Abstract
In the title Schiff base compound, C12H15N3O2, obtained from a condensation reaction of cyclohexanone and 2-nitrophenylhydrazine, the phenylhydrazone group is planar, the largest deviation from the mean plane being 0.0252 (12) Å, and the nitro fragment is twisted slightly with respect to the mean plane, making a dihedral angle of 6.96 (17)°. The cycloheaxanone ring displays a chair conformation. An intramolecular N—H⋯O hydrogen bond helps to stabilize the molecular structure.
Related literature
For the important role played by hydrazone derivatives in the development of various proteins and enzymes, see: Kahwa et al. (1986 ▶); Santos et al. (2001 ▶). For puckering parameters, see Cremer & Pople (1975 ▶). For a related structure, see: Shan et al. (2003 ▶).
Experimental
Crystal data
C12H15N3O2
M r = 233.27
Monoclinic,
a = 8.519 (5) Å
b = 19.609 (7) Å
c = 7.822 (4) Å
β = 112.110 (7)°
V = 1210.6 (10) Å3
Z = 4
Mo Kα radiation
μ = 0.09 mm−1
T = 293 K
0.23 × 0.20 × 0.19 mm
Data collection
Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 1998 ▶) T min = 0.973, T max = 0.977
4958 measured reflections
2472 independent reflections
739 reflections with I > 2σ(I)
R int = 0.035
Refinement
R[F 2 > 2σ(F 2)] = 0.035
wR(F 2) = 0.066
S = 0.64
2472 reflections
155 parameters
H-atom parameters constrained
Δρmax = 0.09 e Å−3
Δρmin = −0.11 e Å−3
Data collection: SMART (Bruker, 1998 ▶); cell refinement: SAINT (Bruker, 1998 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 ▶) and ORTEP-3 for Windows (Farrugia, 1997 ▶); software used to prepare material for publication: SHELXTL.
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810016156/dn2561sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810016156/dn2561Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N2—H2⋯O2 | 0.86 | 1.98 | 2.599 (2) | 128 |
supplementary crystallographic information
Comment
The chemistry of Schiff base has attracted a great deal of interest in recent years. These compounds play an important role in the development of various proteins and enzymes (Kahwa et al., 1986; Santos et al., 2001). In this paper, we synthesized the title compound and reported its crystal structure.
In the title compound, the phenylhydrazone group is planar with the largest deviation from the mean plane being 0.0252 (12)Å, the nitro fragment is sligthly twisted with respect to this mean plane making a dihedral angle of 6.96 (17)° (Fig. 1). The cycloheaxanone displays a chair conformation as confirmed by the ring puckering parameters, θ= 5.6 (3)° and φ=195 (3)° (Cremer & Pople, 1975). The C-N and N-N distances within the hydrazone moity agree with related compound (Shan et al., 2003).
Intramolecular N—H···O hydrogen bond stabilizes the crystal structure.
Experimental
2-Nitrophenylhydrazine (1 mmol, 0.153 g) was dissolved in anhydrous ethanol (15 ml), The mixture was stirred for several minitutes at 351k, cyclohexanone (1 mmol, 0.098 g) in ethanol (8 mm l) was added dropwise and the mixture was stirred at refluxing temperature for 2 h. The product was isolated and recrystallized from methanol/dicholomethane(1:1), red single crystals of (I) was obtained after 3 d.
Refinement
All H atoms were positioned geometrically and treated as riding on their parent atoms with C—H=0.93Å (aromatic), 0.97Å(methylene) and N—H=0.86 Å, with Uiso(H)=1.2Ueq(C,N).
Figures
Fig. 1.
Molecular view of (I) with the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small sphere of arbitrary radii. Intramolecular hydrogen bond is shown as dashed lines.
Crystal data
| C12H15N3O2 | F(000) = 496 |
| Mr = 233.27 | Dx = 1.280 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2ybc | Cell parameters from 666 reflections |
| a = 8.519 (5) Å | θ = 3.0–26.3° |
| b = 19.609 (7) Å | µ = 0.09 mm−1 |
| c = 7.822 (4) Å | T = 293 K |
| β = 112.110 (7)° | Block, red |
| V = 1210.6 (10) Å3 | 0.23 × 0.20 × 0.19 mm |
| Z = 4 |
Data collection
| Bruker SMART CCD area-detector diffractometer | 2472 independent reflections |
| Radiation source: fine-focus sealed tube | 739 reflections with I > 2σ(I) |
| graphite | Rint = 0.035 |
| ω scans | θmax = 26.4°, θmin = 3.0° |
| Absorption correction: multi-scan (SADABS; Bruker, 1998) | h = −10→8 |
| Tmin = 0.973, Tmax = 0.977 | k = −24→23 |
| 4958 measured reflections | l = −8→9 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.066 | H-atom parameters constrained |
| S = 0.64 | w = 1/[σ2(Fo2) + (0.0244P)2] where P = (Fo2 + 2Fc2)/3 |
| 2472 reflections | (Δ/σ)max = 0.001 |
| 155 parameters | Δρmax = 0.09 e Å−3 |
| 0 restraints | Δρmin = −0.11 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | −0.0513 (2) | 0.70011 (9) | 0.6282 (2) | 0.1024 (6) | |
| O2 | 0.0322 (2) | 0.60900 (8) | 0.7886 (2) | 0.0979 (6) | |
| N1 | 0.0275 (3) | 0.64621 (11) | 0.6599 (3) | 0.0736 (6) | |
| N2 | 0.19470 (18) | 0.51469 (9) | 0.6890 (2) | 0.0621 (5) | |
| H2 | 0.1484 | 0.5239 | 0.7669 | 0.075* | |
| N3 | 0.2696 (2) | 0.45142 (10) | 0.6925 (2) | 0.0614 (5) | |
| C1 | 0.1174 (3) | 0.62570 (13) | 0.5443 (3) | 0.0567 (6) | |
| C2 | 0.1241 (3) | 0.67296 (11) | 0.4156 (3) | 0.0716 (6) | |
| H2B | 0.0729 | 0.7153 | 0.4079 | 0.086* | |
| C3 | 0.2056 (3) | 0.65756 (14) | 0.2998 (3) | 0.0802 (7) | |
| H3B | 0.2101 | 0.6890 | 0.2128 | 0.096* | |
| C4 | 0.2813 (3) | 0.59436 (15) | 0.3146 (3) | 0.0795 (7) | |
| H4A | 0.3373 | 0.5836 | 0.2365 | 0.095* | |
| C5 | 0.2757 (2) | 0.54760 (11) | 0.4404 (3) | 0.0664 (6) | |
| H5A | 0.3268 | 0.5053 | 0.4454 | 0.080* | |
| C6 | 0.1950 (2) | 0.56162 (12) | 0.5625 (3) | 0.0540 (5) | |
| C7 | 0.2737 (2) | 0.41110 (11) | 0.8199 (3) | 0.0577 (6) | |
| C8 | 0.2140 (3) | 0.42256 (10) | 0.9746 (3) | 0.0716 (6) | |
| H8A | 0.1145 | 0.3949 | 0.9554 | 0.086* | |
| H8B | 0.1826 | 0.4700 | 0.9762 | 0.086* | |
| C9 | 0.3519 (3) | 0.40421 (11) | 1.1584 (3) | 0.0783 (7) | |
| H9A | 0.4436 | 0.4370 | 1.1866 | 0.094* | |
| H9B | 0.3064 | 0.4071 | 1.2547 | 0.094* | |
| C10 | 0.4207 (3) | 0.33364 (11) | 1.1574 (3) | 0.0890 (7) | |
| H10A | 0.3317 | 0.3004 | 1.1402 | 0.107* | |
| H10B | 0.5111 | 0.3247 | 1.2755 | 0.107* | |
| C11 | 0.4880 (3) | 0.32612 (11) | 1.0044 (3) | 0.0859 (7) | |
| H11A | 0.5276 | 0.2798 | 1.0032 | 0.103* | |
| H11B | 0.5832 | 0.3567 | 1.0270 | 0.103* | |
| C12 | 0.3504 (3) | 0.34250 (10) | 0.8190 (3) | 0.0722 (6) | |
| H12A | 0.3981 | 0.3415 | 0.7243 | 0.087* | |
| H12B | 0.2626 | 0.3080 | 0.7891 | 0.087* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.1178 (15) | 0.0768 (11) | 0.1168 (14) | 0.0302 (11) | 0.0489 (12) | −0.0068 (10) |
| O2 | 0.1121 (15) | 0.1044 (14) | 0.1003 (13) | 0.0261 (10) | 0.0662 (12) | 0.0126 (11) |
| N1 | 0.0680 (15) | 0.0692 (16) | 0.0808 (15) | 0.0008 (12) | 0.0246 (14) | −0.0132 (13) |
| N2 | 0.0626 (14) | 0.0648 (12) | 0.0657 (12) | 0.0003 (10) | 0.0319 (11) | 0.0026 (10) |
| N3 | 0.0617 (12) | 0.0553 (12) | 0.0665 (12) | 0.0020 (10) | 0.0234 (10) | −0.0003 (10) |
| C1 | 0.0491 (16) | 0.0625 (16) | 0.0589 (14) | −0.0032 (13) | 0.0207 (13) | −0.0044 (14) |
| C2 | 0.0627 (17) | 0.0662 (16) | 0.0706 (16) | −0.0056 (13) | 0.0077 (14) | −0.0003 (15) |
| C3 | 0.0862 (19) | 0.081 (2) | 0.0700 (17) | −0.0111 (16) | 0.0258 (15) | 0.0096 (15) |
| C4 | 0.0774 (19) | 0.096 (2) | 0.0720 (17) | −0.0038 (16) | 0.0365 (15) | 0.0006 (16) |
| C5 | 0.0650 (17) | 0.0712 (17) | 0.0686 (15) | 0.0002 (12) | 0.0314 (14) | −0.0004 (14) |
| C6 | 0.0413 (14) | 0.0648 (17) | 0.0554 (14) | −0.0098 (13) | 0.0175 (12) | −0.0061 (13) |
| C7 | 0.0491 (14) | 0.0576 (15) | 0.0613 (14) | −0.0049 (12) | 0.0150 (12) | −0.0030 (13) |
| C8 | 0.0701 (17) | 0.0780 (16) | 0.0674 (15) | −0.0056 (12) | 0.0266 (15) | 0.0073 (13) |
| C9 | 0.0760 (18) | 0.0897 (17) | 0.0644 (16) | −0.0126 (14) | 0.0210 (15) | 0.0007 (14) |
| C10 | 0.0890 (19) | 0.0827 (18) | 0.0785 (17) | −0.0061 (15) | 0.0123 (15) | 0.0160 (15) |
| C11 | 0.0792 (19) | 0.0711 (16) | 0.0945 (19) | 0.0097 (14) | 0.0181 (18) | 0.0029 (15) |
| C12 | 0.0732 (17) | 0.0607 (15) | 0.0778 (16) | −0.0054 (13) | 0.0226 (15) | −0.0030 (13) |
Geometric parameters (Å, °)
| O1—N1 | 1.2262 (19) | C7—C8 | 1.496 (2) |
| O2—N1 | 1.2319 (19) | C7—C12 | 1.497 (2) |
| N1—C1 | 1.445 (2) | C8—C9 | 1.518 (3) |
| N2—C6 | 1.352 (2) | C8—H8A | 0.9700 |
| N2—N3 | 1.3906 (18) | C8—H8B | 0.9700 |
| N2—H2 | 0.8600 | C9—C10 | 1.504 (2) |
| N3—C7 | 1.262 (2) | C9—H9A | 0.9700 |
| C1—C2 | 1.385 (2) | C9—H9B | 0.9700 |
| C1—C6 | 1.402 (2) | C10—C11 | 1.516 (3) |
| C2—C3 | 1.366 (3) | C10—H10A | 0.9700 |
| C2—H2B | 0.9300 | C10—H10B | 0.9700 |
| C3—C4 | 1.381 (3) | C11—C12 | 1.517 (3) |
| C3—H3B | 0.9300 | C11—H11A | 0.9700 |
| C4—C5 | 1.359 (2) | C11—H11B | 0.9700 |
| C4—H4A | 0.9300 | C12—H12A | 0.9700 |
| C5—C6 | 1.398 (2) | C12—H12B | 0.9700 |
| C5—H5A | 0.9300 | ||
| O1—N1—O2 | 121.5 (2) | C7—C8—H8A | 109.5 |
| O1—N1—C1 | 119.5 (2) | C9—C8—H8A | 109.5 |
| O2—N1—C1 | 119.0 (2) | C7—C8—H8B | 109.5 |
| C6—N2—N3 | 119.62 (17) | C9—C8—H8B | 109.5 |
| C6—N2—H2 | 120.2 | H8A—C8—H8B | 108.1 |
| N3—N2—H2 | 120.2 | C10—C9—C8 | 112.17 (17) |
| C7—N3—N2 | 116.77 (17) | C10—C9—H9A | 109.2 |
| C2—C1—C6 | 121.8 (2) | C8—C9—H9A | 109.2 |
| C2—C1—N1 | 116.4 (2) | C10—C9—H9B | 109.2 |
| C6—C1—N1 | 121.8 (2) | C8—C9—H9B | 109.2 |
| C3—C2—C1 | 120.2 (2) | H9A—C9—H9B | 107.9 |
| C3—C2—H2B | 119.9 | C9—C10—C11 | 110.93 (18) |
| C1—C2—H2B | 119.9 | C9—C10—H10A | 109.5 |
| C2—C3—C4 | 118.7 (2) | C11—C10—H10A | 109.5 |
| C2—C3—H3B | 120.6 | C9—C10—H10B | 109.5 |
| C4—C3—H3B | 120.6 | C11—C10—H10B | 109.5 |
| C5—C4—C3 | 121.6 (2) | H10A—C10—H10B | 108.0 |
| C5—C4—H4A | 119.2 | C10—C11—C12 | 110.38 (18) |
| C3—C4—H4A | 119.2 | C10—C11—H11A | 109.6 |
| C4—C5—C6 | 121.5 (2) | C12—C11—H11A | 109.6 |
| C4—C5—H5A | 119.3 | C10—C11—H11B | 109.6 |
| C6—C5—H5A | 119.3 | C12—C11—H11B | 109.6 |
| N2—C6—C5 | 120.2 (2) | H11A—C11—H11B | 108.1 |
| N2—C6—C1 | 123.6 (2) | C7—C12—C11 | 111.55 (17) |
| C5—C6—C1 | 116.2 (2) | C7—C12—H12A | 109.3 |
| N3—C7—C8 | 128.90 (19) | C11—C12—H12A | 109.3 |
| N3—C7—C12 | 116.2 (2) | C7—C12—H12B | 109.3 |
| C8—C7—C12 | 114.9 (2) | C11—C12—H12B | 109.3 |
| C7—C8—C9 | 110.68 (17) | H12A—C12—H12B | 108.0 |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N2—H2···O2 | 0.86 | 1.98 | 2.599 (2) | 128 |
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2561).
References
- Bruker (1998). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
- Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
- Kahwa, I. A., Selbin, I., Hsieh, T. C. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.
- Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.
- Shan, S., Xu, D.-J. & Hu, W.-X. (2003). Acta Cryst. E59, o1173–o1174.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810016156/dn2561sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810016156/dn2561Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report

