Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 May 12;66(Pt 6):o1322–o1323. doi: 10.1107/S1600536810016375

Bis[4-(diphenyl­methyl­eneamino)phen­yl]methanone

Sylvain Bernès a,*, Guadalupe Hernández b, Roberto Portillo b, Sandra Cruz c, René Gutiérrez b
PMCID: PMC2979505  PMID: 21579415

Abstract

The title mol­ecule, C39H28N2O, is a well known dendron used in the synthesis of phenyl­azomethine dendrimers. The central benzophenone core is twisted, as expected, due to hindrance between H atoms: the dihedral angle between core benzene rings is 54.49 (5)°, identical to that of the stable polymorph of benzophenone (56°). For the same reason, phenyl groups substituting imine C atoms make a large dihedral angle, although similar for each imine: 71.83 (6) and 67.64 (5)°. The six aromatic rings in the mol­ecule thus seem to be quite randomly oriented, and such an arrangement is not favorable for efficient stacking inter­actions in the crystal. The same behaviour is observed in the vast majority of diphenyl­imino-containing organics. The low triclinic crystal symmetry may be a consequence of these features.

Related literature

For the use of the title mol­ecule in the synthesis of dendritic systems, see: Higuchi et al. (2001); Takanashi et al. (2004); Yamamoto & Higuchi (2004). For the structure of benzophenone, see: Fleischer et al. (1968); Kutzke et al. (2000). For related structures including the diphenyl­imino fragment, see: Appel et al. (1985); Buhmann et al. (1993). For geometrical analysis using the Cambridge Structural Database, see: Bruno et al. (2002).graphic file with name e-66-o1322-scheme1.jpg

Experimental

Crystal data

  • C39H28N2O

  • M r = 540.63

  • Triclinic, Inline graphic

  • a = 11.1723 (10) Å

  • b = 11.3487 (13) Å

  • c = 13.2331 (15) Å

  • α = 103.121 (9)°

  • β = 105.170 (8)°

  • γ = 108.746 (8)°

  • V = 1441.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.55 × 0.28 × 0.24 mm

Data collection

  • Bruker P4 diffractometer

  • 6892 measured reflections

  • 5865 independent reflections

  • 4471 reflections with I > 2σ(I)

  • R int = 0.018

  • 3 standard reflections every 97 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.113

  • S = 1.03

  • 5865 reflections

  • 380 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 .

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810016375/fl2303sup1.cif

e-66-o1322-sup1.cif (34.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810016375/fl2303Isup2.hkl

e-66-o1322-Isup2.hkl (287.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Partial support from VIEP-UAP (GUPJ-NAT08-G) is acknowledged.

supplementary crystallographic information

Comment

The title benzophenone derivative has been widely employed as a dendron in the synthesis of phenylazomethine dendrimers (DPAs), mostly in the group of Yamamoto at the Keio University (Higuchi et al., 2001; Takanashi et al., 2004; Yamamoto & Higuchi, 2004). This group and others reported on the preparation of a vast array of supramolecular entities with interesting properties. We became interested in preparing this dendron by using microwave heating, given that it is becoming an important method in laboratories worldwide: it is an environment-friendly technique for the efficient syntheses of organic molecules. The main advantages of microwave-assisted organic synthesis are shorter reaction times, minimum waste and generally higher yields, operational simplicity as well as reduction of thermal degradative byproducts along with cleaner work-up. As expected, better yields were obtained and we realized that, surprisingly, the crystal structure had not been reported so far.

The molecule (Fig. 1) crystallizes in the low symmetry space group P1. The imine bond lengths, 1.2813 (18) and 1.2784 (19) Å, are as expected, however, N atoms significantly deviate from trigonality. Large C═N—C angles are observed, 127.61 (12) and 123.09 (13)°, probably because of the steric repulsion between the central benzophenone benzene rings and the diphenylmethylene groups. The central benzophenone displays a twisted conformation, the dihedral angle between benzene rings being 54.49 (5)°. This value is indeed close to that reported for benzophenone, 56° (orthorhombic phase, Fleischer et al., 1968) or 64° (metastable monoclinic phase, Kutzke et al., 2000). This conformation avoids any intramolecular H···H contacts. In the same way, diphenyl groups bonded to imine C atoms are twisted, by 71.83 (6)° (diphenyl group at C9) and 67.64 (5)° (diphenyl group at C29). These angles are common for diphenylimino-containing organics (range of angles retrieved from the CSD : 57 to 90°; CSD, version 5.31 with all updates; Bruno et al., 2002).

As a whole, the six rings in the molecule seem to be randomly oriented. This chaotic arrangement is consistent with the low crystal symmetry, and does not favor π···π or C—H···π interactions in the crystal structure. For example, the shortest intermolecular separation between centroids of two rings is 4.45 Å. The calculated packing index is indeed low for this polyphenyl molecule, 0.672. A search in the CSD for organic molecules containing the Ph2C═N fragment shows that more densely packed crystals in this class of compounds are scarce. For 151 hits, only two structures present symmetry-related diphenylimino groups with phenyl rings separated by less than 3.9 Å (Appel et al., 1985; Buhmann et al., 1993).

Experimental

A modified procedure for improved synthesis of the title compound was used. The Higuchi's route (Higuchi et al., 2001; see compound 'dendron G2' in this paper) consists of the condensation between benzophenone and 4,4'-diaminobenzophenone in presence of DABCO (1,4-diazabicyclo[2.2.2]octane) and TiCl4, in chlorobenzene. In the original synthesis, the mixture was heated at 398 K for 24 h to afford dendron G2 in 48% yield. In place of thermal activation, we performed a microwave-assisted synthesis in a monomode MIC-1 oven (Tekno-lab, S.A.) with maximum power output of 600 W. Irradiation was applied for 20 min., affording the title compound with an enhanced yield of 65% after silica gel column chromatography (ethyl acetate:hexane = 1:5). Single crystals were obtained by slow evaporation of the eluate at 298 K.

Refinement

All H atoms were placed in idealized positions and refined as riding to their carrier C atoms, with bond lengths fixed to 0.93 Å. Isotropic displacement parameters were calculated as Uiso(H) = 1.2Ueq(carrier C atom).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, with 50% probability level displacement ellipsoids for non-H atoms.

Crystal data

C39H28N2O Z = 2
Mr = 540.63 F(000) = 568
Triclinic, P1 Dx = 1.245 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 11.1723 (10) Å Cell parameters from 82 reflections
b = 11.3487 (13) Å θ = 4.6–12.5°
c = 13.2331 (15) Å µ = 0.08 mm1
α = 103.121 (9)° T = 296 K
β = 105.170 (8)° Prism, yellow
γ = 108.746 (8)° 0.55 × 0.28 × 0.24 mm
V = 1441.9 (3) Å3

Data collection

Bruker P4 diffractometer Rint = 0.018
Radiation source: fine-focus sealed tube θmax = 26.4°, θmin = 2.0°
graphite h = −13→2
2θ/ω scans k = −13→13
6892 measured reflections l = −16→16
5865 independent reflections 3 standard reflections every 97 reflections
4471 reflections with I > 2σ(I) intensity decay: 1%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042 H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0461P)2 + 0.275P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
5865 reflections Δρmax = 0.19 e Å3
380 parameters Δρmin = −0.14 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraints Extinction coefficient: 0.0198 (18)
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.81457 (15) 0.23158 (15) 0.66331 (12) 0.0425 (3)
O1 0.92972 (12) 0.26828 (14) 0.66240 (11) 0.0658 (4)
C2 0.70743 (14) 0.24601 (14) 0.57791 (12) 0.0383 (3)
C3 0.72166 (15) 0.24315 (15) 0.47594 (12) 0.0425 (3)
H3A 0.7902 0.2224 0.4599 0.051*
C4 0.63532 (15) 0.27069 (15) 0.39873 (12) 0.0407 (3)
H4A 0.6459 0.2673 0.3309 0.049*
C5 0.53212 (14) 0.30355 (13) 0.42020 (11) 0.0373 (3)
C6 0.51690 (15) 0.30587 (15) 0.52197 (12) 0.0424 (3)
H6A 0.4486 0.3270 0.5381 0.051*
C7 0.60322 (15) 0.27683 (15) 0.59917 (12) 0.0416 (3)
H7A 0.5914 0.2779 0.6663 0.050*
N8 0.46589 (12) 0.34758 (12) 0.33981 (10) 0.0419 (3)
C9 0.34487 (14) 0.34189 (13) 0.31471 (11) 0.0374 (3)
C10 0.30371 (14) 0.40362 (14) 0.23057 (12) 0.0395 (3)
C11 0.39664 (17) 0.46820 (17) 0.18792 (13) 0.0505 (4)
H11A 0.4834 0.4696 0.2098 0.061*
C12 0.3613 (2) 0.5302 (2) 0.11344 (15) 0.0614 (5)
H12A 0.4245 0.5732 0.0858 0.074*
C13 0.23276 (19) 0.52870 (18) 0.07989 (14) 0.0585 (4)
H13A 0.2094 0.5712 0.0304 0.070*
C14 0.14043 (18) 0.46438 (19) 0.11986 (15) 0.0614 (5)
H14A 0.0534 0.4622 0.0968 0.074*
C15 0.17516 (16) 0.40203 (17) 0.19474 (14) 0.0536 (4)
H15A 0.1109 0.3585 0.2212 0.064*
C16 0.24182 (14) 0.27839 (14) 0.36114 (11) 0.0372 (3)
C17 0.20701 (16) 0.35573 (16) 0.43619 (13) 0.0473 (4)
H17A 0.2458 0.4474 0.4564 0.057*
C18 0.11442 (17) 0.29636 (18) 0.48108 (13) 0.0529 (4)
H18A 0.0925 0.3485 0.5321 0.064*
C19 0.05504 (17) 0.16072 (18) 0.45026 (14) 0.0547 (4)
H19A −0.0065 0.1214 0.4808 0.066*
C20 0.08672 (18) 0.08337 (17) 0.37436 (16) 0.0575 (4)
H20A 0.0454 −0.0083 0.3527 0.069*
C21 0.18011 (16) 0.14185 (15) 0.33012 (14) 0.0477 (4)
H21A 0.2015 0.0890 0.2792 0.057*
C22 0.78337 (15) 0.17280 (14) 0.74811 (12) 0.0404 (3)
C23 0.89013 (16) 0.20074 (16) 0.84510 (13) 0.0475 (4)
H23A 0.9765 0.2609 0.8578 0.057*
C24 0.87042 (17) 0.14101 (16) 0.92269 (13) 0.0513 (4)
H24A 0.9428 0.1621 0.9875 0.062*
C25 0.74229 (16) 0.04910 (14) 0.90414 (12) 0.0436 (3)
C26 0.63567 (16) 0.02012 (16) 0.80788 (13) 0.0465 (4)
H26A 0.5500 −0.0420 0.7944 0.056*
C27 0.65529 (16) 0.08267 (15) 0.73147 (12) 0.0448 (3)
H27A 0.5820 0.0642 0.6683 0.054*
N28 0.72437 (15) −0.02708 (13) 0.97419 (11) 0.0495 (3)
C29 0.73136 (14) 0.02098 (14) 1.07383 (12) 0.0391 (3)
C30 0.72464 (14) −0.06736 (14) 1.14219 (12) 0.0409 (3)
C31 0.7430 (2) −0.18335 (17) 1.10693 (15) 0.0584 (4)
H31A 0.7576 −0.2060 1.0405 0.070*
C32 0.7397 (2) −0.2648 (2) 1.17030 (18) 0.0717 (6)
H32A 0.7527 −0.3419 1.1465 0.086*
C33 0.7174 (2) −0.23299 (19) 1.26838 (16) 0.0657 (5)
H33A 0.7156 −0.2883 1.3107 0.079*
C34 0.69800 (19) −0.11972 (19) 1.30364 (15) 0.0598 (5)
H34A 0.6823 −0.0985 1.3697 0.072*
C35 0.70164 (16) −0.03645 (16) 1.24098 (13) 0.0487 (4)
H35A 0.6886 0.0404 1.2654 0.058*
C36 0.74461 (14) 0.15897 (14) 1.12429 (12) 0.0386 (3)
C37 0.85587 (15) 0.24739 (15) 1.21870 (13) 0.0452 (3)
H37A 0.9195 0.2189 1.2534 0.054*
C38 0.8732 (2) 0.37737 (17) 1.26174 (15) 0.0577 (4)
H38A 0.9499 0.4367 1.3232 0.069*
C39 0.7766 (2) 0.41837 (19) 1.21333 (17) 0.0657 (5)
H39A 0.7879 0.5056 1.2423 0.079*
C40 0.6634 (2) 0.3310 (2) 1.12217 (16) 0.0655 (5)
H40A 0.5973 0.3588 1.0911 0.079*
C41 0.64726 (18) 0.20148 (18) 1.07617 (14) 0.0513 (4)
H41A 0.5716 0.1434 1.0134 0.062*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0422 (8) 0.0497 (9) 0.0425 (8) 0.0226 (7) 0.0182 (6) 0.0192 (7)
O1 0.0458 (7) 0.1042 (10) 0.0667 (8) 0.0347 (7) 0.0264 (6) 0.0504 (8)
C2 0.0402 (7) 0.0395 (7) 0.0392 (7) 0.0174 (6) 0.0164 (6) 0.0164 (6)
C3 0.0430 (8) 0.0527 (9) 0.0414 (8) 0.0253 (7) 0.0209 (7) 0.0179 (7)
C4 0.0414 (8) 0.0510 (8) 0.0347 (7) 0.0192 (7) 0.0181 (6) 0.0177 (6)
C5 0.0350 (7) 0.0376 (7) 0.0397 (7) 0.0130 (6) 0.0138 (6) 0.0161 (6)
C6 0.0424 (8) 0.0517 (8) 0.0437 (8) 0.0243 (7) 0.0220 (7) 0.0200 (7)
C7 0.0468 (8) 0.0499 (8) 0.0364 (7) 0.0229 (7) 0.0201 (6) 0.0186 (6)
N8 0.0394 (7) 0.0496 (7) 0.0434 (7) 0.0193 (6) 0.0172 (5) 0.0232 (6)
C9 0.0381 (7) 0.0367 (7) 0.0374 (7) 0.0149 (6) 0.0144 (6) 0.0123 (6)
C10 0.0392 (8) 0.0399 (8) 0.0383 (7) 0.0154 (6) 0.0130 (6) 0.0137 (6)
C11 0.0499 (9) 0.0678 (11) 0.0520 (9) 0.0316 (8) 0.0268 (8) 0.0320 (8)
C12 0.0657 (11) 0.0802 (13) 0.0621 (11) 0.0352 (10) 0.0355 (9) 0.0438 (10)
C13 0.0653 (11) 0.0697 (11) 0.0510 (9) 0.0329 (9) 0.0185 (8) 0.0343 (9)
C14 0.0475 (9) 0.0747 (12) 0.0651 (11) 0.0275 (9) 0.0112 (8) 0.0360 (10)
C15 0.0381 (8) 0.0637 (10) 0.0615 (10) 0.0174 (8) 0.0157 (7) 0.0329 (9)
C16 0.0337 (7) 0.0412 (7) 0.0382 (7) 0.0161 (6) 0.0121 (6) 0.0160 (6)
C17 0.0423 (8) 0.0450 (8) 0.0481 (8) 0.0151 (7) 0.0154 (7) 0.0089 (7)
C18 0.0487 (9) 0.0704 (11) 0.0422 (8) 0.0269 (8) 0.0210 (7) 0.0142 (8)
C19 0.0466 (9) 0.0738 (12) 0.0572 (10) 0.0240 (8) 0.0268 (8) 0.0376 (9)
C20 0.0563 (10) 0.0488 (9) 0.0772 (12) 0.0199 (8) 0.0311 (9) 0.0328 (9)
C21 0.0514 (9) 0.0426 (8) 0.0591 (9) 0.0223 (7) 0.0282 (8) 0.0205 (7)
C22 0.0453 (8) 0.0446 (8) 0.0380 (7) 0.0234 (7) 0.0167 (6) 0.0168 (6)
C23 0.0447 (8) 0.0502 (9) 0.0439 (8) 0.0159 (7) 0.0120 (7) 0.0189 (7)
C24 0.0524 (9) 0.0550 (9) 0.0376 (8) 0.0181 (8) 0.0059 (7) 0.0176 (7)
C25 0.0571 (9) 0.0407 (8) 0.0372 (7) 0.0219 (7) 0.0195 (7) 0.0147 (6)
C26 0.0461 (8) 0.0487 (9) 0.0441 (8) 0.0167 (7) 0.0170 (7) 0.0176 (7)
C27 0.0437 (8) 0.0519 (9) 0.0389 (7) 0.0208 (7) 0.0119 (6) 0.0173 (7)
N28 0.0639 (9) 0.0438 (7) 0.0414 (7) 0.0212 (6) 0.0180 (6) 0.0181 (6)
C29 0.0350 (7) 0.0417 (8) 0.0405 (8) 0.0147 (6) 0.0114 (6) 0.0180 (6)
C30 0.0374 (7) 0.0428 (8) 0.0423 (8) 0.0152 (6) 0.0111 (6) 0.0194 (6)
C31 0.0796 (12) 0.0550 (10) 0.0570 (10) 0.0361 (9) 0.0311 (9) 0.0284 (8)
C32 0.0982 (16) 0.0598 (11) 0.0783 (13) 0.0440 (11) 0.0347 (12) 0.0407 (10)
C33 0.0734 (12) 0.0606 (11) 0.0667 (12) 0.0231 (10) 0.0186 (10) 0.0418 (10)
C34 0.0614 (11) 0.0696 (12) 0.0512 (9) 0.0185 (9) 0.0243 (8) 0.0328 (9)
C35 0.0497 (9) 0.0516 (9) 0.0509 (9) 0.0203 (7) 0.0217 (7) 0.0246 (7)
C36 0.0397 (7) 0.0448 (8) 0.0427 (7) 0.0204 (6) 0.0213 (6) 0.0230 (6)
C37 0.0415 (8) 0.0470 (8) 0.0523 (9) 0.0195 (7) 0.0203 (7) 0.0201 (7)
C38 0.0665 (11) 0.0458 (9) 0.0624 (10) 0.0193 (8) 0.0317 (9) 0.0165 (8)
C39 0.1079 (16) 0.0549 (10) 0.0672 (12) 0.0482 (11) 0.0528 (12) 0.0327 (9)
C40 0.0996 (15) 0.0870 (14) 0.0656 (12) 0.0726 (13) 0.0506 (12) 0.0506 (11)
C41 0.0556 (10) 0.0696 (11) 0.0486 (9) 0.0373 (9) 0.0239 (8) 0.0322 (8)

Geometric parameters (Å, °)

C1—O1 1.2225 (18) C21—H21A 0.9300
C1—C22 1.490 (2) C22—C27 1.391 (2)
C1—C2 1.496 (2) C22—C23 1.393 (2)
C2—C7 1.395 (2) C23—C24 1.379 (2)
C2—C3 1.394 (2) C23—H23A 0.9300
C3—C4 1.377 (2) C24—C25 1.392 (2)
C3—H3A 0.9300 C24—H24A 0.9300
C4—C5 1.396 (2) C25—C26 1.383 (2)
C4—H4A 0.9300 C25—N28 1.4130 (19)
C5—C6 1.3964 (19) C26—C27 1.384 (2)
C5—N8 1.4127 (18) C26—H26A 0.9300
C6—C7 1.387 (2) C27—H27A 0.9300
C6—H6A 0.9300 N28—C29 1.2784 (19)
C7—H7A 0.9300 C29—C30 1.4926 (19)
N8—C9 1.2813 (18) C29—C36 1.498 (2)
C9—C10 1.4950 (19) C30—C35 1.387 (2)
C9—C16 1.5033 (19) C30—C31 1.392 (2)
C10—C15 1.382 (2) C31—C32 1.380 (2)
C10—C11 1.393 (2) C31—H31A 0.9300
C11—C12 1.383 (2) C32—C33 1.375 (3)
C11—H11A 0.9300 C32—H32A 0.9300
C12—C13 1.381 (3) C33—C34 1.370 (3)
C12—H12A 0.9300 C33—H33A 0.9300
C13—C14 1.361 (2) C34—C35 1.390 (2)
C13—H13A 0.9300 C34—H34A 0.9300
C14—C15 1.388 (2) C35—H35A 0.9300
C14—H14A 0.9300 C36—C37 1.389 (2)
C15—H15A 0.9300 C36—C41 1.391 (2)
C16—C21 1.386 (2) C37—C38 1.384 (2)
C16—C17 1.391 (2) C37—H37A 0.9300
C17—C18 1.390 (2) C38—C39 1.373 (3)
C17—H17A 0.9300 C38—H38A 0.9300
C18—C19 1.376 (2) C39—C40 1.375 (3)
C18—H18A 0.9300 C39—H39A 0.9300
C19—C20 1.375 (2) C40—C41 1.389 (3)
C19—H19A 0.9300 C40—H40A 0.9300
C20—C21 1.387 (2) C41—H41A 0.9300
C20—H20A 0.9300
O1—C1—C22 119.75 (13) C20—C21—H21A 119.7
O1—C1—C2 118.82 (13) C27—C22—C23 118.10 (13)
C22—C1—C2 121.43 (13) C27—C22—C1 123.37 (13)
C7—C2—C3 118.23 (13) C23—C22—C1 118.30 (14)
C7—C2—C1 123.51 (13) C24—C23—C22 121.35 (15)
C3—C2—C1 117.86 (13) C24—C23—H23A 119.3
C4—C3—C2 120.68 (13) C22—C23—H23A 119.3
C4—C3—H3A 119.7 C23—C24—C25 120.03 (14)
C2—C3—H3A 119.7 C23—C24—H24A 120.0
C3—C4—C5 121.35 (13) C25—C24—H24A 120.0
C3—C4—H4A 119.3 C26—C25—C24 119.11 (14)
C5—C4—H4A 119.3 C26—C25—N28 119.71 (14)
C4—C5—C6 118.22 (13) C24—C25—N28 120.61 (14)
C4—C5—N8 114.03 (12) C25—C26—C27 120.64 (15)
C6—C5—N8 127.22 (13) C25—C26—H26A 119.7
C7—C6—C5 120.31 (13) C27—C26—H26A 119.7
C7—C6—H6A 119.8 C26—C27—C22 120.73 (14)
C5—C6—H6A 119.8 C26—C27—H27A 119.6
C6—C7—C2 121.20 (13) C22—C27—H27A 119.6
C6—C7—H7A 119.4 C29—N28—C25 123.09 (13)
C2—C7—H7A 119.4 N28—C29—C30 117.26 (13)
C9—N8—C5 127.61 (12) N28—C29—C36 123.77 (13)
N8—C9—C10 116.13 (13) C30—C29—C36 118.97 (12)
N8—C9—C16 126.07 (13) C35—C30—C31 118.81 (14)
C10—C9—C16 117.80 (12) C35—C30—C29 121.70 (14)
C15—C10—C11 117.84 (14) C31—C30—C29 119.49 (14)
C15—C10—C9 121.89 (13) C32—C31—C30 120.19 (17)
C11—C10—C9 120.25 (13) C32—C31—H31A 119.9
C12—C11—C10 120.72 (15) C30—C31—H31A 119.9
C12—C11—H11A 119.6 C33—C32—C31 120.56 (18)
C10—C11—H11A 119.6 C33—C32—H32A 119.7
C13—C12—C11 120.39 (16) C31—C32—H32A 119.7
C13—C12—H12A 119.8 C34—C33—C32 119.89 (16)
C11—C12—H12A 119.8 C34—C33—H33A 120.1
C14—C13—C12 119.44 (15) C32—C33—H33A 120.1
C14—C13—H13A 120.3 C33—C34—C35 120.21 (17)
C12—C13—H13A 120.3 C33—C34—H34A 119.9
C13—C14—C15 120.52 (16) C35—C34—H34A 119.9
C13—C14—H14A 119.7 C30—C35—C34 120.34 (16)
C15—C14—H14A 119.7 C30—C35—H35A 119.8
C10—C15—C14 121.07 (15) C34—C35—H35A 119.8
C10—C15—H15A 119.5 C37—C36—C41 118.92 (14)
C14—C15—H15A 119.5 C37—C36—C29 120.45 (13)
C21—C16—C17 118.85 (14) C41—C36—C29 120.62 (14)
C21—C16—C9 120.62 (13) C38—C37—C36 120.79 (15)
C17—C16—C9 120.53 (13) C38—C37—H37A 119.6
C16—C17—C18 120.17 (15) C36—C37—H37A 119.6
C16—C17—H17A 119.9 C39—C38—C37 119.74 (18)
C18—C17—H17A 119.9 C39—C38—H38A 120.1
C19—C18—C17 120.25 (15) C37—C38—H38A 120.1
C19—C18—H18A 119.9 C38—C39—C40 120.28 (17)
C17—C18—H18A 119.9 C38—C39—H39A 119.9
C20—C19—C18 119.98 (15) C40—C39—H39A 119.9
C20—C19—H19A 120.0 C39—C40—C41 120.41 (17)
C18—C19—H19A 120.0 C39—C40—H40A 119.8
C19—C20—C21 120.12 (16) C41—C40—H40A 119.8
C19—C20—H20A 119.9 C40—C41—C36 119.79 (17)
C21—C20—H20A 119.9 C40—C41—H41A 120.1
C16—C21—C20 120.60 (15) C36—C41—H41A 120.1
C16—C21—H21A 119.7
O1—C1—C2—C7 −144.52 (16) O1—C1—C22—C27 −152.96 (16)
C22—C1—C2—C7 36.0 (2) C2—C1—C22—C27 26.6 (2)
O1—C1—C2—C3 28.0 (2) O1—C1—C22—C23 21.4 (2)
C22—C1—C2—C3 −151.51 (14) C2—C1—C22—C23 −159.09 (14)
C7—C2—C3—C4 0.3 (2) C27—C22—C23—C24 0.2 (2)
C1—C2—C3—C4 −172.64 (14) C1—C22—C23—C24 −174.49 (14)
C2—C3—C4—C5 0.7 (2) C22—C23—C24—C25 1.0 (3)
C3—C4—C5—C6 −1.0 (2) C23—C24—C25—C26 −0.7 (2)
C3—C4—C5—N8 171.19 (13) C23—C24—C25—N28 170.63 (14)
C4—C5—C6—C7 0.4 (2) C24—C25—C26—C27 −0.8 (2)
N8—C5—C6—C7 −170.67 (14) N28—C25—C26—C27 −172.23 (14)
C5—C6—C7—C2 0.6 (2) C25—C26—C27—C22 2.0 (2)
C3—C2—C7—C6 −0.9 (2) C23—C22—C27—C26 −1.7 (2)
C1—C2—C7—C6 171.58 (14) C1—C22—C27—C26 172.67 (14)
C4—C5—N8—C9 154.35 (15) C26—C25—N28—C29 −115.96 (18)
C6—C5—N8—C9 −34.3 (2) C24—C25—N28—C29 72.8 (2)
C5—N8—C9—C10 176.47 (13) C25—N28—C29—C30 −173.82 (14)
C5—N8—C9—C16 −4.1 (2) C25—N28—C29—C36 6.7 (2)
N8—C9—C10—C15 178.78 (15) N28—C29—C30—C35 −165.71 (15)
C16—C9—C10—C15 −0.7 (2) C36—C29—C30—C35 13.8 (2)
N8—C9—C10—C11 −3.0 (2) N28—C29—C30—C31 14.9 (2)
C16—C9—C10—C11 177.57 (14) C36—C29—C30—C31 −165.62 (15)
C15—C10—C11—C12 1.0 (2) C35—C30—C31—C32 −0.7 (3)
C9—C10—C11—C12 −177.38 (15) C29—C30—C31—C32 178.75 (17)
C10—C11—C12—C13 −0.2 (3) C30—C31—C32—C33 0.4 (3)
C11—C12—C13—C14 −0.7 (3) C31—C32—C33—C34 0.2 (3)
C12—C13—C14—C15 0.7 (3) C32—C33—C34—C35 −0.4 (3)
C11—C10—C15—C14 −0.9 (3) C31—C30—C35—C34 0.4 (2)
C9—C10—C15—C14 177.43 (16) C29—C30—C35—C34 −179.01 (15)
C13—C14—C15—C10 0.0 (3) C33—C34—C35—C30 0.1 (3)
N8—C9—C16—C21 −72.1 (2) N28—C29—C36—C37 −120.14 (17)
C10—C9—C16—C21 107.31 (16) C30—C29—C36—C37 60.38 (18)
N8—C9—C16—C17 107.75 (18) N28—C29—C36—C41 58.6 (2)
C10—C9—C16—C17 −72.83 (18) C30—C29—C36—C41 −120.93 (15)
C21—C16—C17—C18 1.6 (2) C41—C36—C37—C38 −2.8 (2)
C9—C16—C17—C18 −178.23 (14) C29—C36—C37—C38 175.92 (14)
C16—C17—C18—C19 −1.0 (2) C36—C37—C38—C39 2.6 (2)
C17—C18—C19—C20 −0.3 (3) C37—C38—C39—C40 −0.3 (3)
C18—C19—C20—C21 1.0 (3) C38—C39—C40—C41 −1.8 (3)
C17—C16—C21—C20 −0.9 (2) C39—C40—C41—C36 1.6 (3)
C9—C16—C21—C20 178.93 (15) C37—C36—C41—C40 0.7 (2)
C19—C20—C21—C16 −0.4 (3) C29—C36—C41—C40 −178.01 (14)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2303).

References

  1. Appel, R., Knoch, F. & Zimmermann, R. (1985). Chem. Ber 118, 814–824.
  2. Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. [DOI] [PubMed]
  3. Buhmann, M., Würthwein, E.-U. & Möller, M. H. (1993). Chem. Ber 126, 957–967.
  4. Fleischer, E. B., Sung, N. & Hawkinson, S. (1968). J. Phys. Chem 72, 4311–4312.
  5. Higuchi, M., Shiki, S., Ariga, K. & Yamamoto, K. (2001). J. Am. Chem. Soc 123, 4414–4420. [DOI] [PubMed]
  6. Kutzke, H., Klapper, H., Hammond, R. B. & Roberts, K. J. (2000). Acta Cryst. B56, 486–496. [DOI] [PubMed]
  7. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst.41, 466–470.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Siemens (1996). XSCANS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  10. Takanashi, K., Chiba, H., Higuchi, M. & Yamamoto, K. (2004). Org. Lett 6, 1709–1712. [DOI] [PubMed]
  11. Yamamoto, K. & Higuchi, M. (2004). Pure Appl. Chem 76, 1399–1408.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810016375/fl2303sup1.cif

e-66-o1322-sup1.cif (34.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810016375/fl2303Isup2.hkl

e-66-o1322-Isup2.hkl (287.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES