Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 May 19;66(Pt 6):o1380. doi: 10.1107/S160053681001723X

2-(4-Bromo­phen­yl)quinoxaline

Zhi-jian Wang a, Wei-min Jia a, Hong-guo Yao b, Hong Qiu b, Wei Wang a,b,*
PMCID: PMC2979498  PMID: 21579461

Abstract

In the title compound, C14H9BrN2, the benzene and quinoxaline rings are almost coplanar [r.m.s. deviation = 0.0285 (3) Å and dihedral angle = 2.1 (2)°].

Related literature

For the synthesis of quinoxaline derivatives, see: Raw et al. (2003); Bhosale et al. (2005). For their applications, see: Brock et al. (1999); Seitz et al. (2002); He et al. (2003). For typical bond lengths in a related structure, see: Rong et al. (2006).graphic file with name e-66-o1380-scheme1.jpg

Experimental

Crystal data

  • C14H9BrN2

  • M r = 285.14

  • Monoclinic, Inline graphic

  • a = 13.959 (3) Å

  • b = 5.9031 (12) Å

  • c = 14.497 (3) Å

  • β = 109.53 (3)°

  • V = 1125.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.63 mm−1

  • T = 153 K

  • 0.20 × 0.18 × 0.10 mm

Data collection

  • Rigaku MM-OO7/Saturn 70 CCD area-detector diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998) T min = 0.531, T max = 0.713

  • 8910 measured reflections

  • 2683 independent reflections

  • 1763 reflections with I > 2σ(I)

  • R int = 0.052

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.075

  • S = 0.96

  • 2683 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.69 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681001723X/zs2039sup1.cif

e-66-o1380-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681001723X/zs2039Isup2.hkl

e-66-o1380-Isup2.hkl (131.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge support of this work by the Key Laboratory Project of Liaoning Province (No. 2008S127) and the Doctoral Starting Foundation of Liaoning Province (No. 20071103).

supplementary crystallographic information

Comment

Quinoxaline derivatives are an important class of nitrogen containing heterocycles, finding use as intermediates in organic synthesis and in addition have been reported as having applications as anticancer, antiviral, and antibacterial agents (Seitz et al., 2002; He et al., 2003) and dyes (Brock et al., 1999). In recent years, many syntheses of quinoxaline derivatives have been reported (Raw et al., 2003; Bhosale et al., 2005). The title compound C14H9BrN2 (I) is one of such quinoxaline derivates which we have synthesized and now report its crystal structure.

The molecular structure of title compound is as shown in Fig.1. The bond lengths and angles are usual for this type of compound (Rong et al., 2006). The dihedral angle between the benzene ring and quinoxaline ring is 2.1 (2)°, which means that the benzene ring and the quinoxaline ring are approximately coplanar with a r.m.s deviation of 0.0285 (3) Å, the Br atom lying in the plane of the substituent benzene ring [r.m.s deviation, 0.0271 (3) Å]. The crystal packing (Fig. 2) is stabilized by van der Waals forces.

Experimental

A suspension of hydrated 2-(4-bromophenyl)-2-oxoacetaldehyde (2.0 mmol) and benzene-1,2-diamine (3.0 mmol) in ethanol (5 ml) was stirred at room temperature with the reaction progress monitored via TLC. The resulting precipitate was filtered off, washed with cold ethanol, dried and purified to give the title compound as a light yellow solid (92.5% yield: m.p. 418 K). Crystals suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution in chloroform-ethanol (1:1).

Refinement

All H atoms were positioned geometrically and refined as riding with C—H = 0.95 Å and Uiso(H) set equal to 1.2Ueq(carrier atom).

Figures

Fig. 1.

Fig. 1.

Molecular configuration of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level.

Fig. 2.

Fig. 2.

The crystal packing of (I), viewed down the c axis.

Crystal data

C14H9BrN2 F(000) = 568
Mr = 285.14 Dx = 1.682 Mg m3
Monoclinic, P21/c Melting point: 418 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 13.959 (3) Å Cell parameters from 3221 reflections
b = 5.9031 (12) Å θ = 2.9–27.9°
c = 14.497 (3) Å µ = 3.63 mm1
β = 109.53 (3)° T = 153 K
V = 1125.9 (4) Å3 Prism, colorless
Z = 4 0.20 × 0.18 × 0.10 mm

Data collection

Rigaku Model name? CCD area-detector diffractometer 2683 independent reflections
Radiation source: rotating anode 1763 reflections with I > 2σ(I)
multilayer Rint = 0.052
Detector resolution: 7.31 pixels mm-1 θmax = 27.9°, θmin = 2.9°
φ and ω scans h = −18→11
Absorption correction: multi-scan (REQAB; Jacobson, 1998) k = −7→7
Tmin = 0.531, Tmax = 0.713 l = −19→19
8910 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032 H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0337P)2] where P = (Fo2 + 2Fc2)/3
S = 0.96 (Δ/σ)max = 0.001
2683 reflections Δρmax = 0.76 e Å3
155 parameters Δρmin = −0.69 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0540 (17)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.460263 (18) 1.10538 (4) 0.33474 (2) 0.03213 (13)
N1 −0.12149 (15) 0.6560 (3) 0.02060 (15) 0.0218 (5)
N2 −0.05847 (15) 1.0700 (3) 0.12055 (14) 0.0169 (4)
C1 0.00712 (17) 0.9095 (4) 0.11986 (16) 0.0150 (5)
C2 −0.02653 (17) 0.7012 (4) 0.07034 (17) 0.0210 (6)
H2 0.0229 0.5882 0.0736 0.025*
C3 −0.19054 (16) 0.8203 (4) 0.02054 (16) 0.0160 (5)
C4 −0.29514 (17) 0.7808 (4) −0.02863 (17) 0.0204 (6)
H4 −0.3168 0.6436 −0.0636 0.024*
C5 −0.36496 (18) 0.9398 (4) −0.02576 (17) 0.0213 (6)
H5 −0.4352 0.9126 −0.0588 0.026*
C6 −0.33379 (19) 1.1438 (4) 0.02573 (18) 0.0229 (6)
H6 −0.3833 1.2523 0.0279 0.028*
C7 −0.23291 (17) 1.1877 (4) 0.07274 (17) 0.0176 (5)
H7 −0.2126 1.3275 0.1060 0.021*
C8 −0.15888 (16) 1.0252 (4) 0.07190 (15) 0.0150 (5)
C9 0.11683 (17) 0.9532 (4) 0.17107 (16) 0.0157 (5)
C10 0.19145 (17) 0.7987 (4) 0.16884 (17) 0.0186 (5)
H10 0.1721 0.6609 0.1337 0.022*
C11 0.29343 (17) 0.8427 (4) 0.21702 (18) 0.0206 (6)
H11 0.3437 0.7360 0.2152 0.025*
C12 0.32117 (17) 1.0434 (4) 0.26773 (17) 0.0186 (5)
C13 0.24914 (17) 1.2017 (4) 0.27042 (17) 0.0196 (5)
H13 0.2692 1.3406 0.3045 0.023*
C14 0.14782 (18) 1.1554 (4) 0.22297 (16) 0.0186 (5)
H14 0.0980 1.2627 0.2255 0.022*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.01429 (15) 0.0399 (2) 0.03931 (19) −0.00711 (11) 0.00519 (12) −0.00733 (13)
N1 0.0176 (11) 0.0191 (10) 0.0248 (11) 0.0017 (8) 0.0021 (9) −0.0045 (9)
N2 0.0157 (10) 0.0175 (10) 0.0176 (9) 0.0015 (8) 0.0054 (9) −0.0003 (8)
C1 0.0153 (11) 0.0153 (12) 0.0148 (11) 0.0002 (9) 0.0058 (10) 0.0002 (9)
C2 0.0158 (12) 0.0198 (12) 0.0246 (13) 0.0035 (10) 0.0029 (11) −0.0052 (11)
C3 0.0148 (12) 0.0172 (11) 0.0147 (11) 0.0002 (9) 0.0031 (10) 0.0018 (9)
C4 0.0188 (13) 0.0194 (12) 0.0193 (11) −0.0026 (10) 0.0015 (11) 0.0002 (10)
C5 0.0115 (12) 0.0273 (14) 0.0216 (12) 0.0004 (9) 0.0009 (10) 0.0039 (10)
C6 0.0248 (14) 0.0213 (13) 0.0234 (13) 0.0085 (11) 0.0090 (12) 0.0048 (10)
C7 0.0188 (12) 0.0135 (11) 0.0209 (12) 0.0022 (10) 0.0070 (11) 0.0018 (10)
C8 0.0149 (12) 0.0165 (12) 0.0141 (11) −0.0005 (9) 0.0053 (10) 0.0022 (9)
C9 0.0149 (12) 0.0169 (12) 0.0151 (11) −0.0009 (9) 0.0048 (10) 0.0013 (9)
C10 0.0173 (12) 0.0158 (11) 0.0227 (12) −0.0020 (10) 0.0068 (10) −0.0043 (10)
C11 0.0156 (12) 0.0210 (13) 0.0268 (13) 0.0021 (10) 0.0090 (11) −0.0011 (10)
C12 0.0124 (11) 0.0229 (13) 0.0198 (12) −0.0047 (9) 0.0045 (10) 0.0007 (10)
C13 0.0212 (13) 0.0171 (11) 0.0203 (12) −0.0051 (10) 0.0068 (11) −0.0018 (10)
C14 0.0182 (12) 0.0200 (13) 0.0172 (11) 0.0029 (10) 0.0055 (11) −0.0018 (10)

Geometric parameters (Å, °)

Br1—C12 1.894 (2) C6—C7 1.369 (3)
N1—C2 1.307 (3) C6—H6 0.9500
N1—C3 1.367 (3) C7—C8 1.413 (3)
N2—C1 1.320 (3) C7—H7 0.9500
N2—C8 1.368 (3) C9—C10 1.393 (3)
C1—C2 1.422 (3) C9—C14 1.400 (3)
C1—C9 1.484 (3) C10—C11 1.385 (3)
C2—H2 0.9500 C10—H10 0.9500
C3—C8 1.411 (3) C11—C12 1.379 (3)
C3—C4 1.414 (3) C11—H11 0.9500
C4—C5 1.364 (3) C12—C13 1.383 (3)
C4—H4 0.9500 C13—C14 1.378 (3)
C5—C6 1.407 (3) C13—H13 0.9500
C5—H5 0.9500 C14—H14 0.9500
C2—N1—C3 116.11 (19) C8—C7—H7 120.0
C1—N2—C8 116.82 (18) N2—C8—C3 121.6 (2)
N2—C1—C2 120.8 (2) N2—C8—C7 119.4 (2)
N2—C1—C9 118.30 (19) C3—C8—C7 119.0 (2)
C2—C1—C9 120.9 (2) C10—C9—C14 118.1 (2)
N1—C2—C1 123.9 (2) C10—C9—C1 121.96 (19)
N1—C2—H2 118.0 C14—C9—C1 119.9 (2)
C1—C2—H2 118.0 C11—C10—C9 121.1 (2)
N1—C3—C8 120.74 (19) C11—C10—H10 119.5
N1—C3—C4 119.5 (2) C9—C10—H10 119.5
C8—C3—C4 119.7 (2) C12—C11—C10 119.2 (2)
C5—C4—C3 119.9 (2) C12—C11—H11 120.4
C5—C4—H4 120.0 C10—C11—H11 120.4
C3—C4—H4 120.0 C11—C12—C13 121.2 (2)
C4—C5—C6 120.5 (2) C11—C12—Br1 119.76 (18)
C4—C5—H5 119.7 C13—C12—Br1 119.03 (17)
C6—C5—H5 119.7 C14—C13—C12 119.1 (2)
C7—C6—C5 120.7 (2) C14—C13—H13 120.4
C7—C6—H6 119.7 C12—C13—H13 120.4
C5—C6—H6 119.7 C13—C14—C9 121.3 (2)
C6—C7—C8 120.1 (2) C13—C14—H14 119.4
C6—C7—H7 120.0 C9—C14—H14 119.4
C8—N2—C1—C2 0.1 (3) C4—C3—C8—C7 −0.2 (3)
C8—N2—C1—C9 179.40 (19) C6—C7—C8—N2 −179.0 (2)
C3—N1—C2—C1 −2.1 (3) C6—C7—C8—C3 1.2 (3)
N2—C1—C2—N1 2.2 (4) N2—C1—C9—C10 −176.0 (2)
C9—C1—C2—N1 −177.1 (2) C2—C1—C9—C10 3.3 (4)
C2—N1—C3—C8 0.0 (3) N2—C1—C9—C14 3.5 (3)
C2—N1—C3—C4 −177.7 (2) C2—C1—C9—C14 −177.2 (2)
N1—C3—C4—C5 177.3 (2) C14—C9—C10—C11 0.4 (4)
C8—C3—C4—C5 −0.4 (3) C1—C9—C10—C11 179.9 (2)
C3—C4—C5—C6 0.1 (4) C9—C10—C11—C12 −0.2 (4)
C4—C5—C6—C7 0.8 (4) C10—C11—C12—C13 −0.6 (4)
C5—C6—C7—C8 −1.5 (4) C10—C11—C12—Br1 179.59 (19)
C1—N2—C8—C3 −2.2 (3) C11—C12—C13—C14 1.2 (4)
C1—N2—C8—C7 178.0 (2) Br1—C12—C13—C14 −179.02 (17)
N1—C3—C8—N2 2.2 (3) C12—C13—C14—C9 −1.0 (4)
C4—C3—C8—N2 179.9 (2) C10—C9—C14—C13 0.2 (4)
N1—C3—C8—C7 −177.9 (2) C1—C9—C14—C13 −179.4 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2039).

References

  1. Bhosale, R. S., Sarda, S. R., Ardhapure, S. S., Jadhav, W. N., Bhusare, S. R. & Pawar, R. P. (2005). Tetrahedron Lett.46, 7183–7186.
  2. Brock, E. D., Lewis, D. M., Yousaf, T. I. & Harper, H. H. (1999). (The Procter & Gamble Company, USA), World Patent WO 9 951 688.
  3. He, W., Myers, M. R., Hanney, B., Spada, A. P., Bilder, G., Galzcinski, H., Amin, D., Needle, S., Page, K., Jayyosi, Z. & Perrone, M. H. (2003). Bioorg. Med. Chem. Lett.13, 3097–3100. [DOI] [PubMed]
  4. Jacobson, R. (1998). REQAB Private communication to the Rigaku Corporation, Tokyo, Japan.
  5. Raw, S. A., Wilfred, C. D. & Taylor, R. J. K. (2003). Chem. Commun. pp. 2286– 2287. [DOI] [PubMed]
  6. Rigaku/MSC (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  7. Rong, L.-C., Li, X.-Y., Yao, C.-S., Wang, H.-Y. & Shi, D.-Q. (2006). Acta Cryst. E62, o1959–o1960.
  8. Seitz, L. E., Suling, W. J. & Reynolds, R. C. (2002). J. Med. Chem.45, 5604–5606. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681001723X/zs2039sup1.cif

e-66-o1380-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681001723X/zs2039Isup2.hkl

e-66-o1380-Isup2.hkl (131.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES