 (9)
H2 1.0660 0.3561 0.4717 0.073*
C3 0.9903 (8) 0.2201 (3) 0.42877 (19) 0.0679 (11)
H3 1.1121 0.1813 0.4520 0.081*
C4 0.8394 (8) 0.1738 (3) 0.3824 (2) 0.0661 (10)
H4 0.8595 0.1036 0.3741 0.079*
C5 0.6594 (7) 0.2304 (3) 0.34812 (17) 0.0576 (9)
H5 0.5603 0.1975 0.3166 0.069*
C6 0.6196 (6) 0.3355 (3) 0.35892 (14) 0.0461 (7)
C7 0.4282 (7) 0.3947 (3) 0.32148 (16) 0.0533 (8)
H7 0.4276 0.4658 0.3280 0.064*
C8 0.2596 (7) 0.3595 (2) 0.28037 (14) 0.0524 (7)
H8 0.2561 0.2885 0.2732 0.063*
C9 0.0717 (6) 0.4246 (3) 0.24404 (15) 0.0461 (7)
C10 −0.1054 (6) 0.3754 (2) 0.19621 (13) 0.0413 (6)
C11 −0.1108 (7) 0.2691 (3) 0.18603 (16) 0.0486 (7)
H11 0.0015 0.2268 0.2097 0.058*
C12 −0.2804 (7) 0.2245 (2) 0.14116 (15) 0.0522 (8)
H12 −0.2842 0.1534 0.1347 0.063*
C13 −0.4395 (6) 0.2889 (2) 0.10737 (14) 0.0436 (7)
C14 −0.4375 (6) 0.3942 (2) 0.11713 (13) 0.0398 (6)
C15 −0.2737 (7) 0.4401 (2) 0.16089 (12) 0.0430 (6)
H15 −0.2739 0.5113 0.1670 0.052*
C16 −0.7382 (8) 0.3593 (2) 0.04180 (13) 0.0498 (7)
H16A −0.7151 0.3704 −0.0038 0.060*
H16B −0.9267 0.3572 0.0510 0.060*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0729 (2) 0.0700 (2) 0.0781 (3) 0.0085 (2) −0.0259 (2) −0.02381 (18)
O1 0.096 (2) 0.0487 (15) 0.0889 (19) 0.0021 (15) −0.0448 (17) −0.0083 (14)
O2 0.0621 (14) 0.0532 (13) 0.0605 (13) 0.0012 (11) −0.0161 (12) −0.0129 (11)
O3 0.0580 (13) 0.0492 (12) 0.0589 (13) 0.0062 (11) −0.0187 (11) −0.0013 (11)
C1 0.0454 (16) 0.0575 (17) 0.0449 (14) −0.0019 (17) 0.0005 (14) 0.0032 (12)
C2 0.0490 (18) 0.088 (3) 0.0466 (17) 0.0060 (18) −0.0039 (15) 0.0082 (18)
C3 0.057 (2) 0.083 (3) 0.064 (2) 0.0180 (19) 0.0026 (19) 0.027 (2)
C4 0.064 (2) 0.054 (2) 0.081 (2) 0.0069 (16) 0.0111 (19) 0.017 (2)
C5 0.056 (2) 0.056 (2) 0.0608 (19) −0.0020 (15) 0.0003 (16) 0.0071 (17)
C6 0.0418 (15) 0.0552 (19) 0.0415 (15) −0.0003 (15) 0.0029 (12) 0.0046 (13)
C7 0.0564 (19) 0.0461 (18) 0.0575 (18) 0.0046 (15) −0.0111 (16) −0.0041 (15)
C8 0.0509 (16) 0.0510 (16) 0.0553 (16) −0.003 (2) −0.0075 (18) −0.0004 (13)
C9 0.0473 (17) 0.0479 (19) 0.0432 (15) −0.0038 (15) −0.0021 (13) −0.0006 (13)
C10 0.0411 (15) 0.0450 (16) 0.0378 (13) −0.0004 (13) 0.0037 (12) 0.0025 (13)
C11 0.0464 (17) 0.0473 (18) 0.0522 (17) 0.0055 (15) −0.0052 (15) 0.0026 (15)
C12 0.058 (2) 0.0368 (14) 0.0621 (17) −0.0016 (17) −0.0073 (18) −0.0041 (13)
C13 0.0435 (16) 0.0458 (17) 0.0415 (14) −0.0033 (13) 0.0011 (13) −0.0046 (13)
C14 0.0371 (14) 0.0441 (16) 0.0383 (13) 0.0011 (12) 0.0031 (12) 0.0026 (12)
C15 0.0463 (16) 0.0397 (13) 0.0429 (13) −0.0003 (16) −0.0004 (13) −0.0022 (11)
C16 0.0492 (16) 0.0540 (17) 0.0463 (14) −0.005 (2) −0.0056 (16) 0.0007 (12)

Geometric parameters (Å, °)

Br1—C1 1.902 (3) C7—C8 1.292 (5)
O1—C9 1.206 (4) C7—H7 0.9300
O2—C13 1.365 (4) C8—C9 1.478 (5)
O2—C16 1.431 (4) C8—H8 0.9300
O3—C14 1.374 (4) C9—C10 1.484 (4)
O3—C16 1.423 (4) C10—C11 1.391 (4)
C1—C2 1.391 (5) C10—C15 1.402 (4)
C1—C6 1.392 (4) C11—C12 1.394 (4)
C2—C3 1.374 (6) C11—H11 0.9300
C2—H2 0.9300 C12—C13 1.355 (4)
C3—C4 1.371 (6) C12—H12 0.9300
C3—H3 0.9300 C13—C14 1.378 (4)
C4—C5 1.368 (5) C14—C15 1.368 (4)
C4—H4 0.9300 C15—H15 0.9300
C5—C6 1.393 (5) C16—H16A 0.9700
C5—H5 0.9300 C16—H16B 0.9700
C6—C7 1.459 (4)
C13—O2—C16 105.8 (2) O1—C9—C10 120.6 (3)
C14—O3—C16 105.9 (2) C8—C9—C10 119.1 (3)
C2—C1—C6 122.1 (3) C11—C10—C15 119.9 (3)
C2—C1—Br1 117.4 (3) C11—C10—C9 122.6 (3)
C6—C1—Br1 120.4 (2) C15—C10—C9 117.5 (3)
C3—C2—C1 119.2 (4) C10—C11—C12 121.6 (3)
C3—C2—H2 120.4 C10—C11—H11 119.2
C1—C2—H2 120.4 C12—C11—H11 119.2
C4—C3—C2 120.0 (3) C13—C12—C11 117.3 (3)
C4—C3—H3 120.0 C13—C12—H12 121.3
C2—C3—H3 120.0 C11—C12—H12 121.3
C5—C4—C3 120.3 (4) C12—C13—O2 128.1 (3)
C5—C4—H4 119.9 C12—C13—C14 121.8 (3)
C3—C4—H4 119.9 O2—C13—C14 110.2 (3)
C4—C5—C6 122.2 (4) C15—C14—O3 128.0 (3)
C4—C5—H5 118.9 C15—C14—C13 122.2 (3)
C6—C5—H5 118.9 O3—C14—C13 109.8 (3)
C1—C6—C5 116.2 (3) C14—C15—C10 117.3 (3)
C1—C6—C7 122.4 (3) C14—C15—H15 121.4
C5—C6—C7 121.4 (3) C10—C15—H15 121.4
C8—C7—C6 127.4 (3) O3—C16—O2 108.3 (2)
C8—C7—H7 116.3 O3—C16—H16A 110.0
C6—C7—H7 116.3 O2—C16—H16A 110.0
C7—C8—C9 124.3 (3) O3—C16—H16B 110.0
C7—C8—H8 117.9 O2—C16—H16B 110.0
C9—C8—H8 117.9 H16A—C16—H16B 108.4
O1—C9—C8 120.3 (3)
C6—C1—C2—C3 −1.8 (5) C15—C10—C11—C12 0.1 (5)
Br1—C1—C2—C3 −179.7 (3) C9—C10—C11—C12 179.5 (3)
C1—C2—C3—C4 1.4 (5) C10—C11—C12—C13 0.4 (5)
C2—C3—C4—C5 −0.2 (6) C11—C12—C13—O2 178.6 (3)
C3—C4—C5—C6 −0.6 (6) C11—C12—C13—C14 −0.7 (5)
C2—C1—C6—C5 1.0 (5) C16—O2—C13—C12 178.4 (3)
Br1—C1—C6—C5 178.8 (2) C16—O2—C13—C14 −2.3 (3)
C2—C1—C6—C7 −178.2 (3) C16—O3—C14—C15 −179.3 (3)
Br1—C1—C6—C7 −0.4 (4) C16—O3—C14—C13 1.5 (3)
C4—C5—C6—C1 0.2 (5) C12—C13—C14—C15 0.6 (5)
C4—C5—C6—C7 179.4 (3) O2—C13—C14—C15 −178.8 (3)
C1—C6—C7—C8 −173.5 (4) C12—C13—C14—O3 180.0 (3)
C5—C6—C7—C8 7.4 (6) O2—C13—C14—O3 0.5 (4)
C6—C7—C8—C9 −179.8 (3) O3—C14—C15—C10 −179.3 (3)
C7—C8—C9—O1 −1.5 (6) C13—C14—C15—C10 −0.1 (4)
C7—C8—C9—C10 177.6 (3) C11—C10—C15—C14 −0.2 (4)
O1—C9—C10—C11 −177.9 (4) C9—C10—C15—C14 −179.7 (3)
C8—C9—C10—C11 3.0 (4) C14—O3—C16—O2 −2.8 (3)
O1—C9—C10—C15 1.5 (5) C13—O2—C16—O3 3.1 (3)
C8—C9—C10—C15 −177.6 (3)

Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C10–C15 ring.
D—H···A D—H H···A D···A D—H···A
C7—H7···Br1 0.93 2.69 3.164 (4) 113
C7—H7···O1 0.93 2.50 2.812 (6) 100
C16—H16B···Cg3i 0.97 2.76 3.563 (4) 141

Symmetry codes: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2432).

References

  1. Bruker (2004). APEX2, SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Di Carlo, G., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). Life Sci.65, 337–353. [DOI] [PubMed]
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst.33, 1143–1148.
  6. Gómez, S. L., Palma, A., Cobo, J. & Glidewell, C. (2010). Acta Cryst. C66, o233–o240. [DOI] [PubMed]
  7. Harrison, W. T. A., Bindya, S., Yathirajan, H. S., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, o5293–o5295.
  8. Jasinski, J. P., Butcher, R. J., Hakim Al-arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o383. [DOI] [PMC free article] [PubMed]
  9. Li, H., Sreevidya, T. V., Narayana, B., Sarojini, B. K. & Yathirajan, H. S. (2008). Acta Cryst. E64, o2387. [DOI] [PMC free article] [PubMed]
  10. Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res.38, 386–395. [DOI] [PubMed]
  11. Rathore, R. S., Subramanya, K., Narasimhamurthy, T., Vijay, T., Anilkumar, H. G., Yathirajan, H. S. & Basavaraju, Y. B. (2006). Anal. Sci. X-ray Online, 22, x111–x112.
  12. Riley, K. E., Murray, J. S., Politzer, P., Concha, M. C. & Hobza, P. (2009). J. Chem. Theory Comput.5, 155–163. [DOI] [PubMed]
  13. Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54–59.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Thallapally, P. K., Desiraju, G. R., Bagieu-Beucher, M., Masse, R., Bourgognec, C. & Nicoud, J.-F. (2002). Chem. Commun. pp. 1052–1053. [DOI] [PubMed]
  16. Yarishkin, O. V., Ryu, H. W., Park, J.-Y., Yang, M. S., Hong, S.-G. & Park, K. H. (2008). Bioorg. Med. Chem. Lett.18, 137–140. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810015552/rz2432sup1.cif

e-66-o1289-sup1.cif (18.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015552/rz2432Isup2.hkl

e-66-o1289-Isup2.hkl (128.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES