Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 May 8;66(Pt 6):o1270. doi: 10.1107/S1600536810015886

1,2-Bis(diphenyl­phosphino)-1,2-diethyl­hydrazine

Frederik H Kriel a,*, Manuel A Fernandes b, Judy Caddy a
PMCID: PMC2979499  PMID: 21579371

Abstract

The title compound, C28H30N2P2, adopts a well documented and studied gauche conformation around the hydrazine bond. Bond lengths and angles are in the typical ranges expected for P—N and P—C bonds. A normal hydrazine N—N bond length of 1.426 (3) Å is observed.

Related literature

For related structures, see: Reddy et al. (1994, 1995); Pelizzi & Pelizzi (1979). For ab initio mol­ecular modelling studies, see: Cowley et al. (1979).graphic file with name e-66-o1270-scheme1.jpg

Experimental

Crystal data

  • C28H30N2P2

  • M r = 456.48

  • Monoclinic, Inline graphic

  • a = 14.623 (5) Å

  • b = 13.085 (4) Å

  • c = 13.494 (4) Å

  • β = 108.182 (6)°

  • V = 2453.1 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 173 K

  • 0.44 × 0.17 × 0.17 mm

Data collection

  • Bruker SMART 1K CCD area-detector diffractometer

  • 15744 measured reflections

  • 6008 independent reflections

  • 3774 reflections with I > 2σ(I)

  • R int = 0.056

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058

  • wR(F 2) = 0.156

  • S = 1.02

  • 6008 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.82 e Å−3

  • Δρmin = −0.56 e Å−3

Data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810015886/wn2384sup1.cif

e-66-o1270-sup1.cif (23.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015886/wn2384Isup2.hkl

e-66-o1270-Isup2.hkl (288.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Project AuTEK (Mintek and Harmony) and the University of the Witwatersrand for financial support.

supplementary crystallographic information

Comment

Crystals of the title compound (Fig. 1) are found to be monoclinic, crystallising in the space group P21/c. Crystals of 1,2-bis(diphenylphosphino)ethane (dppe) show similar characteristics; it is monoclinic and crystallises in the spacegroup P21/n (Pelizzi et al., 1979). The title compound has four molecules per unit cell compared to two in dppe; the latter has a centre of symmetry at the mid-point of the C(sp3)—C(sp3) bond.

Dppe was shown to adopt a staggered conformation, whereas the title compound has a gauche conformation. This gauche conformation adopted by hydrazine has been well documented and studied both experimentally and by ab anitio molecular modelling (Cowley et al., 1979). It was found that the ground-state geometry of hydrazine is gauche, with a dihedral angle close to 90°. Ab initio theoretical estimates of the gauche-anti and gauche-syn barrier heights fall in the ranges 1.6-6.2 and 9.7-13.7 kcal/mol, respectively. In hydrazine, the relative stability of the conformations are gauche > anti > syn (Cowley et al., 1979). The planar conformation of dppe allows it to form stacks of molecules; this is not possible for the title compound.

Bond lengths and angles are in the typical ranges expected for P—N and P—C bonds (Reddy et al., 1994). A normal hydrazine N—N bond length of 1.426 (3) Å is observed.

Experimental

The title compound was synthesised in a similar manner to published methods (Reddy et al. 1994, 1995). The compound was obtained as light yellow, single crystalline flakes from the worked-up diethylether layer. The diethylether layer was concentrated and kept at -20 °C for 1-3 days. The supernatant was removed from the crystalline flakes and placed back in the freezer for further crystallisation. 86% yield. Mp 95-96 °C.

Refinement

The H atoms were positioned geometrically and allowed to ride on their respective parent atoms, with C—H = 0.93 (Ar-H) or 0.96 (CH3) Å, and with Ueq = 1.2 (Ar-H) or 1.5 (CH3)Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, drawn with displacement ellipsoids at the 50% probability level. Hydrogen atoms have been omitted for clarity.

Crystal data

C28H30N2P2 Z = 4
Mr = 456.48 F(000) = 968
Monoclinic, P21/c Dx = 1.236 Mg m3
Hall symbol: -P 2ybc Melting point: 368 K
a = 14.623 (5) Å Mo Kα radiation, λ = 0.71073 Å
b = 13.085 (4) Å µ = 0.20 mm1
c = 13.494 (4) Å T = 173 K
β = 108.182 (6)° Prismic, colourless
V = 2453.1 (13) Å3 0.44 × 0.17 × 0.17 mm

Data collection

Bruker SMART 1K CCD area-detector diffractometer 3774 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.056
graphite θmax = 28.3°, θmin = 1.5°
phi and ω scans h = −17→19
15744 measured reflections k = −13→17
6008 independent reflections l = −17→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0731P)2 + 1.0514P] where P = (Fo2 + 2Fc2)/3
6008 reflections (Δ/σ)max = 0.001
289 parameters Δρmax = 0.82 e Å3
0 restraints Δρmin = −0.56 e Å3

Special details

Experimental. 1HNMR (CDCl3, 300 MHz) δH 7.54 (bs, Arom, 4H) 7.36 (bs, Arom, 4H), 7.26 (m, Arom,12H), 3.73 and 3.23(m, CH2CH3,4H), 0.79 (t, CH2CH3,3J (1H-1H) = 7.0 Hz, 6H). 13C NMR (CDCl3, 75 MHz) δC 140.2 (m, Arom), 133.4 (m, Arom), 131.4 (s, Arom), 128.7(s, Arom), 48.7 (t, CH2CH3, 2J (13C-31P) = 2.5 Hz), 14.3 (d, CH2CH3, 3J (13C-31P) = 4.1 Hz). 31P NMR (CDCl3,162 MHz) δP 63.4. MS 427 (9%, M – 1). Intensity data were collected on a Bruker SMART1K CCD area detector diffractometer with graphite monochromated Mo Kα radiation (40kV, 40mA). The collection method involved ω-scans of width 0.3°.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.86723 (18) 0.1568 (2) 0.1440 (2) 0.0281 (6)
H1A 0.9183 0.2055 0.1745 0.034*
H1B 0.8375 0.1759 0.0716 0.034*
C2 0.9114 (2) 0.0518 (2) 0.1476 (3) 0.0393 (7)
H2A 0.9577 0.0529 0.1105 0.059*
H2B 0.8618 0.0032 0.1157 0.059*
H2C 0.9426 0.0328 0.2189 0.059*
C3 0.62250 (18) 0.1538 (2) 0.1085 (2) 0.0281 (6)
H3A 0.6062 0.1945 0.1607 0.034*
H3B 0.5718 0.1037 0.0821 0.034*
C4 0.6258 (2) 0.2228 (2) 0.0199 (2) 0.0398 (7)
H4A 0.5646 0.2558 −0.0088 0.060*
H4B 0.6399 0.1829 −0.0332 0.060*
H4C 0.6749 0.2735 0.0456 0.060*
C11 0.81426 (17) 0.36831 (18) 0.27049 (19) 0.0227 (5)
C12 0.81650 (19) 0.44196 (19) 0.3461 (2) 0.0288 (6)
H12 0.8109 0.4215 0.4099 0.035*
C13 0.8268 (2) 0.5447 (2) 0.3280 (2) 0.0351 (7)
H13 0.8286 0.5924 0.3796 0.042*
C14 0.8345 (2) 0.5768 (2) 0.2334 (2) 0.0351 (7)
H14 0.8425 0.6457 0.2215 0.042*
C15 0.8303 (2) 0.5057 (2) 0.1571 (2) 0.0364 (7)
H15 0.8344 0.5272 0.0929 0.044*
C16 0.8199 (2) 0.4023 (2) 0.1743 (2) 0.0309 (6)
H16 0.8168 0.3554 0.1216 0.037*
C21 0.92822 (18) 0.21580 (18) 0.39268 (19) 0.0236 (5)
C22 1.00751 (19) 0.2724 (2) 0.3876 (2) 0.0279 (6)
H22 0.9995 0.3222 0.3363 0.034*
C23 1.0980 (2) 0.2556 (2) 0.4579 (2) 0.0320 (6)
H23 1.1505 0.2926 0.4525 0.038*
C24 1.1104 (2) 0.1838 (2) 0.5361 (2) 0.0358 (7)
H24 1.1711 0.1735 0.5840 0.043*
C25 1.0331 (2) 0.1275 (2) 0.5431 (2) 0.0386 (7)
H25 1.0416 0.0792 0.5958 0.046*
C26 0.9424 (2) 0.1428 (2) 0.4716 (2) 0.0314 (6)
H26 0.8906 0.1041 0.4764 0.038*
C31 0.60617 (19) −0.01800 (19) 0.2575 (2) 0.0257 (5)
C32 0.6057 (2) 0.0375 (2) 0.3455 (2) 0.0409 (8)
H32 0.6591 0.0766 0.3805 0.049*
C33 0.5265 (3) 0.0351 (2) 0.3814 (3) 0.0503 (9)
H33 0.5271 0.0735 0.4396 0.060*
C34 0.4471 (2) −0.0231 (2) 0.3320 (2) 0.0401 (7)
H34 0.3944 −0.0245 0.3567 0.048*
C35 0.44666 (19) −0.0794 (2) 0.2454 (2) 0.0334 (6)
H35 0.3937 −0.1199 0.2119 0.040*
C36 0.52481 (18) −0.0760 (2) 0.2081 (2) 0.0299 (6)
H36 0.5229 −0.1133 0.1488 0.036*
C41 0.68240 (17) −0.10439 (18) 0.1100 (2) 0.0233 (5)
C42 0.67952 (19) −0.20902 (19) 0.1322 (2) 0.0299 (6)
H42 0.6948 −0.2303 0.2012 0.036*
C43 0.6543 (2) −0.2810 (2) 0.0532 (2) 0.0353 (7)
H43 0.6526 −0.3499 0.0695 0.042*
C44 0.63169 (19) −0.2509 (2) −0.0500 (2) 0.0359 (7)
H44 0.6137 −0.2992 −0.1031 0.043*
C45 0.6360 (2) −0.1489 (2) −0.0735 (2) 0.0330 (6)
H45 0.6217 −0.1285 −0.1427 0.040*
C46 0.66139 (18) −0.07618 (19) 0.0055 (2) 0.0271 (6)
H46 0.6644 −0.0077 −0.0115 0.033*
N1 0.79504 (14) 0.16499 (15) 0.19838 (16) 0.0237 (5)
N2 0.71357 (14) 0.09995 (15) 0.15842 (16) 0.0229 (5)
P1 0.80362 (5) 0.23470 (5) 0.30655 (5) 0.02321 (17)
P2 0.71714 (5) −0.01492 (5) 0.21993 (5) 0.02383 (17)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0266 (13) 0.0350 (15) 0.0259 (14) −0.0074 (11) 0.0127 (11) −0.0080 (11)
C2 0.0296 (15) 0.0451 (18) 0.0467 (19) 0.0033 (13) 0.0168 (14) −0.0038 (14)
C3 0.0241 (13) 0.0261 (13) 0.0317 (15) 0.0017 (10) 0.0052 (11) 0.0013 (11)
C4 0.0381 (17) 0.0316 (16) 0.0414 (18) −0.0010 (13) 0.0001 (14) 0.0093 (13)
C11 0.0218 (12) 0.0226 (12) 0.0240 (13) 0.0010 (10) 0.0075 (10) −0.0005 (10)
C12 0.0335 (15) 0.0278 (14) 0.0261 (14) 0.0001 (11) 0.0110 (12) −0.0017 (11)
C13 0.0374 (16) 0.0284 (15) 0.0401 (18) 0.0025 (12) 0.0130 (13) −0.0074 (12)
C14 0.0343 (16) 0.0218 (14) 0.0486 (19) 0.0028 (11) 0.0123 (14) 0.0042 (13)
C15 0.0464 (17) 0.0309 (15) 0.0353 (16) 0.0004 (12) 0.0179 (14) 0.0079 (12)
C16 0.0396 (16) 0.0296 (14) 0.0260 (14) −0.0013 (12) 0.0140 (12) −0.0016 (11)
C21 0.0308 (14) 0.0213 (13) 0.0196 (13) 0.0007 (10) 0.0092 (11) −0.0026 (10)
C22 0.0324 (14) 0.0265 (13) 0.0245 (14) −0.0024 (11) 0.0083 (11) 0.0003 (11)
C23 0.0305 (14) 0.0307 (15) 0.0334 (15) −0.0024 (11) 0.0081 (12) −0.0041 (12)
C24 0.0369 (16) 0.0379 (16) 0.0258 (15) 0.0073 (13) −0.0001 (12) −0.0039 (12)
C25 0.0533 (19) 0.0341 (16) 0.0253 (15) 0.0074 (14) 0.0079 (13) 0.0046 (12)
C26 0.0436 (16) 0.0287 (14) 0.0242 (14) −0.0019 (12) 0.0139 (12) 0.0010 (11)
C31 0.0328 (14) 0.0246 (13) 0.0224 (13) −0.0014 (11) 0.0125 (11) 0.0026 (10)
C32 0.0508 (19) 0.0384 (17) 0.0418 (18) −0.0200 (14) 0.0265 (15) −0.0142 (14)
C33 0.071 (2) 0.0453 (19) 0.051 (2) −0.0190 (17) 0.0426 (19) −0.0208 (16)
C34 0.0452 (18) 0.0382 (17) 0.0482 (19) −0.0025 (14) 0.0308 (15) −0.0008 (14)
C35 0.0261 (14) 0.0415 (16) 0.0332 (16) −0.0012 (12) 0.0101 (12) 0.0012 (13)
C36 0.0273 (14) 0.0402 (16) 0.0211 (14) 0.0002 (11) 0.0062 (11) −0.0015 (11)
C41 0.0207 (12) 0.0237 (13) 0.0279 (14) 0.0004 (10) 0.0111 (10) 0.0016 (11)
C42 0.0325 (15) 0.0263 (14) 0.0331 (16) 0.0024 (11) 0.0136 (12) 0.0036 (11)
C43 0.0344 (15) 0.0205 (14) 0.0523 (19) −0.0018 (11) 0.0153 (14) −0.0029 (13)
C44 0.0286 (15) 0.0364 (16) 0.0409 (17) −0.0016 (12) 0.0080 (13) −0.0150 (13)
C45 0.0352 (15) 0.0358 (16) 0.0281 (15) 0.0008 (12) 0.0098 (12) −0.0065 (12)
C46 0.0305 (14) 0.0223 (13) 0.0304 (15) 0.0002 (10) 0.0122 (12) −0.0014 (11)
N1 0.0240 (11) 0.0265 (11) 0.0232 (11) −0.0061 (9) 0.0110 (9) −0.0069 (9)
N2 0.0212 (10) 0.0203 (10) 0.0256 (11) −0.0024 (8) 0.0051 (9) 0.0004 (9)
P1 0.0277 (3) 0.0231 (3) 0.0212 (3) −0.0023 (3) 0.0112 (3) −0.0013 (3)
P2 0.0256 (3) 0.0242 (3) 0.0214 (3) −0.0009 (3) 0.0069 (3) 0.0011 (3)

Geometric parameters (Å, °)

C1—N1 1.465 (3) C24—C25 1.378 (4)
C1—C2 1.512 (4) C24—H24 0.9300
C1—H1A 0.9700 C25—C26 1.390 (4)
C1—H1B 0.9700 C25—H25 0.9300
C2—H2A 0.9600 C26—H26 0.9300
C2—H2B 0.9600 C31—C32 1.393 (4)
C2—H2C 0.9600 C31—C36 1.393 (4)
C3—N2 1.471 (3) C31—P2 1.846 (3)
C3—C4 1.510 (4) C32—C33 1.390 (4)
C3—H3A 0.9700 C32—H32 0.9300
C3—H3B 0.9700 C33—C34 1.375 (4)
C4—H4A 0.9600 C33—H33 0.9300
C4—H4B 0.9600 C34—C35 1.381 (4)
C4—H4C 0.9600 C34—H34 0.9300
C11—C12 1.396 (3) C35—C36 1.386 (4)
C11—C16 1.398 (4) C35—H35 0.9300
C11—P1 1.834 (3) C36—H36 0.9300
C12—C13 1.383 (4) C41—C46 1.395 (4)
C12—H12 0.9300 C41—C42 1.405 (3)
C13—C14 1.380 (4) C41—P2 1.833 (3)
C13—H13 0.9300 C42—C43 1.383 (4)
C14—C15 1.374 (4) C42—H42 0.9300
C14—H14 0.9300 C43—C44 1.385 (4)
C15—C16 1.390 (4) C43—H43 0.9300
C15—H15 0.9300 C44—C45 1.378 (4)
C16—H16 0.9300 C44—H44 0.9300
C21—C22 1.396 (4) C45—C46 1.391 (4)
C21—C26 1.397 (4) C45—H45 0.9300
C21—P1 1.847 (3) C46—H46 0.9300
C22—C23 1.384 (4) N1—N2 1.426 (3)
C22—H22 0.9300 N1—P1 1.692 (2)
C23—C24 1.381 (4) N2—P2 1.710 (2)
C23—H23 0.9300
N1—C1—C2 114.7 (2) C24—C25—C26 120.0 (3)
N1—C1—H1A 108.6 C24—C25—H25 120.0
C2—C1—H1A 108.6 C26—C25—H25 120.0
N1—C1—H1B 108.6 C25—C26—C21 120.7 (3)
C2—C1—H1B 108.6 C25—C26—H26 119.6
H1A—C1—H1B 107.6 C21—C26—H26 119.6
C1—C2—H2A 109.5 C32—C31—C36 117.5 (2)
C1—C2—H2B 109.5 C32—C31—P2 117.4 (2)
H2A—C2—H2B 109.5 C36—C31—P2 124.9 (2)
C1—C2—H2C 109.5 C33—C32—C31 120.8 (3)
H2A—C2—H2C 109.5 C33—C32—H32 119.6
H2B—C2—H2C 109.5 C31—C32—H32 119.6
N2—C3—C4 113.6 (2) C34—C33—C32 120.9 (3)
N2—C3—H3A 108.8 C34—C33—H33 119.5
C4—C3—H3A 108.8 C32—C33—H33 119.5
N2—C3—H3B 108.8 C33—C34—C35 119.1 (3)
C4—C3—H3B 108.8 C33—C34—H34 120.5
H3A—C3—H3B 107.7 C35—C34—H34 120.5
C3—C4—H4A 109.5 C34—C35—C36 120.3 (3)
C3—C4—H4B 109.5 C34—C35—H35 119.9
H4A—C4—H4B 109.5 C36—C35—H35 119.9
C3—C4—H4C 109.5 C35—C36—C31 121.4 (3)
H4A—C4—H4C 109.5 C35—C36—H36 119.3
H4B—C4—H4C 109.5 C31—C36—H36 119.3
C12—C11—C16 117.6 (2) C46—C41—C42 117.5 (2)
C12—C11—P1 116.66 (19) C46—C41—P2 124.53 (19)
C16—C11—P1 125.7 (2) C42—C41—P2 118.0 (2)
C13—C12—C11 121.4 (3) C43—C42—C41 121.2 (3)
C13—C12—H12 119.3 C43—C42—H42 119.4
C11—C12—H12 119.3 C41—C42—H42 119.4
C14—C13—C12 120.2 (3) C42—C43—C44 120.2 (3)
C14—C13—H13 119.9 C42—C43—H43 119.9
C12—C13—H13 119.9 C44—C43—H43 119.9
C15—C14—C13 119.3 (3) C45—C44—C43 119.6 (3)
C15—C14—H14 120.3 C45—C44—H44 120.2
C13—C14—H14 120.3 C43—C44—H44 120.2
C14—C15—C16 121.0 (3) C44—C45—C46 120.4 (3)
C14—C15—H15 119.5 C44—C45—H45 119.8
C16—C15—H15 119.5 C46—C45—H45 119.8
C15—C16—C11 120.4 (3) C45—C46—C41 121.0 (2)
C15—C16—H16 119.8 C45—C46—H46 119.5
C11—C16—H16 119.8 C41—C46—H46 119.5
C22—C21—C26 118.2 (2) N2—N1—C1 114.50 (19)
C22—C21—P1 124.72 (19) N2—N1—P1 118.43 (15)
C26—C21—P1 117.0 (2) C1—N1—P1 126.87 (16)
C23—C22—C21 120.8 (2) N1—N2—C3 114.66 (19)
C23—C22—H22 119.6 N1—N2—P2 116.47 (15)
C21—C22—H22 119.6 C3—N2—P2 121.99 (16)
C24—C23—C22 120.1 (3) N1—P1—C11 105.93 (11)
C24—C23—H23 119.9 N1—P1—C21 105.29 (11)
C22—C23—H23 119.9 C11—P1—C21 98.39 (11)
C25—C24—C23 120.1 (3) N2—P2—C41 102.11 (11)
C25—C24—H24 120.0 N2—P2—C31 104.86 (11)
C23—C24—H24 120.0 C41—P2—C31 99.40 (11)
C16—C11—C12—C13 −1.9 (4) C2—C1—N1—N2 −60.7 (3)
P1—C11—C12—C13 178.3 (2) C2—C1—N1—P1 114.0 (2)
C11—C12—C13—C14 0.4 (4) C1—N1—N2—C3 −113.0 (2)
C12—C13—C14—C15 1.0 (4) P1—N1—N2—C3 71.8 (2)
C13—C14—C15—C16 −1.0 (4) C1—N1—N2—P2 95.4 (2)
C14—C15—C16—C11 −0.4 (4) P1—N1—N2—P2 −79.8 (2)
C12—C11—C16—C15 1.8 (4) C4—C3—N2—N1 57.0 (3)
P1—C11—C16—C15 −178.4 (2) C4—C3—N2—P2 −153.17 (19)
C26—C21—C22—C23 1.0 (4) N2—N1—P1—C11 −123.59 (17)
P1—C21—C22—C23 177.6 (2) C1—N1—P1—C11 61.9 (2)
C21—C22—C23—C24 −1.7 (4) N2—N1—P1—C21 132.80 (17)
C22—C23—C24—C25 1.2 (4) C1—N1—P1—C21 −41.7 (2)
C23—C24—C25—C26 0.0 (4) C12—C11—P1—N1 176.22 (19)
C24—C25—C26—C21 −0.6 (4) C16—C11—P1—N1 −3.6 (3)
C22—C21—C26—C25 0.1 (4) C12—C11—P1—C21 −75.2 (2)
P1—C21—C26—C25 −176.7 (2) C16—C11—P1—C21 105.1 (2)
C36—C31—C32—C33 −0.5 (4) C22—C21—P1—N1 85.1 (2)
P2—C31—C32—C33 −177.0 (3) C26—C21—P1—N1 −98.2 (2)
C31—C32—C33—C34 0.9 (5) C22—C21—P1—C11 −24.0 (2)
C32—C33—C34—C35 −0.3 (5) C26—C21—P1—C11 152.6 (2)
C33—C34—C35—C36 −0.9 (5) N1—N2—P2—C41 −131.64 (17)
C34—C35—C36—C31 1.4 (4) C3—N2—P2—C41 79.0 (2)
C32—C31—C36—C35 −0.7 (4) N1—N2—P2—C31 125.09 (17)
P2—C31—C36—C35 175.6 (2) C3—N2—P2—C31 −24.3 (2)
C46—C41—C42—C43 −1.7 (4) C46—C41—P2—N2 0.8 (2)
P2—C41—C42—C43 −179.7 (2) C42—C41—P2—N2 178.72 (19)
C41—C42—C43—C44 0.2 (4) C46—C41—P2—C31 108.3 (2)
C42—C43—C44—C45 1.1 (4) C42—C41—P2—C31 −73.7 (2)
C43—C44—C45—C46 −1.0 (4) C32—C31—P2—N2 −78.5 (2)
C44—C45—C46—C41 −0.5 (4) C36—C31—P2—N2 105.2 (2)
C42—C41—C46—C45 1.8 (4) C32—C31—P2—C41 176.2 (2)
P2—C41—C46—C45 179.7 (2) C36—C31—P2—C41 −0.1 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2384).

References

  1. Bruker (1998). SMART-NT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (1999). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cowley, A. H., Mitchell, D. J., Whangbo, M. H. & Wolfe, S. (1979). J. Am. Chem. Soc.101, 5224–5231.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  6. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst.41, 466–470.
  7. Pelizzi, C. & Pelizzi, G. (1979). Acta Cryst. B35, 1785–1790.
  8. Reddy, V. S., Katti, K. V. & Barnes, C. L. (1994). Chem. Ber.127, 1355–1357.
  9. Reddy, V. S., Katti, K. V. & Barnes, C. L. (1995). Inorg. Chem.34, 5483–5488.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810015886/wn2384sup1.cif

e-66-o1270-sup1.cif (23.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015886/wn2384Isup2.hkl

e-66-o1270-Isup2.hkl (288.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES