Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 May 8;66(Pt 6):o1271. doi: 10.1107/S1600536810015813

4-Methyl­benzene­carbothio­amide

Saqib Ali a,*, Shahid Hameed a, Ahmad Luqman a, Tashfeen Akhtar a, Masood Parvez b
PMCID: PMC2979520  PMID: 21579372

Abstract

In the title mol­ecule, C8H9NS, the mean plane of the carbothio­amide group is twisted slightly with respect to the mean plane of the benzene ring, making a dihedral angle of 17.03 (10)°. The crystal structure is stabilized by inter­molecular N—H⋯S hydrogen bonds, resulting in the formation of eight-membered rings lying about inversion centers and representing R 2 2(8) and R 4 2(8) motifs. Futhermore, these hydrogen bonds build up chains parallel to the b axis.

Related literature

For the use of thio­amides as inter­mediates in the synthesis of various heterocyclic compounds, see: Zahid et al. (2009). For the uses of thio­amides, see: Lebana et al. (2008). For the biological activity of thio­amides, see: Jagodzinski (2003); Klimesova et al. (1999). For related structures, see: Khan et al. (2009a ,b ,c ); Jian et al. (2006); Ali et al. (2010). For graph-set notation, see: Etter et al. (1990); Bernstein et al. (1994).graphic file with name e-66-o1271-scheme1.jpg

Experimental

Crystal data

  • C8H9NS

  • M r = 151.22

  • Monoclinic, Inline graphic

  • a = 9.7341 (5) Å

  • b = 5.8391 (2) Å

  • c = 13.9055 (6) Å

  • β = 104.946 (3)°

  • V = 763.63 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 123 K

  • 0.10 × 0.06 × 0.06 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997) T min = 0.967, T max = 0.980

  • 2741 measured reflections

  • 1482 independent reflections

  • 1399 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.089

  • S = 1.06

  • 1482 reflections

  • 92 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810015813/dn2557sup1.cif

e-66-o1271-sup1.cif (13.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015813/dn2557Isup2.hkl

e-66-o1271-Isup2.hkl (71.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯S1i 0.88 2.56 3.4178 (14) 166
N1—H1A⋯S1ii 0.88 2.75 3.3179 (15) 124

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

Thioamides are not only used as intermediates in the synthesis of various heterocyclic compounds (Zahid et al., 2009), they are important biologically active agents (Jagodzinski, 2003; Klimesova et al., 1999). In addition, they are important ligands in the field of coordination chemistry (Lebana et al., 2008). In continuation to our work on thioamides (Khan et al., 2009a; 2009b; 2009c; Ali et al., 2010), we have synthesized 4-methylbenzenecarbothioamide, (I). In this article we report the crystal structure of the title compound.

In the title molecule (Fig. 1), the bond distances and angles agree with the corresponding bond distances and angles reported in closely related compounds (Khan et al., 2009a; 2009b; 2009c; Jian et al., 2006; Ali et al., 2010). In the title compound, the mean-plane of the carbothioamide group (S1/N1/C7) is slightly twisted with respect to the mean-plane of the phenyl ring (C1–C6), making a dihedral angle of 17.03 (10)°.

The structure is stabilized by intermolecular N—H···S hydrogen bonds resulting in the formation of eight membered rings lying about inversion centers (Tab. 1 and Fig. 2). In the graph set notation (Etter et al., 1990; Bernstein et al., 1994) the hydrogen bonded rings may be best described as representing R22(8) and R42(8) motifs.Futhermore, these hydrogen bonds build up chains parallel to the b axis.

Experimental

4-Methylbenzonitrile (13.2 mmol) was added to a slurry of magnesium cholride hexahydrate (13.2 mmol) and sodium hydrogen sulphide hydrate (70%, 26.4 mmol) in dimethylformamide (35 ml) and the reaction mixture was stirred at room temperature for 4 h. The reaction mixture was poured into water (100 ml) and the resulting precipitates were collected by filtration. The product obtained was resuspended in 1 N HCl (50 ml), stirred for another 25 min, the precipitated solid filtered and washed with water. Recrystallization of the product from chloroform afforded the crystals of the title compound suitable for X-ray analysis.

Refinement

Though all the H atoms could be distinguished in the difference Fourier map the H-atoms were included at geometrically idealized positions and refined in riding-model approximation with N—H = 0.88 Å and C—H = 0.95 and 0.98 Å for aryl and methyl H-atoms, respectively. The Uiso(H) were allowed at 1.2/1.5Ueq(N/C). The final difference map was essentially featurless.

Figures

Fig. 1.

Fig. 1.

Molecular view of title compound with the atom labeling scheme. Ellipsoids are drawn at the 50% probability level. H atoms are represented as small sphere of arbitrary radii.

Fig. 2.

Fig. 2.

A part of the unit cell showing the N-H···S hydrogen bonds as dashed lines. H-atoms not involved in H-bonds have been excluded for clarity.

Crystal data

C8H9NS F(000) = 320
Mr = 151.22 Dx = 1.315 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1473 reflections
a = 9.7341 (5) Å θ = 1.0–26.0°
b = 5.8391 (2) Å µ = 0.34 mm1
c = 13.9055 (6) Å T = 123 K
β = 104.946 (3)° Block, yellow
V = 763.63 (6) Å3 0.10 × 0.06 × 0.06 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer 1482 independent reflections
Radiation source: fine-focus sealed tube 1399 reflections with I > 2σ(I)
graphite Rint = 0.025
ω and φ scans θmax = 26.0°, θmin = 3.8°
Absorption correction: multi-scan (SORTAV; Blessing, 1997) h = −11→11
Tmin = 0.967, Tmax = 0.980 k = −7→7
2741 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: difference Fourier map
wR(F2) = 0.089 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0373P)2 + 0.5912P] where P = (Fo2 + 2Fc2)/3
1482 reflections (Δ/σ)max < 0.001
92 parameters Δρmax = 0.27 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.15464 (4) 0.79266 (7) 0.03136 (3) 0.02316 (16)
N1 0.19369 (15) 0.3538 (2) 0.06514 (10) 0.0219 (3)
H1A 0.2463 0.2313 0.0844 0.026*
H1B 0.1007 0.3410 0.0440 0.026*
C1 0.41221 (16) 0.5673 (3) 0.10461 (11) 0.0168 (3)
C2 0.48580 (17) 0.7599 (3) 0.08529 (11) 0.0189 (3)
H2 0.4344 0.8849 0.0496 0.023*
C3 0.63277 (18) 0.7714 (3) 0.11743 (12) 0.0207 (4)
H3 0.6805 0.9045 0.1037 0.025*
C4 0.71154 (17) 0.5908 (3) 0.16965 (11) 0.0203 (4)
C5 0.63795 (18) 0.3995 (3) 0.19021 (11) 0.0211 (4)
H5 0.6897 0.2753 0.2264 0.025*
C6 0.49105 (17) 0.3872 (3) 0.15894 (11) 0.0196 (3)
H6 0.4433 0.2557 0.1744 0.023*
C7 0.25443 (17) 0.5571 (3) 0.06803 (11) 0.0177 (3)
C8 0.87114 (18) 0.6011 (3) 0.20278 (13) 0.0280 (4)
H8A 0.9033 0.7532 0.1883 0.042*
H8B 0.9114 0.4848 0.1671 0.042*
H8C 0.9028 0.5719 0.2745 0.042*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0174 (2) 0.0146 (2) 0.0353 (3) 0.00051 (14) 0.00272 (18) 0.00029 (16)
N1 0.0160 (7) 0.0155 (7) 0.0332 (8) −0.0010 (6) 0.0045 (6) 0.0019 (6)
C1 0.0192 (8) 0.0154 (8) 0.0163 (7) −0.0005 (6) 0.0055 (6) −0.0017 (6)
C2 0.0205 (8) 0.0156 (7) 0.0204 (7) 0.0009 (6) 0.0050 (6) 0.0019 (6)
C3 0.0215 (8) 0.0192 (8) 0.0221 (8) −0.0032 (6) 0.0066 (6) −0.0004 (6)
C4 0.0193 (8) 0.0229 (8) 0.0182 (7) 0.0001 (6) 0.0041 (6) −0.0033 (6)
C5 0.0240 (8) 0.0203 (8) 0.0180 (7) 0.0042 (6) 0.0037 (6) 0.0024 (6)
C6 0.0234 (8) 0.0158 (8) 0.0202 (7) −0.0018 (6) 0.0068 (6) 0.0009 (6)
C7 0.0204 (8) 0.0161 (8) 0.0170 (7) −0.0007 (6) 0.0057 (6) −0.0007 (6)
C8 0.0194 (9) 0.0328 (10) 0.0299 (9) 0.0000 (7) 0.0026 (7) 0.0007 (8)

Geometric parameters (Å, °)

S1—C7 1.6852 (16) C3—H3 0.9500
N1—C7 1.322 (2) C4—C5 1.396 (2)
N1—H1A 0.8800 C4—C8 1.503 (2)
N1—H1B 0.8800 C5—C6 1.385 (2)
C1—C2 1.396 (2) C5—H5 0.9500
C1—C6 1.403 (2) C6—H6 0.9500
C1—C7 1.489 (2) C8—H8A 0.9800
C2—C3 1.386 (2) C8—H8B 0.9800
C2—H2 0.9500 C8—H8C 0.9800
C3—C4 1.393 (2)
C7—N1—H1A 120.0 C6—C5—C4 121.35 (15)
C7—N1—H1B 120.0 C6—C5—H5 119.3
H1A—N1—H1B 120.0 C4—C5—H5 119.3
C2—C1—C6 118.11 (15) C5—C6—C1 120.48 (15)
C2—C1—C7 120.12 (14) C5—C6—H6 119.8
C6—C1—C7 121.77 (14) C1—C6—H6 119.8
C3—C2—C1 121.02 (15) N1—C7—C1 117.39 (14)
C3—C2—H2 119.5 N1—C7—S1 120.35 (12)
C1—C2—H2 119.5 C1—C7—S1 122.26 (12)
C2—C3—C4 120.99 (15) C4—C8—H8A 109.5
C2—C3—H3 119.5 C4—C8—H8B 109.5
C4—C3—H3 119.5 H8A—C8—H8B 109.5
C3—C4—C5 118.04 (15) C4—C8—H8C 109.5
C3—C4—C8 121.05 (15) H8A—C8—H8C 109.5
C5—C4—C8 120.91 (15) H8B—C8—H8C 109.5
C6—C1—C2—C3 1.0 (2) C4—C5—C6—C1 0.6 (2)
C7—C1—C2—C3 −179.07 (14) C2—C1—C6—C5 −1.4 (2)
C1—C2—C3—C4 0.3 (2) C7—C1—C6—C5 178.65 (14)
C2—C3—C4—C5 −1.1 (2) C2—C1—C7—N1 162.91 (15)
C2—C3—C4—C8 178.76 (15) C6—C1—C7—N1 −17.2 (2)
C3—C4—C5—C6 0.7 (2) C2—C1—C7—S1 −17.1 (2)
C8—C4—C5—C6 −179.18 (15) C6—C1—C7—S1 162.78 (12)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1B···S1i 0.88 2.56 3.4178 (14) 166
N1—H1A···S1ii 0.88 2.75 3.3179 (15) 124

Symmetry codes: (i) −x, −y+1, −z; (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2557).

References

  1. Ali, S., Hameed, S., Luqman, A., Akhtar, T. & Parvez, M. (2010). Acta Cryst. E66, o1272. [DOI] [PMC free article] [PubMed]
  2. Bernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlation, Vol. 2, edited by H.-B. Bürgi & J. D. Dunitz, pp. 431–507. New York: VCH.
  3. Blessing, R. H. (1997). J. Appl. Cryst.30, 421–426.
  4. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Hooft, R. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  7. Jagodzinski, T. S. (2003). Chem. Rev.103, 197–227. [DOI] [PubMed]
  8. Jian, F. F., Zaho, P., Zang, L. & Zheng, J. (2006). J. Fluorine Chem.127, 63–67.
  9. Khan, M.-H., Hameed, S., Akhtar, T. & Masuda, J. D. (2009a). Acta Cryst. E65, o1128. [DOI] [PMC free article] [PubMed]
  10. Khan, M.-H., Hameed, S., Akhtar, T. & Masuda, J. D. (2009b). Acta Cryst. E65, o1333. [DOI] [PMC free article] [PubMed]
  11. Khan, M.-H., Hameed, S., Akhtar, T. & Masuda, J. D. (2009c). Acta Cryst. E65, o1446. [DOI] [PMC free article] [PubMed]
  12. Klimesova, V., Svoboda, M., Waisser, K. K., Kaustova, J., Buchta, V. & Králova, K. (1999). Eur. J. Med. Chem.34, 433–440.
  13. Lebana, S. T., Sultana, R. & Hendal, G. (2008). Polyhedron, 27, 1008–1016.
  14. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Zahid, M., Yasin, K. A., Akhtar, T., Rama, N. H., Hameed, S., Al Masoudi, N. A., Loddo, R. & La Colla, P. (2009). Arkivoc, xi, 85–93.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810015813/dn2557sup1.cif

e-66-o1271-sup1.cif (13.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015813/dn2557Isup2.hkl

e-66-o1271-Isup2.hkl (71.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES