Abstract
In the title compound, C12H15N5, the piperidine ring adopts a chair conformation with the substituent C atom in an equatorial site and the dihedral angle between the pyridazine and pyrazole ring planes is 10.36 (2)°.
Related literature
For related structures, see: Blake et al. (2002 ▶); Ather et al. (2009 ▶).
Experimental
Crystal data
C12H15N5
M r = 229.29
Monoclinic,
a = 5.9665 (6) Å
b = 20.189 (3) Å
c = 9.9695 (13) Å
β = 103.230 (7)°
V = 1169.0 (2) Å3
Z = 4
Mo Kα radiation
μ = 0.08 mm−1
T = 296 K
0.31 × 0.25 × 0.22 mm
Data collection
Bruker APEXII CCD diffractometer
11710 measured reflections
2674 independent reflections
1282 reflections with I > 2σ(I)
R int = 0.054
Refinement
R[F 2 > 2σ(F 2)] = 0.058
wR(F 2) = 0.182
S = 1.01
2674 reflections
154 parameters
H-atom parameters constrained
Δρmax = 0.18 e Å−3
Δρmin = −0.21 e Å−3
Data collection: APEX2 (Bruker, 2007 ▶); cell refinement: SAINT (Bruker, 2007 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 (Farrugia, 1997 ▶); software used to prepare material for publication: WinGX (Farrugia, 1999 ▶).
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810016491/hb5436sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810016491/hb5436Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Acknowledgments
UK thanks the Higher Education Commission of Pakistan for financial support under the project ‘Strengthening of the Materials Chemistry Laboratory’ at GCUL.
supplementary crystallographic information
Comment
As part of our onging studies of azolylpyridazines (Ather et al., 2009), we now report the synthesis and structure of the title compound, (I).
Compound (I) consists of a pyridazine ring with piperidine and pyrazole substituents at the 3- and 6-positions, respectively (Fig. 1). Least-squares mean-plane calculations for the pyridazine (N3/N4/C4/C5/C6/C7) and pyrazole (N1/N2/C3/C1/C2) rings show that these are approximately planar, with respective maximum deviations of 0.0042 (16)Å for atom C7 and 0.0026 (19)Å for atom C2. The dihedral angle between the pyridazine and pyrazole ring planes is 10.36 (2)°. The piperidine ring in (I) adopts a chair conformation. The N5—C7 and N2—C4 bond lengths indicate significant single-bond character, whereas the N3═C7 and N4═C4 bond lengths are indicative of significant double-bond character. The N1—N2 and N3—N4 bond lengths [1.357 (3)Å and 1.353 (3) Å, respectively] agree with the corresponding distances in 3,4,6-Tris(pyrazol-1-yl)pyridazine (Blake et al., 2002).
Experimental
A mixture of 1.0 g (0.18 mmol) of 3-chloro-6-(1 H-Pyrozol-1-yl) pyridazine and 5 ml of piperidine was refluxed for 2 h, concentrated under vacuum, cooled and added to cooled water. The ppt filtered dried and recrystallized from benzene to give colourless prisms of (I) (m.p. 383-384 K).
Refinement
All H atoms attached to C atoms were refined using a riding model [C—H = 0.93Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms and C—H = 0.97Å and Uiso(H) = 1.2Ueq(C) for metyhlene H atoms].
Figures
Fig. 1.
A view of (I), showing 30% displacement ellipsoids.
Crystal data
| C12H15N5 | F(000) = 488 |
| Mr = 229.29 | Dx = 1.303 Mg m−3 |
| Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2yn | Cell parameters from 1639 reflections |
| a = 5.9665 (6) Å | θ = 2.3–21.3° |
| b = 20.189 (3) Å | µ = 0.08 mm−1 |
| c = 9.9695 (13) Å | T = 296 K |
| β = 103.230 (7)° | Prism, colourless |
| V = 1169.0 (2) Å3 | 0.31 × 0.25 × 0.22 mm |
| Z = 4 |
Data collection
| Bruker APEXII CCD diffractometer | 1282 reflections with I > 2σ(I) |
| Radiation source: fine-focus sealed tube | Rint = 0.054 |
| graphite | θmax = 27.5°, θmin = 2.3° |
| phi and ω scans | h = −7→7 |
| 11710 measured reflections | k = −26→26 |
| 2674 independent reflections | l = −12→12 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.058 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.182 | H-atom parameters constrained |
| S = 1.01 | w = 1/[σ2(Fo2) + (0.0863P)2] where P = (Fo2 + 2Fc2)/3 |
| 2674 reflections | (Δ/σ)max < 0.001 |
| 154 parameters | Δρmax = 0.18 e Å−3 |
| 0 restraints | Δρmin = −0.21 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| C1 | 0.3406 (6) | 0.72572 (15) | 0.3173 (3) | 0.0738 (9) | |
| H1 | 0.4014 | 0.6901 | 0.2782 | 0.089* | |
| C2 | 0.1112 (6) | 0.74333 (16) | 0.2984 (3) | 0.0756 (9) | |
| H2 | −0.0087 | 0.7203 | 0.2415 | 0.091* | |
| C3 | 0.4568 (5) | 0.77160 (14) | 0.4052 (3) | 0.0639 (8) | |
| H3 | 0.6155 | 0.7740 | 0.4384 | 0.077* | |
| C4 | 0.3331 (4) | 0.86969 (12) | 0.5224 (2) | 0.0452 (6) | |
| C5 | 0.1481 (4) | 0.90081 (13) | 0.5592 (3) | 0.0501 (7) | |
| H5 | −0.0019 | 0.8857 | 0.5274 | 0.060* | |
| C6 | 0.1955 (4) | 0.95375 (14) | 0.6429 (2) | 0.0496 (7) | |
| H6 | 0.0779 | 0.9767 | 0.6699 | 0.060* | |
| C7 | 0.4275 (4) | 0.97398 (12) | 0.6893 (2) | 0.0415 (6) | |
| C8 | 0.3360 (4) | 1.08147 (13) | 0.7801 (3) | 0.0540 (7) | |
| H8A | 0.1774 | 1.0665 | 0.7559 | 0.065* | |
| H8B | 0.3581 | 1.1125 | 0.7098 | 0.065* | |
| C9 | 0.3800 (4) | 1.11603 (15) | 0.9163 (3) | 0.0638 (8) | |
| H9A | 0.3378 | 1.0870 | 0.9840 | 0.077* | |
| H9B | 0.2842 | 1.1553 | 0.9085 | 0.077* | |
| C10 | 0.6306 (4) | 1.13584 (14) | 0.9652 (3) | 0.0674 (8) | |
| H10A | 0.6698 | 1.1689 | 0.9037 | 0.081* | |
| H10B | 0.6567 | 1.1548 | 1.0569 | 0.081* | |
| C11 | 0.7792 (4) | 1.07512 (14) | 0.9672 (3) | 0.0580 (8) | |
| H11A | 0.9401 | 1.0879 | 0.9932 | 0.070* | |
| H11B | 0.7501 | 1.0443 | 1.0359 | 0.070* | |
| C12 | 0.7328 (4) | 1.04124 (14) | 0.8292 (3) | 0.0530 (7) | |
| H12A | 0.7779 | 1.0702 | 0.7623 | 0.064* | |
| H12B | 0.8244 | 1.0012 | 0.8360 | 0.064* | |
| N1 | 0.0810 (4) | 0.79630 (13) | 0.3697 (2) | 0.0692 (7) | |
| N2 | 0.2982 (4) | 0.81341 (11) | 0.4357 (2) | 0.0536 (6) | |
| N3 | 0.5964 (3) | 0.94188 (11) | 0.6493 (2) | 0.0493 (6) | |
| N4 | 0.5475 (3) | 0.88877 (11) | 0.5649 (2) | 0.0523 (6) | |
| N5 | 0.4896 (3) | 1.02450 (10) | 0.7825 (2) | 0.0449 (5) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.099 (3) | 0.052 (2) | 0.072 (2) | 0.0073 (17) | 0.0227 (18) | −0.0060 (17) |
| C2 | 0.093 (3) | 0.063 (2) | 0.070 (2) | −0.0127 (18) | 0.0162 (17) | −0.0139 (18) |
| C3 | 0.0711 (19) | 0.0549 (19) | 0.0662 (19) | 0.0141 (15) | 0.0166 (15) | −0.0039 (16) |
| C4 | 0.0482 (14) | 0.0451 (16) | 0.0416 (14) | 0.0045 (11) | 0.0088 (11) | 0.0059 (12) |
| C5 | 0.0386 (13) | 0.0639 (19) | 0.0480 (15) | 0.0021 (12) | 0.0104 (11) | 0.0014 (14) |
| C6 | 0.0327 (12) | 0.0650 (19) | 0.0517 (16) | 0.0071 (12) | 0.0108 (10) | −0.0019 (14) |
| C7 | 0.0343 (12) | 0.0508 (16) | 0.0404 (14) | 0.0054 (11) | 0.0106 (9) | 0.0055 (12) |
| C8 | 0.0348 (13) | 0.0593 (18) | 0.0672 (18) | 0.0064 (12) | 0.0104 (11) | −0.0022 (15) |
| C9 | 0.0484 (16) | 0.0595 (19) | 0.086 (2) | 0.0036 (13) | 0.0211 (13) | −0.0177 (16) |
| C10 | 0.0549 (17) | 0.064 (2) | 0.084 (2) | −0.0063 (14) | 0.0176 (14) | −0.0157 (16) |
| C11 | 0.0395 (13) | 0.071 (2) | 0.0610 (18) | −0.0092 (13) | 0.0070 (11) | −0.0054 (15) |
| C12 | 0.0322 (12) | 0.0668 (19) | 0.0600 (17) | 0.0016 (12) | 0.0107 (10) | 0.0036 (14) |
| N1 | 0.0619 (15) | 0.0732 (18) | 0.0691 (17) | −0.0082 (12) | 0.0077 (12) | −0.0157 (14) |
| N2 | 0.0590 (13) | 0.0462 (14) | 0.0545 (14) | 0.0035 (11) | 0.0110 (10) | 0.0021 (11) |
| N3 | 0.0378 (11) | 0.0543 (14) | 0.0583 (13) | 0.0065 (9) | 0.0161 (9) | −0.0031 (11) |
| N4 | 0.0433 (12) | 0.0542 (14) | 0.0610 (14) | 0.0082 (10) | 0.0156 (10) | −0.0008 (12) |
| N5 | 0.0286 (9) | 0.0566 (14) | 0.0496 (12) | 0.0048 (9) | 0.0090 (8) | −0.0008 (11) |
Geometric parameters (Å, °)
| C1—C3 | 1.352 (4) | C8—C9 | 1.496 (4) |
| C1—C2 | 1.384 (4) | C8—H8A | 0.9700 |
| C1—H1 | 0.9300 | C8—H8B | 0.9700 |
| C2—N1 | 1.319 (4) | C9—C10 | 1.516 (3) |
| C2—H2 | 0.9300 | C9—H9A | 0.9700 |
| C3—N2 | 1.353 (3) | C9—H9B | 0.9700 |
| C3—H3 | 0.9300 | C10—C11 | 1.510 (4) |
| C4—N4 | 1.310 (3) | C10—H10A | 0.9700 |
| C4—C5 | 1.391 (3) | C10—H10B | 0.9700 |
| C4—N2 | 1.414 (3) | C11—C12 | 1.504 (3) |
| C5—C6 | 1.346 (3) | C11—H11A | 0.9700 |
| C5—H5 | 0.9300 | C11—H11B | 0.9700 |
| C6—C7 | 1.415 (3) | C12—N5 | 1.458 (3) |
| C6—H6 | 0.9300 | C12—H12A | 0.9700 |
| C7—N3 | 1.334 (3) | C12—H12B | 0.9700 |
| C7—N5 | 1.372 (3) | N1—N2 | 1.357 (3) |
| C8—N5 | 1.467 (3) | N3—N4 | 1.353 (3) |
| C3—C1—C2 | 104.9 (3) | C8—C9—H9B | 109.3 |
| C3—C1—H1 | 127.6 | C10—C9—H9B | 109.3 |
| C2—C1—H1 | 127.6 | H9A—C9—H9B | 107.9 |
| N1—C2—C1 | 112.8 (3) | C11—C10—C9 | 108.8 (2) |
| N1—C2—H2 | 123.6 | C11—C10—H10A | 109.9 |
| C1—C2—H2 | 123.6 | C9—C10—H10A | 109.9 |
| C1—C3—N2 | 106.9 (3) | C11—C10—H10B | 109.9 |
| C1—C3—H3 | 126.5 | C9—C10—H10B | 109.9 |
| N2—C3—H3 | 126.5 | H10A—C10—H10B | 108.3 |
| N4—C4—C5 | 123.9 (2) | C12—C11—C10 | 111.9 (2) |
| N4—C4—N2 | 115.5 (2) | C12—C11—H11A | 109.2 |
| C5—C4—N2 | 120.7 (2) | C10—C11—H11A | 109.2 |
| C6—C5—C4 | 117.1 (2) | C12—C11—H11B | 109.2 |
| C6—C5—H5 | 121.5 | C10—C11—H11B | 109.2 |
| C4—C5—H5 | 121.5 | H11A—C11—H11B | 107.9 |
| C5—C6—C7 | 118.9 (2) | N5—C12—C11 | 111.04 (19) |
| C5—C6—H6 | 120.6 | N5—C12—H12A | 109.4 |
| C7—C6—H6 | 120.6 | C11—C12—H12A | 109.4 |
| N3—C7—N5 | 117.3 (2) | N5—C12—H12B | 109.4 |
| N3—C7—C6 | 120.8 (2) | C11—C12—H12B | 109.4 |
| N5—C7—C6 | 121.9 (2) | H12A—C12—H12B | 108.0 |
| N5—C8—C9 | 111.8 (2) | C2—N1—N2 | 103.6 (2) |
| N5—C8—H8A | 109.3 | C3—N2—N1 | 111.8 (2) |
| C9—C8—H8A | 109.3 | C3—N2—C4 | 128.7 (2) |
| N5—C8—H8B | 109.3 | N1—N2—C4 | 119.4 (2) |
| C9—C8—H8B | 109.3 | C7—N3—N4 | 120.05 (19) |
| H8A—C8—H8B | 107.9 | C4—N4—N3 | 119.34 (19) |
| C8—C9—C10 | 111.7 (2) | C7—N5—C12 | 118.89 (18) |
| C8—C9—H9A | 109.3 | C7—N5—C8 | 120.04 (18) |
| C10—C9—H9A | 109.3 | C12—N5—C8 | 113.3 (2) |
| C3—C1—C2—N1 | −0.5 (4) | C5—C4—N2—C3 | −169.6 (2) |
| C2—C1—C3—N2 | 0.4 (3) | N4—C4—N2—N1 | −169.8 (2) |
| N4—C4—C5—C6 | 0.4 (4) | C5—C4—N2—N1 | 11.0 (3) |
| N2—C4—C5—C6 | 179.5 (2) | N5—C7—N3—N4 | 175.5 (2) |
| C4—C5—C6—C7 | −0.7 (4) | C6—C7—N3—N4 | −0.9 (3) |
| C5—C6—C7—N3 | 1.0 (4) | C5—C4—N4—N3 | −0.3 (4) |
| C5—C6—C7—N5 | −175.2 (2) | N2—C4—N4—N3 | −179.4 (2) |
| N5—C8—C9—C10 | 54.4 (3) | C7—N3—N4—C4 | 0.5 (3) |
| C8—C9—C10—C11 | −54.9 (3) | N3—C7—N5—C12 | 1.6 (3) |
| C9—C10—C11—C12 | 55.6 (3) | C6—C7—N5—C12 | 177.9 (2) |
| C10—C11—C12—N5 | −55.7 (3) | N3—C7—N5—C8 | 148.8 (2) |
| C1—C2—N1—N2 | 0.4 (3) | C6—C7—N5—C8 | −34.8 (3) |
| C1—C3—N2—N1 | −0.2 (3) | C11—C12—N5—C7 | −156.3 (2) |
| C1—C3—N2—C4 | −179.6 (2) | C11—C12—N5—C8 | 54.3 (3) |
| C2—N1—N2—C3 | −0.1 (3) | C9—C8—N5—C7 | 157.0 (2) |
| C2—N1—N2—C4 | 179.4 (2) | C9—C8—N5—C12 | −54.1 (3) |
| N4—C4—N2—C3 | 9.6 (4) |
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5436).
References
- Ather, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2009). Acta Cryst. E65, o1628. [DOI] [PMC free article] [PubMed]
- Blake, A. J., Hubberstey, P. & Mackrell, A. D. (2002). Acta Cryst. E58, o1408–o1410.
- Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810016491/hb5436sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810016491/hb5436Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report

