Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 May 29;66(Pt 6):o1474–o1475. doi: 10.1107/S1600536810018969

7,9-Dichloro-6H,12H-indolo[2,1-b]quinazoline-6,12-dione

Peter Grundt a, Kelsi A Douglas a, Bogdana Krivogorsky a, Victor N Nemykin a,*
PMCID: PMC2979507  PMID: 21579542

Abstract

There are two independent mol­ecules in the asymmetric unit of the title compound, C15H6Cl2N2O2. The conjugated four-ring system is essentially planar in each mol­ecule [maximum deviation = 0.089 (2) Å]. In the crystal, weak inter­molecular C—H⋯Cl, C—H⋯O and C—H⋯·N inter­actions help to stabilize the packing.

Related literature

For the synthesis, chemistry, and biological activity of the title compound see: Krivogorsky et al. (2008). For chemistry and biological activity of the natural product tryptanthrin (indolo[2,1-b]quinazoline-6,12-dione) and its derivatives and for related structures, see: Honda et al. (1979); Mitscher & Baker (1998); Kataoka et al. (2001); Bandekar et al. (2010); Sharma et al. (2002); Motoki et al. (2005); Yu et al. (2009); Bhattacharjee et al. (2002); Scovill et al. (2002); Bhattacharjee et al. (2004); Pitzer et al. (2000). For the extinction correction, see: Larson (1970).graphic file with name e-66-o1474-scheme1.jpg

Experimental

Crystal data

  • C15H6Cl2N2O2

  • M r = 317.13

  • Triclinic, Inline graphic

  • a = 7.0179 (2) Å

  • b = 10.7276 (3) Å

  • c = 17.2338 (12) Å

  • α = 94.908 (7)°

  • β = 96.709 (7)°

  • γ = 107.395 (8)°

  • V = 1219.66 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.54 mm−1

  • T = 100 K

  • 0.54 × 0.48 × 0.35 mm

Data collection

  • Rigaku R-AXIS RAPID-II imaging plate diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.633, T max = 0.899

  • 31502 measured reflections

  • 5585 independent reflections

  • 4830 reflections with I > 2σ(I)

  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.082

  • S = 1.00

  • 5571 reflections

  • 416 parameters

  • 84 restraints

  • All H-atom parameters refined

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: CrystalClear (Rigaku Americas, 2009); cell refinement: HKL-2000 (Otwinowski & Minor, 1997); data reduction: CrystalClear; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810018969/jj2032sup1.cif

e-66-o1474-sup1.cif (22KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810018969/jj2032Isup2.hkl

e-66-o1474-Isup2.hkl (278.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1B—H1B⋯Cl1Ai 0.94 (2) 2.73 (2) 3.637 (2) 162 (1)
C2A—H2A⋯O1Bii 0.93 (2) 2.54 (2) 3.264 (3) 135 (1)
C4B—H4B⋯N5Aiii 0.94 (2) 2.56 (2) 3.422 (3) 154 (1)
C10A—H6A⋯Cl2Biv 0.94 (2) 2.67 (2) 3.585 (2) 165 (1)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This study was supported by Stanley Medical Research Institute (grant 08R-2032) and the NSF (grant CHE-0922366 for X-ray diffractometer).

supplementary crystallographic information

Comment

The natural product tryptanthrin (indolo[2,1-b]quinazoline-6,12-dione) and its derivatives have been shown to possess antibacterial (Honda et al., 1979), Mitscher & Baker, 1998, Kataoka et al., 2001, Bandekar et al., 2010) and antitumor Sharma et al., 2002, Motoki et al., 2005, Yu et al., 2009) properties. Of particular interest is the discovery by several groups that this class of compounds also inibits the growth of parasites such as Leishmania donovani (Bhattacharjee et al., 2002), Trypanosoma brucei (Scovill et al., 2002), and Plasmodium falciparum (Bhattacharjee et al., 2004, Pitzer et al., 2000), and more recently by our laboratory, Toxoplasma gondii (Krivogorsky et al., 2008). In our continued interest to characterize the structure-activity-relationship of this class of compounds and to reveal the underlying mechanism, we have synthesized the 7,9-dichloro analog of tryptanthrin.

The title compound, (I), C15H6Cl2N2O2, crystallizes in the P-1 space group with two independent molecules in the asymmetric unit cell. It consists of a 7,9-dichloroindolo ring fused to a quinazoline ring with a dione group at the 6 and 12 poisitions (IUPAC nomenclature). C—Cl bond distances have been observed between 1.7272 (19) and 1.7358 (19) Å with Cl1—C7 distances being slightly shorter as compared to Cl2—C9 bond lengths. C=O bonds have clear double bond character and were observed between 1.211 (2) and 1.221 (2) Å with C=O bonds in the five-membered ring being slightly shorter as compared to those at the six-membered rings. N5—C14 bond distances in molecules A and B have clear double bond character. Four weak intermolecular interactions are observed in (I), (Table 2) that help stabilize crystal packing.

Experimental

The title compound was prepared by condensation of isatoic anhydride and 4,6-dichloroisatin in refluxing benzene with triethylamine as a co-solvent (Krivogorsky et al., 2008). Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of an acetone solution of the compound.

Refinement

In the absence of significant anomalous scattering, Friedel pairs were merged. The H atoms were all located in a difference map, but were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.94 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Figures

Fig. 1.

Fig. 1.

The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.

Fig. 2.

Fig. 2.

Packing diagram for the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are omited for clarity.

Crystal data

C15H6Cl2N2O2 Z = 4
Mr = 317.13 F(000) = 640
Triclinic, P1 Dx = 1.727 Mg m3
Hall symbol: -P 1 Melting point: 200 K
a = 7.0179 (2) Å Mo Kα radiation, λ = 0.71075 Å
b = 10.7276 (3) Å Cell parameters from 28356 reflections
c = 17.2338 (12) Å θ = 3.1–27.5°
α = 94.908 (7)° µ = 0.54 mm1
β = 96.709 (7)° T = 100 K
γ = 107.395 (8)° Block, yellow
V = 1219.66 (12) Å3 0.54 × 0.48 × 0.35 mm

Data collection

Rigaku R-AXIS RAPID-II imaging plate diffractometer 5585 independent reflections
Radiation source: Sealed tube (Mo) 4830 reflections with I > 2σ(I)
graphite Rint = 0.049
Detector resolution: 10 pixels mm-1 θmax = 27.5°, θmin = 3.1°
ω scans h = −9→9
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) k = −13→13
Tmin = 0.633, Tmax = 0.899 l = −22→22
31502 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034 All H-atom parameters refined
wR(F2) = 0.082 Method = Modified Sheldrick w = 1/[σ2(F2) + (0.02P)2 + 2.09P], where P = [max(Fo2,0) + 2Fc2]/3
S = 1.00 (Δ/σ)max = 0.001
5571 reflections Δρmax = 0.53 e Å3
416 parameters Δρmin = −0.36 e Å3
84 restraints Extinction correction: Larson (1970), Equation 22
0 constraints Extinction coefficient: 43 (4)
Primary atom site location: structure-invariant direct methods

Special details

Experimental. The crystal was placed in the cold stream of an X-stream 2000 liquid nitrogen generator with open-flow nitrogen cryostat with a nominal stability of 0.1 K. 1H NMR (DMSO-d6, 500 MHz): d 7.75-7.78 (m, 2H), 7.98-8.00 (m, 2H), 8.33 (d, J 7.5, 1H), 8.41 (d, J 1.9, 1H). 13C NMR (DMSO-d6, 125 MHz): d 115.6, 118.3, 122.6, 127.0, 127.4, 129.9, 130.1, 132.3, 135.6, 141.6, 144.4, 146.1, 147.3, 157.6, 178.4.
Refinement. Crystals for Windows program eliminates all reflections with [Sin theta/lambda]**2 less than 0.01 in order to eliminate reflections that may be poorly measured in the vicinity of the beam stop. Such filter eliminated 14 reflections, which resulted in difference between 5585 measured unique reflections and 5571 reflections used for refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1A 0.12767 (7) 0.19849 (5) −0.30745 (3) 0.0154
Cl2A 0.22470 (8) −0.16786 (5) −0.51632 (3) 0.0203
O1A 0.5092 (2) 0.25603 (14) −0.16905 (8) 0.0172
O2A 0.8111 (2) −0.15104 (14) −0.30107 (8) 0.0181
C1A 1.1319 (3) −0.08669 (19) −0.17069 (12) 0.0162
C2A 1.2819 (3) −0.0485 (2) −0.10617 (12) 0.0183
C3A 1.2850 (3) 0.0523 (2) −0.04843 (12) 0.0208
C4A 1.1391 (3) 0.1145 (2) −0.05462 (12) 0.0185
N5A 0.8403 (2) 0.14280 (16) −0.12490 (10) 0.0151
C6A 0.5402 (3) 0.16629 (19) −0.20790 (11) 0.0137
C7A 0.2640 (3) 0.09548 (18) −0.33341 (11) 0.0137
C8A 0.1974 (3) 0.01396 (19) −0.40464 (11) 0.0154
C9A 0.3055 (3) −0.06961 (19) −0.42595 (11) 0.0151
C10A 0.4729 (3) −0.07980 (19) −0.37831 (11) 0.0146
N11A 0.6952 (2) 0.01079 (16) −0.24828 (9) 0.0130
C12A 0.8273 (3) −0.06404 (19) −0.24787 (11) 0.0140
C13A 0.9855 (3) 0.07665 (19) −0.11960 (11) 0.0142
C14A 0.7090 (3) 0.10816 (18) −0.18691 (11) 0.0134
C15A 0.4331 (3) 0.09159 (18) −0.28464 (11) 0.0129
C16A 0.5321 (3) 0.00196 (19) −0.30772 (11) 0.0141
C17A 0.9828 (3) −0.02472 (18) −0.17809 (11) 0.0139
Cl1B 0.89170 (7) 0.34858 (5) 0.34019 (3) 0.0173
Cl2B 0.70190 (7) 0.70635 (5) 0.52404 (3) 0.0192
O1B 0.5337 (2) 0.26130 (14) 0.19080 (9) 0.0189
O2B 0.1512 (2) 0.64871 (14) 0.28391 (8) 0.0169
C1B −0.1458 (3) 0.55847 (19) 0.14382 (12) 0.0163
C2B −0.2819 (3) 0.5080 (2) 0.07583 (12) 0.0193
C3B −0.2635 (3) 0.4038 (2) 0.02547 (12) 0.0192
C4B −0.1086 (3) 0.3521 (2) 0.04302 (12) 0.0176
N5B 0.1872 (3) 0.34718 (16) 0.12667 (10) 0.0153
C6B 0.4831 (3) 0.34864 (19) 0.22288 (11) 0.0148
C7B 0.7333 (3) 0.44170 (19) 0.35489 (12) 0.0146
C8B 0.7737 (3) 0.5271 (2) 0.42418 (12) 0.0165
C9B 0.6463 (3) 0.60188 (19) 0.43630 (11) 0.0151
C10B 0.4808 (3) 0.59806 (19) 0.38219 (11) 0.0144
N11B 0.2930 (2) 0.49043 (16) 0.24801 (9) 0.0130
C12B 0.1523 (3) 0.55777 (19) 0.23644 (11) 0.0138
C13B 0.0312 (3) 0.40238 (18) 0.11173 (11) 0.0139
C14B 0.3049 (3) 0.39217 (19) 0.19191 (11) 0.0140
C15B 0.5689 (3) 0.43274 (19) 0.29911 (11) 0.0139
C16B 0.4478 (3) 0.51304 (19) 0.31342 (11) 0.0135
C17B 0.0111 (3) 0.50602 (19) 0.16292 (11) 0.0141
H1A 1.130 (2) −0.1539 (13) −0.2094 (9) 0.0204*
H2A 1.380 (2) −0.0909 (13) −0.1021 (9) 0.0206*
H3A 1.388 (2) 0.0793 (14) −0.0051 (9) 0.0251*
H4A 1.142 (2) 0.1815 (13) −0.0153 (9) 0.0215*
H5A 0.083 (2) 0.0145 (13) −0.4368 (9) 0.0178*
H6A 0.541 (2) −0.1385 (13) −0.3938 (9) 0.0187*
H1B −0.159 (2) 0.6286 (13) 0.1773 (9) 0.0204*
H2B −0.388 (2) 0.5439 (14) 0.0634 (9) 0.0248*
H3B −0.355 (2) 0.3688 (14) −0.0209 (9) 0.0224*
H4B −0.094 (2) 0.2847 (13) 0.0083 (9) 0.0208*
H5B 0.885 (2) 0.5353 (13) 0.4615 (9) 0.0195*
H6B 0.398 (2) 0.6491 (12) 0.3915 (9) 0.0160*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1A 0.0147 (2) 0.0165 (2) 0.0164 (2) 0.00768 (18) 0.00158 (17) 0.00171 (18)
Cl2A 0.0192 (2) 0.0251 (3) 0.0143 (2) 0.0077 (2) −0.00299 (18) −0.00561 (19)
O1A 0.0188 (7) 0.0163 (7) 0.0172 (7) 0.0078 (6) 0.0020 (6) −0.0021 (6)
O2A 0.0182 (7) 0.0184 (7) 0.0177 (7) 0.0084 (6) 0.0001 (6) −0.0036 (6)
C1A 0.0174 (10) 0.0143 (9) 0.0181 (10) 0.0060 (8) 0.0036 (8) 0.0031 (8)
C2A 0.0166 (10) 0.0196 (10) 0.0207 (10) 0.0089 (8) 0.0013 (8) 0.0042 (8)
C3A 0.0202 (10) 0.0255 (11) 0.0166 (10) 0.0097 (9) −0.0037 (8) 0.0014 (8)
C4A 0.0196 (10) 0.0208 (10) 0.0138 (9) 0.0067 (8) −0.0007 (8) −0.0015 (8)
N5A 0.0154 (8) 0.0161 (8) 0.0138 (8) 0.0061 (7) 0.0005 (6) 0.0000 (6)
C6A 0.0131 (9) 0.0135 (9) 0.0146 (9) 0.0039 (7) 0.0020 (7) 0.0031 (7)
C7A 0.0137 (9) 0.0125 (9) 0.0154 (9) 0.0042 (7) 0.0033 (7) 0.0026 (7)
C8A 0.0122 (9) 0.0187 (10) 0.0144 (9) 0.0048 (8) −0.0011 (7) 0.0024 (8)
C9A 0.0150 (9) 0.0151 (9) 0.0121 (9) 0.0016 (8) 0.0004 (7) −0.0015 (7)
C10A 0.0134 (9) 0.0133 (9) 0.0162 (9) 0.0039 (7) 0.0012 (7) −0.0005 (7)
N11A 0.0126 (8) 0.0131 (8) 0.0122 (8) 0.0038 (6) −0.0005 (6) −0.0011 (6)
C12A 0.0120 (9) 0.0138 (9) 0.0156 (9) 0.0025 (7) 0.0027 (7) 0.0024 (7)
C13A 0.0140 (9) 0.0137 (9) 0.0150 (9) 0.0043 (7) 0.0021 (7) 0.0030 (7)
C14A 0.0145 (9) 0.0116 (9) 0.0147 (9) 0.0046 (7) 0.0028 (7) 0.0010 (7)
C15A 0.0124 (9) 0.0121 (9) 0.0138 (9) 0.0028 (7) 0.0027 (7) 0.0024 (7)
C16A 0.0125 (9) 0.0145 (9) 0.0147 (9) 0.0033 (7) 0.0013 (7) 0.0027 (7)
C17A 0.0133 (9) 0.0130 (9) 0.0148 (9) 0.0034 (7) 0.0014 (7) 0.0028 (7)
Cl1B 0.0148 (2) 0.0186 (2) 0.0217 (2) 0.00967 (18) 0.00275 (18) 0.00399 (19)
Cl2B 0.0183 (2) 0.0231 (3) 0.0153 (2) 0.00847 (19) −0.00197 (18) −0.00346 (19)
O1B 0.0201 (7) 0.0182 (7) 0.0213 (7) 0.0103 (6) 0.0049 (6) 0.0004 (6)
O2B 0.0170 (7) 0.0174 (7) 0.0167 (7) 0.0085 (6) −0.0007 (5) −0.0024 (6)
C1B 0.0173 (9) 0.0151 (9) 0.0173 (9) 0.0070 (8) 0.0013 (8) 0.0010 (8)
C2B 0.0168 (10) 0.0214 (10) 0.0210 (10) 0.0097 (8) −0.0012 (8) 0.0028 (8)
C3B 0.0179 (10) 0.0207 (10) 0.0162 (10) 0.0052 (8) −0.0038 (8) −0.0006 (8)
C4B 0.0207 (10) 0.0163 (9) 0.0157 (9) 0.0068 (8) 0.0010 (8) −0.0003 (8)
N5B 0.0162 (8) 0.0149 (8) 0.0153 (8) 0.0059 (7) 0.0022 (6) 0.0011 (7)
C6B 0.0120 (9) 0.0157 (9) 0.0165 (9) 0.0035 (7) 0.0031 (7) 0.0038 (8)
C7B 0.0126 (9) 0.0141 (9) 0.0197 (10) 0.0065 (7) 0.0045 (7) 0.0048 (8)
C8B 0.0148 (9) 0.0190 (10) 0.0156 (9) 0.0057 (8) −0.0010 (8) 0.0039 (8)
C9B 0.0160 (9) 0.0143 (9) 0.0128 (9) 0.0024 (7) 0.0013 (7) −0.0001 (7)
C10B 0.0123 (9) 0.0158 (9) 0.0157 (9) 0.0055 (7) 0.0022 (7) 0.0009 (8)
N11B 0.0117 (7) 0.0142 (8) 0.0128 (8) 0.0048 (6) 0.0002 (6) −0.0001 (6)
C12B 0.0120 (9) 0.0141 (9) 0.0155 (9) 0.0039 (7) 0.0022 (7) 0.0027 (7)
C13B 0.0145 (9) 0.0117 (9) 0.0158 (9) 0.0035 (7) 0.0030 (7) 0.0034 (7)
C14B 0.0141 (9) 0.0126 (9) 0.0166 (9) 0.0053 (7) 0.0049 (7) 0.0022 (7)
C15B 0.0124 (9) 0.0137 (9) 0.0162 (9) 0.0045 (7) 0.0034 (7) 0.0030 (7)
C16B 0.0106 (8) 0.0144 (9) 0.0152 (9) 0.0034 (7) 0.0009 (7) 0.0029 (7)
C17B 0.0145 (9) 0.0137 (9) 0.0144 (9) 0.0045 (7) 0.0024 (7) 0.0034 (7)

Geometric parameters (Å, °)

Cl1A—C7A 1.7272 (19) C1A—C2A 1.379 (3)
Cl2A—C9A 1.7358 (19) C1A—H1A 0.937 (15)
Cl1B—C7B 1.7276 (19) C2A—C3A 1.399 (3)
Cl2B—C9B 1.734 (2) C2A—H2A 0.929 (16)
O1A—C6A 1.213 (2) C3A—C4A 1.379 (3)
O2A—C12A 1.221 (2) C3A—H3A 0.937 (16)
O1B—C6B 1.211 (2) C4A—C13A 1.399 (3)
O2B—C12B 1.221 (2) C4A—H4A 0.937 (15)
N5A—C13A 1.405 (2) C14A—C6A 1.518 (3)
N5A—C14A 1.275 (2) C15B—C7B 1.387 (3)
N11A—C16A 1.419 (2) C15B—C16B 1.405 (3)
N11A—C12A 1.396 (2) C15B—C6B 1.480 (3)
N11A—C14A 1.395 (2) C7B—C8B 1.387 (3)
N5B—C13B 1.401 (2) C8B—C9B 1.389 (3)
N5B—C14B 1.277 (3) C8B—H5B 0.931 (15)
N11B—C16B 1.421 (2) C9B—C10B 1.390 (3)
N11B—C12B 1.394 (2) C10B—C16B 1.384 (3)
N11B—C14B 1.396 (2) C10B—H6B 0.930 (15)
C15A—C7A 1.386 (3) C12B—C17B 1.467 (3)
C15A—C16A 1.401 (3) C17B—C1B 1.399 (3)
C15A—C6A 1.477 (3) C17B—C13B 1.410 (3)
C7A—C8A 1.389 (3) C1B—C2B 1.378 (3)
C8A—C9A 1.389 (3) C1B—H1B 0.942 (15)
C8A—H5A 0.925 (15) C2B—C3B 1.402 (3)
C9A—C10A 1.390 (3) C2B—H2B 0.947 (16)
C10A—C16A 1.380 (3) C3B—C4B 1.377 (3)
C10A—H6A 0.938 (15) C3B—H3B 0.937 (16)
C12A—C17A 1.465 (3) C4B—C13B 1.399 (3)
C17A—C1A 1.397 (3) C4B—H4B 0.936 (16)
C17A—C13A 1.412 (3) C14B—C6B 1.517 (3)
Cl1A—C7A—C15A 121.65 (15) Cl1B—C7B—C15B 121.43 (15)
Cl1A—C7A—C8A 118.05 (15) Cl1B—C7B—C8B 118.59 (15)
C15A—C7A—C8A 120.30 (18) C15B—C7B—C8B 119.98 (18)
C7A—C15A—C6A 132.59 (18) C7B—C15B—C6B 132.47 (18)
C7A—C15A—C16A 118.79 (17) C7B—C15B—C16B 118.96 (18)
C6A—C15A—C16A 108.62 (16) C6B—C15B—C16B 108.54 (16)
C15A—C6A—O1A 129.87 (18) C15B—C6B—O1B 130.04 (18)
C15A—C6A—C14A 104.37 (15) C15B—C6B—C14B 104.47 (16)
O1A—C6A—C14A 125.75 (17) O1B—C6B—C14B 125.46 (18)
C6A—C14A—N5A 126.26 (17) C6B—C14B—N11B 107.35 (16)
C6A—C14A—N11A 107.38 (16) C6B—C14B—N5B 126.40 (17)
N5A—C14A—N11A 126.35 (17) N11B—C14B—N5B 126.25 (17)
C14A—N5A—C13A 115.81 (17) C14B—N11B—C16B 110.20 (15)
N5A—C13A—C4A 118.48 (17) C14B—N11B—C12B 122.59 (16)
N5A—C13A—C17A 122.13 (17) C16B—N11B—C12B 127.14 (16)
C4A—C13A—C17A 119.38 (18) N11B—C16B—C15B 109.35 (16)
C13A—C4A—C3A 119.69 (19) N11B—C16B—C10B 127.71 (17)
C13A—C4A—H4A 120.2 (10) C15B—C16B—C10B 122.94 (18)
C3A—C4A—H4A 120.2 (10) C16B—C10B—C9B 115.54 (18)
C4A—C3A—C2A 120.96 (19) C16B—C10B—H6B 122.2 (10)
C4A—C3A—H3A 119.0 (10) C9B—C10B—H6B 122.3 (10)
C2A—C3A—H3A 120.0 (10) C10B—C9B—C8B 123.79 (18)
C3A—C2A—C1A 120.04 (19) C10B—C9B—Cl2B 119.12 (15)
C3A—C2A—H2A 121.2 (10) C8B—C9B—Cl2B 117.08 (15)
C1A—C2A—H2A 118.8 (10) C9B—C8B—C7B 118.75 (18)
C2A—C1A—C17A 119.86 (19) C9B—C8B—H5B 120.6 (10)
C2A—C1A—H1A 119.9 (10) C7B—C8B—H5B 120.6 (10)
C17A—C1A—H1A 120.2 (10) N11B—C12B—O2B 121.91 (17)
C13A—C17A—C1A 120.07 (18) N11B—C12B—C17B 112.41 (16)
C13A—C17A—C12A 120.66 (17) O2B—C12B—C17B 125.68 (17)
C1A—C17A—C12A 119.26 (17) C12B—C17B—C13B 120.36 (17)
C17A—C12A—N11A 112.36 (16) C12B—C17B—C1B 119.93 (17)
C17A—C12A—O2A 125.53 (18) C13B—C17B—C1B 119.70 (18)
N11A—C12A—O2A 122.11 (17) C17B—C13B—N5B 122.53 (17)
C12A—N11A—C14A 122.65 (16) C17B—C13B—C4B 119.38 (18)
C12A—N11A—C16A 127.27 (16) N5B—C13B—C4B 118.09 (17)
C14A—N11A—C16A 110.08 (15) C13B—N5B—C14B 115.64 (16)
N11A—C16A—C15A 109.50 (16) C13B—C4B—C3B 120.22 (19)
N11A—C16A—C10A 127.57 (18) C13B—C4B—H4B 119.5 (10)
C15A—C16A—C10A 122.93 (18) C3B—C4B—H4B 120.2 (10)
C16A—C10A—C9A 115.95 (18) C4B—C3B—C2B 120.39 (19)
C16A—C10A—H6A 122.5 (10) C4B—C3B—H3B 118.8 (10)
C9A—C10A—H6A 121.5 (10) C2B—C3B—H3B 120.8 (10)
C10A—C9A—C8A 123.45 (18) C3B—C2B—C1B 120.12 (19)
C10A—C9A—Cl2A 118.47 (15) C3B—C2B—H2B 120.2 (10)
C8A—C9A—Cl2A 118.07 (15) C1B—C2B—H2B 119.6 (10)
C9A—C8A—C7A 118.51 (17) C17B—C1B—C2B 120.18 (18)
C9A—C8A—H5A 120.8 (10) C17B—C1B—H1B 120.2 (10)
C7A—C8A—H5A 120.6 (10) C2B—C1B—H1B 119.6 (10)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1B—H1B···Cl1Ai 0.94 (2) 2.73 (2) 3.637 (2) 162 (1)
C2A—H2A···O1Bii 0.93 (2) 2.54 (2) 3.264 (3) 135 (1)
C4B—H4B···N5Aiii 0.94 (2) 2.56 (2) 3.422 (3) 154 (1)
C10A—H6A···Cl2Biv 0.94 (2) 2.67 (2) 3.585 (2) 165 (1)

Symmetry codes: (i) −x, −y+1, −z; (ii) −x+2, −y, −z; (iii) x−1, y, z; (iv) x, y−1, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2032).

References

  1. Bandekar, P. P., Roopnarine, K. A., Parekh, V. J., Mitchell, T. R., Novak, M. J. & Sinden, R. R. (2010). J. Med. Chem.53, 3558–3565. [DOI] [PubMed]
  2. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  3. Bhattacharjee, A. K., Hartell, M. G., Nichols, D. A., Hicks, R. P., Stanton, B., Van Hamont, J. E. & Milhous, W. K. (2004). Eur. J. Med. Chem.39, 59–67. [DOI] [PubMed]
  4. Bhattacharjee, A. K., Skanchy, D. J., Jennings, B., Hudson, T. H., Brendle, J. J. & Werbovetz, K. A. (2002). Bioorg. Med. Chem.10, 1979–1989. [DOI] [PubMed]
  5. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  6. Honda, G., Tabata, M. & Tsuda, M. (1979). Planta Med.37, 172–174. [DOI] [PubMed]
  7. Kataoka, M., Hirata, K., Kunikata, T., Ushio, S., Iwaki, K., Ohashi, K., Ikeda, M. & Kurimoto, M. (2001). J. Gastroenterol.36, 5–9. [DOI] [PubMed]
  8. Krivogorsky, B., Grundt, P., Yolken, R. & Jones-Brando, L. (2008). Antimicrob. Agents Chemother.52, 4466–4469. [DOI] [PMC free article] [PubMed]
  9. Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.
  10. Mitscher, L. A. & Baker, W. R. (1998). Pure Appl. Chem.70, 365–371.
  11. Motoki, T., Takami, Y., Yagi, Y., Tai, A., Yamamoto, I. & Gohda, E. (2005). Biol. Pharm. Bull.28, 260–266. [DOI] [PubMed]
  12. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  13. Pitzer, K. K., Scovill, J. P., Kyle, D. E. & Gerena, L. (2000). [WRAIR (Walter Reid Army Institute of Research), USA]. 99-US22569 2000018769.
  14. Rigaku Americas (2009). CrystalStructure Rigaku Americas, The Woodlands, Texas, USA.
  15. Scovill, J., Blank, E., Konnick, M., Nenortas, E. & Shapiro, T. (2002). Antimicrob. Agents Chemother.46, 882–883. [DOI] [PMC free article] [PubMed]
  16. Sharma, V. M., Prasanna, P., Adi Seshu, K. V., Renuka, B., Laxman Rao, C. V., Sunil Kumar, G., Narasimhulu, C. P., Aravind Babu, P., Puranik, R. C., Subramanyam, D., Venkateswarlu, A., Rajagopal, S., Kumar, K. B. S., Rao, C. S., Mamidi, N. V. S. R., Deevi, D. S., Ajaykumar, R. & Rajagopalan, R. (2002). Bioorg. Med. Chem. Lett.12, 2303–2307. [DOI] [PubMed]
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON Chemical Crystallography Laboratory, Oxford, England.
  19. Yu, S.-T., Chen, T.-M., Chern, J.-W., Tseng, S.-Y. & Chen, Y.-H. (2009). Anti-Cancer Drugs, 20, 382–388. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810018969/jj2032sup1.cif

e-66-o1474-sup1.cif (22KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810018969/jj2032Isup2.hkl

e-66-o1474-Isup2.hkl (278.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES