Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 May 8;66(Pt 6):o1293. doi: 10.1107/S1600536810016090

2,2-Dichloro-1-[(2R,5S)-5-ethyl-2-methyl-2-propyl-1,3-oxazolidin-3-yl]ethanone

Ying Fu a, Fei Ye a,*, Xiaotian Wen a
PMCID: PMC2979515  PMID: 21579390

Abstract

In the title compound, C11H19Cl2NO2, the oxazolidine ring is in an envelope conformation with the O atom forming the flap. In the crystal structure, mol­ecules are linked by weak inter­molecular C—H⋯O hydrogen bonds, forming chains.

Related literature

For general background to N-dichloro­acetyl oxazolidine, see: Agami & Couty (2004); Abu-Qare & Duncan (2002); Guirado et al. (2003); Davies & Caseley (1999). For the bioactivity of related compounds, see: Del Buono et al. (2007); Hatzios & Burgos (2004). For details of the synthesis, see: Fu et al. (2009).graphic file with name e-66-o1293-scheme1.jpg

Experimental

Crystal data

  • C11H19Cl2NO2

  • M r = 268.17

  • Orthorhombic, Inline graphic

  • a = 6.4834 (12) Å

  • b = 10.795 (2) Å

  • c = 20.030 (4) Å

  • V = 1401.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 293 K

  • 0.32 × 0.24 × 0.20 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.869, T max = 0.915

  • 14134 measured reflections

  • 3499 independent reflections

  • 2117 reflections with I > 2σ(I)

  • R int = 0.058

Refinement

  • R[F 2 > 2σ(F 2)] = 0.084

  • wR(F 2) = 0.258

  • S = 1.02

  • 3499 reflections

  • 148 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.39 e Å−3

  • Absolute structure: Flack (1983) 1468 Friedels

  • Flack parameter: 0.02 (15)

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810016090/lh5034sup1.cif

e-66-o1293-sup1.cif (16KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810016090/lh5034Isup2.hkl

e-66-o1293-Isup2.hkl (171.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O2i 0.98 2.38 3.327 (5) 163

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank the Heilongjiang Province Foundation for Young Scholars (QC2009C44), the Innovation Foundation for Young Scholars of Harbin (No.2007RFQXN017),the China Postdoctoral Science Foundation (20080430951), the Heilongjiang Province Postdoctoral Science Foundation and the Northeast Agricultural University Doctoral Foundation for generously supporting this study.

supplementary crystallographic information

Comment

N-dichloroacetyl oxazolidines are becoming increasingly important with their excellent biological activity (Agami & Couty, 2004; Abu-Qare & Duncan, 2002; Guirado et al., 2003; Davies & Caseley, 1999). The discovery of N-dichloroacetyl oxazolidine as a herbicide safener has drawn widespread attention in agricultural biochemistry (Del Buono et al., 2007; Hatzios & Burgos, 2004). As a part of our ongoing investigation of oxazolidine derivatives (Fu et al., 2009) we prepared the title compound.

The molecular structure of the title compound is shown in Fig. 1. In the crystal structure, molecules are linked by weak intermolecular C—H···O hydrogen bonds to form one-dimensional chains (Fig. 2).

Experimental

The title compound was prepared according to the literature procedure (Fu et al., 2009). The single crystal suitable for X-ray structural analysis was obtained by slow evaporation in petroleum ether and ethyl acetate at room temperature. The title enantiomer spontaneously resolved from a racemic mixture during the crystallization.

Refinement

All H atoms were initially located in a different Fourier map. The C—H atoms were then constrained to an ideal geometry, with C—H = 0.96-0.98 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A packing diagram for (I), showing weak hydrogen bonds as dashed lines.

Crystal data

C11H19Cl2NO2 F(000) = 568.0
Mr = 268.17 Dx = 1.271 Mg m3Dm = 1.271 Mg m3Dm measured by not measured
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 3142 reflections
a = 6.4834 (12) Å θ = 2.8–20.6°
b = 10.795 (2) Å µ = 0.45 mm1
c = 20.030 (4) Å T = 293 K
V = 1401.8 (5) Å3 Block, colourless
Z = 4 0.32 × 0.24 × 0.20 mm

Data collection

Bruker SMART CCD diffractometer 3499 independent reflections
Radiation source: fine-focus sealed tube 2117 reflections with I > 2σ(I)
graphite Rint = 0.058
φ and ω scans θmax = 28.4°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −8→8
Tmin = 0.869, Tmax = 0.915 k = −14→14
14134 measured reflections l = −25→26

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.084 H-atom parameters constrained
wR(F2) = 0.258 w = 1/[σ2(Fo2) + (0.165P)2] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
3499 reflections Δρmax = 0.58 e Å3
148 parameters Δρmin = −0.39 e Å3
0 restraints Absolute structure: Flack (1983) 1468 Friedels
Primary atom site location: structure-invariant direct methods Flack parameter: 0.02 (15)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.5074 (7) 0.9192 (4) 0.2071 (2) 0.0675 (11)
H1 0.4966 0.8365 0.2270 0.081*
C2 0.5889 (7) 1.0103 (3) 0.2598 (2) 0.0638 (10)
C3 0.7886 (9) 0.8326 (4) 0.3065 (3) 0.0789 (13)
H3A 0.6784 0.7758 0.3181 0.095*
H3B 0.8454 0.8089 0.2636 0.095*
C4 0.9470 (13) 0.8334 (4) 0.3575 (3) 0.105 (2)
H4 1.0627 0.8594 0.3293 0.126*
C5 1.0407 (13) 0.7301 (5) 0.3866 (4) 0.122 (3)
H5A 1.0922 0.6801 0.3500 0.147*
H5B 0.9306 0.6828 0.4072 0.147*
C6 1.2052 (13) 0.7357 (6) 0.4353 (3) 0.111 (2)
H6A 1.3358 0.7362 0.4127 0.166*
H6B 1.1976 0.6647 0.4640 0.166*
H6C 1.1915 0.8098 0.4614 0.166*
C7 0.8170 (7) 1.0342 (4) 0.3589 (2) 0.0680 (10)
C8 0.9703 (10) 1.1251 (5) 0.3287 (3) 0.0925 (16)
H8A 1.0635 1.1533 0.3627 0.139*
H8B 0.8973 1.1946 0.3104 0.139*
H8C 1.0470 1.0847 0.2939 0.139*
C9 0.6750 (10) 1.1009 (5) 0.4051 (3) 0.0875 (14)
H9A 0.7550 1.1310 0.4427 0.105*
H9B 0.6205 1.1727 0.3819 0.105*
C10 0.4982 (11) 1.0277 (6) 0.4315 (3) 0.1013 (18)
H10A 0.5481 0.9494 0.4488 0.122*
H10B 0.4023 1.0103 0.3955 0.122*
C11 0.3855 (15) 1.0989 (8) 0.4874 (4) 0.127 (3)
H11A 0.4781 1.1119 0.5242 0.190*
H11B 0.2688 1.0516 0.5023 0.190*
H11C 0.3396 1.1775 0.4707 0.190*
Cl1 0.6885 (3) 0.91462 (14) 0.14073 (7) 0.0996 (5)
Cl2 0.2642 (2) 0.96549 (13) 0.17873 (9) 0.1008 (5)
N1 0.7143 (5) 0.9597 (3) 0.30507 (18) 0.0629 (8)
O1 0.9265 (6) 0.9417 (3) 0.39428 (17) 0.0793 (9)
O2 0.5407 (6) 1.1193 (3) 0.2580 (2) 0.0859 (10)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.072 (2) 0.0401 (18) 0.090 (3) 0.0031 (17) −0.013 (2) 0.0002 (18)
C2 0.071 (2) 0.0396 (17) 0.081 (3) 0.0077 (17) 0.000 (2) −0.0023 (17)
C3 0.093 (3) 0.0354 (18) 0.108 (3) 0.014 (2) −0.021 (3) −0.0090 (18)
C4 0.154 (5) 0.046 (2) 0.114 (4) 0.033 (3) −0.043 (4) −0.013 (3)
C5 0.149 (6) 0.059 (3) 0.160 (6) 0.031 (4) −0.071 (5) −0.020 (3)
C6 0.127 (5) 0.070 (3) 0.134 (5) 0.010 (4) −0.031 (4) 0.013 (3)
C7 0.084 (3) 0.0379 (17) 0.082 (3) 0.0039 (18) −0.010 (2) −0.0029 (16)
C8 0.101 (4) 0.052 (2) 0.124 (4) −0.020 (3) −0.013 (3) 0.003 (3)
C9 0.109 (4) 0.060 (3) 0.093 (3) 0.006 (3) 0.003 (3) −0.010 (2)
C10 0.105 (4) 0.075 (3) 0.124 (5) 0.010 (3) 0.006 (3) 0.000 (3)
C11 0.149 (6) 0.124 (6) 0.107 (4) 0.021 (5) 0.035 (4) −0.005 (4)
Cl1 0.1169 (11) 0.0780 (8) 0.1038 (9) −0.0063 (8) 0.0152 (9) −0.0185 (7)
Cl2 0.0899 (8) 0.0761 (8) 0.1365 (12) 0.0154 (7) −0.0350 (8) −0.0093 (7)
N1 0.0715 (19) 0.0298 (13) 0.087 (2) 0.0036 (14) −0.0060 (17) −0.0042 (13)
O1 0.102 (2) 0.0413 (14) 0.095 (2) 0.0055 (15) −0.0232 (19) −0.0079 (14)
O2 0.114 (3) 0.0338 (13) 0.110 (2) 0.0152 (16) −0.023 (2) −0.0013 (14)

Geometric parameters (Å, °)

C1—C2 1.536 (6) C6—H6C 0.9600
C1—Cl2 1.750 (4) C7—O1 1.416 (5)
C1—Cl1 1.775 (5) C7—C9 1.491 (7)
C1—H1 0.9800 C7—N1 1.501 (5)
C2—O2 1.218 (5) C7—C8 1.523 (7)
C2—N1 1.335 (6) C8—H8A 0.9600
C3—C4 1.448 (8) C8—H8B 0.9600
C3—N1 1.454 (5) C8—H8C 0.9600
C3—H3A 0.9700 C9—C10 1.490 (9)
C3—H3B 0.9700 C9—H9A 0.9700
C4—O1 1.388 (6) C9—H9B 0.9700
C4—C5 1.397 (7) C10—C11 1.542 (9)
C4—H4 0.9800 C10—H10A 0.9700
C5—C6 1.446 (10) C10—H10B 0.9700
C5—H5A 0.9700 C11—H11A 0.9600
C5—H5B 0.9700 C11—H11B 0.9600
C6—H6A 0.9600 C11—H11C 0.9600
C6—H6B 0.9600
C2—C1—Cl2 110.5 (3) O1—C7—N1 101.8 (3)
C2—C1—Cl1 107.8 (3) C9—C7—N1 115.5 (4)
Cl2—C1—Cl1 111.1 (3) O1—C7—C8 109.0 (4)
C2—C1—H1 109.1 C9—C7—C8 109.8 (4)
Cl2—C1—H1 109.1 N1—C7—C8 110.5 (4)
Cl1—C1—H1 109.1 C7—C8—H8A 109.5
O2—C2—N1 124.9 (4) C7—C8—H8B 109.5
O2—C2—C1 120.7 (4) H8A—C8—H8B 109.5
N1—C2—C1 114.5 (3) C7—C8—H8C 109.5
C4—C3—N1 104.1 (4) H8A—C8—H8C 109.5
C4—C3—H3A 110.9 H8B—C8—H8C 109.5
N1—C3—H3A 110.9 C10—C9—C7 116.0 (5)
C4—C3—H3B 110.9 C10—C9—H9A 108.3
N1—C3—H3B 110.9 C7—C9—H9A 108.3
H3A—C3—H3B 108.9 C10—C9—H9B 108.3
O1—C4—C5 119.5 (5) C7—C9—H9B 108.3
O1—C4—C3 108.1 (4) H9A—C9—H9B 107.4
C5—C4—C3 126.8 (5) C9—C10—C11 111.0 (6)
O1—C4—H4 97.9 C9—C10—H10A 109.4
C5—C4—H4 97.9 C11—C10—H10A 109.4
C3—C4—H4 97.9 C9—C10—H10B 109.4
C4—C5—C6 124.7 (6) C11—C10—H10B 109.4
C4—C5—H5A 106.2 H10A—C10—H10B 108.0
C6—C5—H5A 106.2 C10—C11—H11A 109.5
C4—C5—H5B 106.2 C10—C11—H11B 109.5
C6—C5—H5B 106.2 H11A—C11—H11B 109.5
H5A—C5—H5B 106.3 C10—C11—H11C 109.5
C5—C6—H6A 109.5 H11A—C11—H11C 109.5
C5—C6—H6B 109.5 H11B—C11—H11C 109.5
H6A—C6—H6B 109.5 C2—N1—C3 127.0 (3)
C5—C6—H6C 109.5 C2—N1—C7 122.6 (3)
H6A—C6—H6C 109.5 C3—N1—C7 110.1 (3)
H6B—C6—H6C 109.5 C4—O1—C7 112.1 (3)
O1—C7—C9 109.9 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1···O2i 0.98 2.38 3.327 (5) 163

Symmetry codes: (i) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5034).

References

  1. Abu-Qare, A. W. & Duncan, H. J. (2002). Chemosphere, 48, 965–974. [DOI] [PubMed]
  2. Agami, C. & Couty, F. (2004). Eur. J. Org. Chem.69, 677–685.
  3. Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Davies, J. & Caseley, J. C. (1999). Pestic. Sci.55, 1043–1046.
  5. Del Buono, D., Scarponi, L. & Espen, L. (2007). Phytochemistry, 68, 2614–2618. [DOI] [PubMed]
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Fu, Y., Fu, H. G., Ye, F., Mao, J. D. & Wen, X. T. (2009). Synth. Commun.39, 2454–2463.
  8. Guirado, A., Andreu, R. & Galvez, J. (2003). Tetrahedron Lett.44, 3809–3841.
  9. Hatzios, K. K. & Burgos, N. (2004). Weed Sci.52, 454–467.
  10. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810016090/lh5034sup1.cif

e-66-o1293-sup1.cif (16KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810016090/lh5034Isup2.hkl

e-66-o1293-Isup2.hkl (171.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES