Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 May 8;66(Pt 6):o1292. doi: 10.1107/S1600536810016235

2-Chloro-N-(3-methyl­benzo­yl)benzene­sulfonamide

P A Suchetan a, B Thimme Gowda a,*, Sabine Foro b, Hartmut Fuess b
PMCID: PMC2979524  PMID: 21579389

Abstract

In the title compound, C14H12ClNO3S, the N—H bond is in an anti­periplanar conformation to the C=O bond. The dihedral angle between the two aromatic rings is 74.7 (1)°. The crystal structure features inversion-related dimers linked by N—H⋯O hydrogen bonds.

Related literature

For background to our study of the effect of ring and side-chain substitutions on the crystal structures of N-aryl sulfonamides and for related structures, see: Gowda et al. (2009, 2010); Suchetan et al. (2010).graphic file with name e-66-o1292-scheme1.jpg

Experimental

Crystal data

  • C14H12ClNO3S

  • M r = 309.76

  • Orthorhombic, Inline graphic

  • a = 12.4487 (8) Å

  • b = 13.4619 (8) Å

  • c = 17.455 (1) Å

  • V = 2925.2 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 299 K

  • 0.30 × 0.30 × 0.20 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.887, T max = 0.923

  • 7216 measured reflections

  • 2955 independent reflections

  • 2422 reflections with I > 2σ(I)

  • R int = 0.014

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.095

  • S = 1.04

  • 2955 reflections

  • 186 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810016235/bt5261sup1.cif

e-66-o1292-sup1.cif (18.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810016235/bt5261Isup2.hkl

e-66-o1292-Isup2.hkl (145.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.82 (2) 2.16 (2) 2.974 (2) 176 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

PAS thanks the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, for the award of a research fellowship.

supplementary crystallographic information

Comment

As a part of studying the effect of ring and the side chain substitutions on the crystal structures of N-aryl sulfonamides (Gowda et al., 2009, 2010; Suchetan et al., 2010)), in the present work, the structure of 2-chloro-N-(3-methylbenzoyl)benzenesulfonamide, (I), has been determined. In the C—SO2—NH—C(O) segment, the N—H bond is anti to the C=O bond (Fig.1), similar to those observed in 2-chloro-N-(2-methylbenzoyl)benzenesulfonamide (II) (Suchetan et al., 2010), N-(benzoyl)benzenesulfonamide (III) (Gowda et al., 2009), and N-(benzoyl)2-chlorobenzenesulfonamide (IV) (Gowda et al., 2010).

Further, the conformation of the C=O bond in the C—SO2—NH—C(O) segment of (I) is anti to the meta-methyl group in the benzoyl ring, contrary to the syn conformation observed between the ortho-methyl group and the C=O bond in (II).

The molecules are twisted at the S atom with the torsional angle of -66.5 (2)°, compared to those of -64.0 (2)° in (II), -66.9 (3)° in (III), and 66.7 (2)° in (IV).

The dihedral angle between the sulfonyl benzene ring and the —SO2—NH—C—O segment is 88.4 (1)°, compared to the values of 84.8 (1)° in (II), 86.5 (1) in (III) and 87.3 (1)° in (IV). Furthermore, the dihedral angle between the sulfonyl and the benzoyl benzene rings is 74.7 (1)°, compared to the values of 78.7 (1)° in (II), of 80.3 (1) in (III) and 73.3 (1)° in (IV).

The packing of molecules linked by N—H···O hydrogen bonds (Table 1) is shown in Fig. 2.

Experimental

The title compound was prepared by refluxing a mixture of 3-methylbenzoic acid, 2-chlorobenzenesulfonamide and phosphorous oxy chloride for 3 h on a water bath. The resultant mixture was cooled and poured into ice cold water. The solid obtained was filtered, washed thoroughly with water and then dissolved in sodium bicarbonate solution. The compound was later reprecipitated by acidifying the filtered solution with dilute HCl. It was filtered, dried and recrystallized.

Prism like colourless single crystals of the title compound used in X-ray diffraction studies were obtained by slow evaporation of its toluene solution at room temperature.

Refinement

The H atom of the NH group was located in a difference map and refined with a distance restraint of N—H = 0.86 (2)Å. The other H atoms were positioned with idealized geometry and refined using a riding model with C—H = 0.93–0.96 Å. All H atoms were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Molecular packing in the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C14H12ClNO3S F(000) = 1280
Mr = 309.76 Dx = 1.407 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 5313 reflections
a = 12.4487 (8) Å θ = 2.8–27.7°
b = 13.4619 (8) Å µ = 0.41 mm1
c = 17.455 (1) Å T = 299 K
V = 2925.2 (3) Å3 Prism, colourless
Z = 8 0.30 × 0.30 × 0.20 mm

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector 2955 independent reflections
Radiation source: fine-focus sealed tube 2422 reflections with I > 2σ(I)
graphite Rint = 0.014
Rotation method data acquisition using ω and phi scans θmax = 26.4°, θmin = 2.9°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −15→11
Tmin = 0.887, Tmax = 0.923 k = −16→9
7216 measured reflections l = −12→21

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0429P)2 + 1.518P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
2955 reflections Δρmax = 0.20 e Å3
186 parameters Δρmin = −0.28 e Å3
1 restraint Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0265 (11)

Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.00620 (14) 0.25666 (13) 0.42487 (10) 0.0366 (4)
C2 −0.09360 (15) 0.24307 (16) 0.47300 (11) 0.0452 (5)
C3 −0.1408 (2) 0.15010 (19) 0.47939 (15) 0.0634 (6)
H3 −0.1992 0.1408 0.5118 0.076*
C4 −0.1008 (2) 0.07177 (18) 0.43768 (16) 0.0688 (7)
H4 −0.1323 0.0095 0.4423 0.083*
C5 −0.0152 (2) 0.08419 (16) 0.38944 (15) 0.0627 (6)
H5 0.0109 0.0307 0.3614 0.075*
C6 0.03249 (18) 0.17676 (14) 0.38256 (12) 0.0482 (5)
H6 0.0904 0.1855 0.3496 0.058*
C7 −0.06413 (15) 0.45303 (13) 0.31212 (10) 0.0381 (4)
C8 −0.13360 (15) 0.53961 (13) 0.29432 (10) 0.0373 (4)
C9 −0.11657 (16) 0.63233 (13) 0.32775 (11) 0.0404 (4)
H9 −0.0593 0.6410 0.3613 0.049*
C10 −0.18376 (18) 0.71203 (15) 0.31173 (11) 0.0476 (5)
C11 −0.26884 (18) 0.69666 (18) 0.26178 (13) 0.0581 (6)
H11 −0.3156 0.7487 0.2510 0.070*
C12 −0.28515 (18) 0.60527 (19) 0.22792 (13) 0.0598 (6)
H12 −0.3426 0.5966 0.1946 0.072*
C13 −0.21746 (16) 0.52658 (15) 0.24283 (11) 0.0484 (5)
H13 −0.2278 0.4657 0.2188 0.058*
C14 −0.1632 (2) 0.81144 (17) 0.34798 (15) 0.0693 (7)
H14A −0.1193 0.8509 0.3145 0.083*
H14B −0.1267 0.8023 0.3959 0.083*
H14C −0.2303 0.8447 0.3567 0.083*
N1 −0.01969 (13) 0.45407 (11) 0.38535 (9) 0.0409 (4)
H1N −0.0421 (17) 0.4933 (14) 0.4174 (11) 0.049*
O1 0.14949 (11) 0.35731 (10) 0.36476 (9) 0.0497 (4)
O2 0.08974 (11) 0.40436 (10) 0.49378 (8) 0.0465 (4)
O3 −0.04744 (13) 0.38456 (10) 0.26879 (8) 0.0528 (4)
Cl1 −0.14827 (5) 0.34034 (5) 0.52560 (4) 0.0706 (2)
S1 0.06458 (4) 0.37028 (3) 0.41809 (3) 0.03622 (15)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0387 (9) 0.0376 (9) 0.0335 (9) 0.0023 (8) 0.0006 (7) 0.0023 (7)
C2 0.0403 (10) 0.0532 (11) 0.0422 (10) −0.0003 (9) 0.0050 (8) −0.0039 (9)
C3 0.0539 (13) 0.0707 (15) 0.0656 (15) −0.0153 (12) 0.0158 (12) 0.0052 (12)
C4 0.0806 (17) 0.0468 (12) 0.0789 (17) −0.0165 (12) 0.0058 (14) 0.0043 (12)
C5 0.0829 (17) 0.0386 (11) 0.0665 (15) 0.0010 (11) 0.0102 (13) −0.0030 (10)
C6 0.0581 (12) 0.0400 (10) 0.0464 (11) 0.0047 (9) 0.0100 (10) 0.0002 (9)
C7 0.0421 (10) 0.0362 (9) 0.0362 (9) −0.0064 (8) −0.0011 (8) 0.0008 (7)
C8 0.0403 (10) 0.0395 (9) 0.0321 (9) −0.0028 (8) −0.0009 (7) 0.0073 (7)
C9 0.0469 (10) 0.0395 (9) 0.0350 (9) −0.0003 (8) 0.0001 (8) 0.0052 (7)
C10 0.0554 (12) 0.0446 (10) 0.0428 (10) 0.0075 (9) 0.0127 (9) 0.0098 (9)
C11 0.0504 (13) 0.0652 (13) 0.0587 (13) 0.0154 (11) 0.0049 (10) 0.0234 (11)
C12 0.0463 (12) 0.0789 (16) 0.0540 (13) −0.0044 (11) −0.0136 (10) 0.0220 (12)
C13 0.0500 (11) 0.0536 (11) 0.0417 (10) −0.0112 (9) −0.0079 (9) 0.0090 (9)
C14 0.0911 (18) 0.0452 (12) 0.0716 (16) 0.0147 (12) 0.0123 (14) 0.0024 (11)
N1 0.0514 (9) 0.0365 (8) 0.0349 (8) 0.0099 (7) −0.0053 (7) −0.0028 (6)
O1 0.0420 (7) 0.0497 (8) 0.0576 (9) −0.0001 (6) 0.0114 (7) 0.0031 (7)
O2 0.0493 (8) 0.0466 (7) 0.0438 (8) 0.0065 (6) −0.0130 (6) −0.0061 (6)
O3 0.0656 (10) 0.0463 (8) 0.0464 (8) 0.0020 (7) −0.0051 (7) −0.0112 (6)
Cl1 0.0563 (4) 0.0847 (4) 0.0708 (4) 0.0028 (3) 0.0242 (3) −0.0256 (3)
S1 0.0360 (2) 0.0358 (2) 0.0368 (3) 0.00304 (18) −0.00100 (18) −0.00045 (18)

Geometric parameters (Å, °)

C1—C2 1.387 (3) C9—C10 1.389 (3)
C1—C6 1.391 (3) C9—H9 0.9300
C1—S1 1.7691 (18) C10—C11 1.387 (3)
C2—C3 1.387 (3) C10—C14 1.502 (3)
C2—Cl1 1.738 (2) C11—C12 1.380 (3)
C3—C4 1.375 (4) C11—H11 0.9300
C3—H3 0.9300 C12—C13 1.378 (3)
C4—C5 1.368 (3) C12—H12 0.9300
C4—H4 0.9300 C13—H13 0.9300
C5—C6 1.385 (3) C14—H14A 0.9600
C5—H5 0.9300 C14—H14B 0.9600
C6—H6 0.9300 C14—H14C 0.9600
C7—O3 1.210 (2) N1—S1 1.6430 (16)
C7—N1 1.393 (2) N1—H1N 0.819 (15)
C7—C8 1.484 (3) O1—S1 1.4192 (14)
C8—C13 1.389 (3) O2—S1 1.4333 (14)
C8—C9 1.394 (3)
C2—C1—C6 119.43 (18) C11—C10—C9 118.1 (2)
C2—C1—S1 123.05 (14) C11—C10—C14 121.9 (2)
C6—C1—S1 117.43 (14) C9—C10—C14 120.0 (2)
C1—C2—C3 119.99 (19) C12—C11—C10 121.0 (2)
C1—C2—Cl1 121.86 (16) C12—C11—H11 119.5
C3—C2—Cl1 118.14 (16) C10—C11—H11 119.5
C4—C3—C2 119.8 (2) C13—C12—C11 121.0 (2)
C4—C3—H3 120.1 C13—C12—H12 119.5
C2—C3—H3 120.1 C11—C12—H12 119.5
C5—C4—C3 120.9 (2) C12—C13—C8 119.0 (2)
C5—C4—H4 119.5 C12—C13—H13 120.5
C3—C4—H4 119.5 C8—C13—H13 120.5
C4—C5—C6 119.8 (2) C10—C14—H14A 109.5
C4—C5—H5 120.1 C10—C14—H14B 109.5
C6—C5—H5 120.1 H14A—C14—H14B 109.5
C5—C6—C1 120.1 (2) C10—C14—H14C 109.5
C5—C6—H6 120.0 H14A—C14—H14C 109.5
C1—C6—H6 120.0 H14B—C14—H14C 109.5
O3—C7—N1 120.86 (17) C7—N1—S1 124.46 (13)
O3—C7—C8 124.56 (17) C7—N1—H1N 119.9 (15)
N1—C7—C8 114.55 (16) S1—N1—H1N 115.0 (15)
C13—C8—C9 119.89 (18) O1—S1—O2 118.76 (9)
C13—C8—C7 118.31 (17) O1—S1—N1 109.39 (9)
C9—C8—C7 121.80 (16) O2—S1—N1 103.91 (8)
C10—C9—C8 121.05 (18) O1—S1—C1 107.97 (8)
C10—C9—H9 119.5 O2—S1—C1 108.90 (8)
C8—C9—H9 119.5 N1—S1—C1 107.39 (8)
C6—C1—C2—C3 0.8 (3) C8—C9—C10—C14 −179.49 (19)
S1—C1—C2—C3 −175.56 (17) C9—C10—C11—C12 −1.1 (3)
C6—C1—C2—Cl1 −178.29 (16) C14—C10—C11—C12 178.7 (2)
S1—C1—C2—Cl1 5.3 (2) C10—C11—C12—C13 0.1 (3)
C1—C2—C3—C4 −0.2 (4) C11—C12—C13—C8 1.7 (3)
Cl1—C2—C3—C4 178.9 (2) C9—C8—C13—C12 −2.5 (3)
C2—C3—C4—C5 −0.3 (4) C7—C8—C13—C12 177.57 (18)
C3—C4—C5—C6 0.3 (4) O3—C7—N1—S1 4.7 (3)
C4—C5—C6—C1 0.4 (4) C8—C7—N1—S1 −176.87 (13)
C2—C1—C6—C5 −0.9 (3) C7—N1—S1—O1 50.47 (18)
S1—C1—C6—C5 175.69 (18) C7—N1—S1—O2 178.25 (15)
O3—C7—C8—C13 27.9 (3) C7—N1—S1—C1 −66.46 (17)
N1—C7—C8—C13 −150.47 (17) C2—C1—S1—O1 179.10 (16)
O3—C7—C8—C9 −152.07 (19) C6—C1—S1—O1 2.64 (18)
N1—C7—C8—C9 29.6 (2) C2—C1—S1—O2 48.88 (18)
C13—C8—C9—C10 1.4 (3) C6—C1—S1—O2 −127.58 (15)
C7—C8—C9—C10 −178.59 (17) C2—C1—S1—N1 −63.04 (18)
C8—C9—C10—C11 0.4 (3) C6—C1—S1—N1 120.49 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O2i 0.82 (2) 2.16 (2) 2.974 (2) 176 (2)

Symmetry codes: (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5261).

References

  1. Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2516. [DOI] [PMC free article] [PubMed]
  2. Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010). Acta Cryst. E66, o794. [DOI] [PMC free article] [PubMed]
  3. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  6. Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o1281. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810016235/bt5261sup1.cif

e-66-o1292-sup1.cif (18.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810016235/bt5261Isup2.hkl

e-66-o1292-Isup2.hkl (145.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES