Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 May 8;66(Pt 6):m633. doi: 10.1107/S1600536810016466

Dichlorido{(E)-2,4,6-trimethyl-N-[phen­yl(2-pyridyl)methyl­idene]aniline-κ2 N,N′}palladium(II)

Cheng-Hsien Yang a, Ya-Liu Peng b, Mei-Hua Wang a, Kuo-Chen Shih a, Mao-Lin Hsueh a,*
PMCID: PMC2979545  PMID: 21579287

Abstract

The title complex, [PdCl2(C21H20N2)], contains a PdII atom in a slightly distorted square-planar coordination environment defined by two N atoms from one 2,4,6-trimethyl-N-[phen­yl(2-pyrid­yl)methyl­idene]aniline ligand and two Cl atoms, forming a five-membered ring (N—Pd—N—C—C).

Related literature

For the synthesis of pyridyl-imine ligands, see: Meneghetti et al. (1999). For the design and synthesis of metal-organic frameworks, see: Lai et al. (2005); Pelagattia et al. (2005); Zhang et al. (2008). For related structures, see: Hsueh et al. (2006); Zhang et al. (2008). For the application of the title compound in Suzuki–Miyaura reactions, see: Li (2003); Miyaura & Suzuki (1995); Na et al. (2004); Nicolaou et al. (2005); Rajagopal et al. (2002); Tomioka et al. (2004).graphic file with name e-66-0m633-scheme1.jpg

Experimental

Crystal data

  • [PdCl2(C21H20N2)]

  • M r = 477.69

  • Orthorhombic, Inline graphic

  • a = 7.4807 (6) Å

  • b = 15.1483 (13) Å

  • c = 17.7147 (15) Å

  • V = 2007.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.20 mm−1

  • T = 298 K

  • 0.35 × 0.33 × 0.22 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.738, T max = 1.000

  • 11233 measured reflections

  • 3956 independent reflections

  • 3871 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.019

  • wR(F 2) = 0.052

  • S = 1.01

  • 3956 reflections

  • 238 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.52 e Å−3

  • Absolute structure: Flack (1983), 1670 Friedel pairs

  • Flack parameter: 0.02 (2)

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810016466/pk2244sup1.cif

e-66-0m633-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810016466/pk2244Isup2.hkl

e-66-0m633-Isup2.hkl (193.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the Ministry of Economic Affairs, Taiwan, is appreciated.

supplementary crystallographic information

Comment

Recently, palladium-catalyzed Suzuki-Miyaura reactions involving cross-coupling of aryl halides with aryl boronic acids have emerged as the most important synthetic methods for the preparation of biaryl compounds (Miyaura et al., 1995; Na et al., 2004; Rajagopal et al., 2002; Li 2003; Tomioka et al., 2004; Nicolaou et al., 2005). Thus, because of its utility as an important synthetic methodology, a significant amount of research focus had been devoted to designing improved catalysts for the Suzuki-Miyaura cross-coupling reaction. It is noteworthy that there has been a continuing interest in the further development of more efficient and selective catalytic systems for the synthesis of biaryls. However, only a few examples of N,N' pyridyl-imine palladium complexes have been reported as catalysts in coupling reaction (Lai et al., 2005; Pelagattia et al., 2005). Herein, we report the synthesis and crystal structure of the title palladium (II) complex that is certainly a potential catalyst in cross-coupling reactions.

The structure of the title compound is a mononuclear configuration with the metal center bound to two N atoms (one from the imine group and one from the pyridine ring) and two Cl atoms (Fig. 1). The coordination geometry around PdII atom is slightly distorted square planar, and the distances of Pd(1)—N(1) and Pd(1)—N(2) are 2.025 (2) and 2.033 (2) Å, respectively. It is noticed that the trans angles (N2—Pd—Cl1 and N1—Pd—Cl2) in the PdN2Cl2 core do not deviate more than 8° from the ideal value of 180°. Moreover, the planes of the pyridine (N1—C1—C2—C3—C4—C5) and phenyl rings (C8—C9—C10—C11—C12 and C13—C14—C15—C16—C17—C18) are close to perpendicular, and the dihedral angles between them are 80.9 (3) and 82.8 (3)°, respectively. All bond distances and bond angles lie within normal ranges, which are essentially similar to the pyridyl-imine palladium (II) complex (Hsueh et al., 2006; Zhang et al., 2008).

Experimental

The title compound was prepared by the reaction of palladium(II) dichloride (17.733 mg, 0.1 mmol) with (E)-2,4,6-trimethyl-N-(phenyl(pyridin-2-yl)methylene)aniline (30.016 mg, 0.1 mmol) in EtOH (20 ml). The mixture was stirred at room temperature for 24 h. The mixture turned yellow immediately. After removal of solvents, dichloromethane (20 ml) was added and the solution was filtered through Celite. The filtrate was slowly evaporated at room temperature to yield yellow crystals suitable for X-ray analysis. Yield: 41.084 mg (86%). Analysis calculated for C21H20Cl2N2Pd: C 52.80, H 4.22, N 5.86%; found: C 52.65, H 4.17, N 5.93%.

Refinement

All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry with C—H distances of 0.96 Å and Uiso(H) = 1.5Ueq(C), but each group was allowed to rotate freely about its C—C bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.95–1.00 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of the title compound with displacement ellipsoids shown at the 30% probability level.

Crystal data

[PdCl2(C21H20N2)] F(000) = 960
Mr = 477.69 Dx = 1.581 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 4812 reflections
a = 7.4807 (6) Å θ = 2.9–2.6°
b = 15.1483 (13) Å µ = 1.20 mm1
c = 17.7147 (15) Å T = 298 K
V = 2007.4 (3) Å3 Parallelpiped, yellow
Z = 4 0.35 × 0.33 × 0.22 mm

Data collection

Bruker SMART 1000 CCD diffractometer 3956 independent reflections
Radiation source: fine-focus sealed tube 3871 reflections with I > 2σ(I)
graphite Rint = 0.024
φ and ω scans θmax = 26.1°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −7→9
Tmin = 0.738, Tmax = 1.000 k = −16→18
11233 measured reflections l = −21→15

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019 H-atom parameters constrained
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.040P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max = 0.002
3956 reflections Δρmax = 0.20 e Å3
238 parameters Δρmin = −0.52 e Å3
0 restraints Absolute structure: Flack (1983), 1670 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.02 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pd1 0.262038 (18) 0.612368 (9) 0.476057 (8) 0.02890 (6)
Cl1 0.41648 (8) 0.68412 (4) 0.56891 (3) 0.04639 (14)
Cl2 0.19993 (9) 0.49999 (4) 0.55734 (3) 0.04722 (15)
N1 0.3065 (2) 0.70552 (11) 0.39625 (10) 0.0321 (4)
N2 0.1064 (2) 0.56451 (11) 0.39132 (10) 0.0308 (3)
C1 0.4227 (3) 0.77241 (15) 0.39906 (14) 0.0424 (5)
H1A 0.4974 0.7776 0.4408 0.051*
C2 0.4354 (4) 0.83417 (17) 0.34181 (16) 0.0527 (6)
H2A 0.5191 0.8794 0.3446 0.063*
C3 0.3231 (4) 0.82774 (16) 0.28102 (14) 0.0498 (6)
H3A 0.3274 0.8696 0.2426 0.060*
C4 0.2022 (3) 0.75775 (15) 0.27725 (13) 0.0418 (5)
H4A 0.1258 0.7518 0.2362 0.050*
C5 0.1982 (3) 0.69758 (13) 0.33577 (11) 0.0314 (4)
C6 0.0837 (3) 0.61804 (13) 0.33544 (11) 0.0302 (4)
C7 −0.0452 (3) 0.60379 (14) 0.27275 (12) 0.0344 (4)
C8 −0.2010 (4) 0.65290 (18) 0.27039 (14) 0.0493 (6)
H8A −0.2234 0.6950 0.3074 0.059*
C9 −0.3241 (4) 0.6395 (2) 0.21285 (17) 0.0622 (8)
H9A −0.4306 0.6712 0.2123 0.075*
C10 −0.2883 (4) 0.5791 (2) 0.15659 (15) 0.0594 (7)
H10A −0.3704 0.5701 0.1179 0.071*
C11 −0.1303 (5) 0.5321 (2) 0.15769 (16) 0.0674 (8)
H11A −0.1052 0.4924 0.1191 0.081*
C12 −0.0104 (4) 0.54350 (19) 0.21532 (15) 0.0526 (7)
H12A 0.0948 0.5108 0.2161 0.063*
C13 0.0126 (3) 0.48204 (13) 0.39711 (12) 0.0316 (4)
C14 −0.1580 (3) 0.48020 (14) 0.42893 (12) 0.0364 (5)
C15 −0.2372 (3) 0.39752 (15) 0.43887 (13) 0.0451 (5)
H15A −0.3513 0.3946 0.4596 0.054*
C16 −0.1526 (4) 0.32013 (15) 0.41912 (13) 0.0513 (7)
C17 0.0171 (4) 0.32429 (15) 0.38896 (14) 0.0469 (6)
H17A 0.0757 0.2723 0.3761 0.056*
C18 0.1027 (3) 0.40533 (14) 0.37726 (13) 0.0392 (5)
C19 −0.2509 (4) 0.56211 (18) 0.45550 (16) 0.0563 (6)
H19A −0.3451 0.5464 0.4897 0.084*
H19B −0.3004 0.5928 0.4129 0.084*
H19C −0.1667 0.5997 0.4808 0.084*
C20 −0.2428 (7) 0.23101 (19) 0.43118 (19) 0.0839 (11)
H20A −0.3672 0.2399 0.4421 0.126*
H20B −0.1871 0.2011 0.4727 0.126*
H20C −0.2310 0.1959 0.3863 0.126*
C21 0.2913 (4) 0.40809 (18) 0.34700 (18) 0.0607 (7)
H21A 0.3515 0.4592 0.3664 0.091*
H21B 0.2882 0.4109 0.2929 0.091*
H21C 0.3541 0.3559 0.3625 0.091*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pd1 0.02800 (8) 0.02850 (8) 0.03020 (9) 0.00077 (6) −0.00266 (6) −0.00482 (5)
Cl1 0.0497 (3) 0.0470 (3) 0.0424 (3) −0.0033 (2) −0.0130 (3) −0.0131 (2)
Cl2 0.0583 (4) 0.0409 (3) 0.0424 (3) −0.0035 (2) −0.0076 (3) 0.0079 (2)
N1 0.0311 (9) 0.0286 (8) 0.0366 (9) −0.0025 (7) 0.0017 (7) −0.0065 (7)
N2 0.0283 (8) 0.0309 (8) 0.0331 (9) −0.0014 (7) 0.0009 (7) −0.0058 (7)
C1 0.0406 (12) 0.0392 (12) 0.0472 (13) −0.0095 (10) −0.0008 (11) −0.0067 (10)
C2 0.0574 (16) 0.0424 (13) 0.0583 (15) −0.0211 (12) 0.0032 (13) −0.0013 (12)
C3 0.0617 (16) 0.0399 (13) 0.0478 (13) −0.0088 (12) 0.0065 (12) 0.0057 (11)
C4 0.0473 (14) 0.0419 (12) 0.0360 (11) −0.0059 (10) −0.0007 (10) 0.0045 (9)
C5 0.0307 (10) 0.0310 (10) 0.0325 (10) −0.0008 (8) 0.0022 (8) −0.0056 (8)
C6 0.0313 (10) 0.0280 (9) 0.0313 (10) 0.0004 (9) 0.0013 (8) −0.0044 (8)
C7 0.0379 (11) 0.0348 (10) 0.0306 (10) −0.0073 (9) −0.0021 (8) −0.0017 (8)
C8 0.0466 (15) 0.0562 (14) 0.0450 (13) 0.0096 (12) −0.0083 (11) −0.0094 (11)
C9 0.0431 (14) 0.079 (2) 0.0646 (18) 0.0041 (13) −0.0127 (13) 0.0015 (15)
C10 0.0598 (18) 0.0728 (18) 0.0457 (14) −0.0164 (14) −0.0216 (13) −0.0035 (13)
C11 0.076 (2) 0.082 (2) 0.0443 (15) −0.0021 (17) −0.0119 (15) −0.0287 (15)
C12 0.0534 (15) 0.0607 (16) 0.0439 (14) 0.0069 (12) −0.0049 (11) −0.0176 (12)
C13 0.0360 (11) 0.0277 (10) 0.0309 (10) −0.0030 (8) −0.0043 (8) −0.0030 (8)
C14 0.0372 (11) 0.0379 (11) 0.0342 (11) −0.0042 (9) −0.0007 (9) −0.0016 (9)
C15 0.0440 (12) 0.0521 (13) 0.0392 (11) −0.0149 (12) −0.0013 (10) 0.0018 (9)
C16 0.081 (2) 0.0354 (12) 0.0378 (12) −0.0186 (12) −0.0085 (12) 0.0033 (10)
C17 0.0682 (17) 0.0292 (11) 0.0433 (13) −0.0007 (11) −0.0094 (12) −0.0043 (10)
C18 0.0442 (12) 0.0351 (11) 0.0383 (12) 0.0021 (9) −0.0060 (9) −0.0054 (9)
C19 0.0447 (13) 0.0544 (14) 0.0696 (15) 0.0053 (12) 0.0157 (13) −0.0040 (12)
C20 0.130 (3) 0.0479 (15) 0.0738 (19) −0.040 (2) 0.011 (3) 0.0052 (14)
C21 0.0497 (15) 0.0511 (15) 0.0814 (19) 0.0127 (12) 0.0105 (14) −0.0107 (14)

Geometric parameters (Å, °)

Pd1—N1 2.0250 (18) C10—H10A 0.9300
Pd1—N2 2.0334 (17) C11—C12 1.370 (4)
Pd1—Cl2 2.2776 (6) C11—H11A 0.9300
Pd1—Cl1 2.2851 (5) C12—H12A 0.9300
N1—C1 1.336 (3) C13—C18 1.389 (3)
N1—C5 1.348 (3) C13—C14 1.396 (3)
N2—C6 1.291 (3) C14—C15 1.397 (3)
N2—C13 1.436 (3) C14—C19 1.498 (3)
C1—C2 1.383 (4) C15—C16 1.377 (4)
C1—H1A 0.9300 C15—H15A 0.9300
C2—C3 1.369 (4) C16—C17 1.378 (4)
C2—H2A 0.9300 C16—C20 1.525 (3)
C3—C4 1.395 (3) C17—C18 1.400 (3)
C3—H3A 0.9300 C17—H17A 0.9300
C4—C5 1.381 (3) C18—C21 1.509 (4)
C4—H4A 0.9300 C19—H19A 0.9600
C5—C6 1.479 (3) C19—H19B 0.9600
C6—C7 1.486 (3) C19—H19C 0.9600
C7—C8 1.384 (3) C20—H20A 0.9600
C7—C12 1.392 (3) C20—H20B 0.9600
C8—C9 1.389 (4) C20—H20C 0.9600
C8—H8A 0.9300 C21—H21A 0.9600
C9—C10 1.379 (4) C21—H21B 0.9600
C9—H9A 0.9300 C21—H21C 0.9600
C10—C11 1.380 (5)
N1—Pd1—N2 80.04 (7) C10—C11—C12 120.4 (3)
N1—Pd1—Cl2 174.72 (5) C10—C11—H11A 119.8
N2—Pd1—Cl2 94.79 (5) C12—C11—H11A 119.8
N1—Pd1—Cl1 95.05 (5) C11—C12—C7 120.3 (3)
N2—Pd1—Cl1 172.09 (5) C11—C12—H12A 119.8
Cl2—Pd1—Cl1 90.21 (2) C7—C12—H12A 119.8
C1—N1—C5 119.2 (2) C18—C13—C14 122.0 (2)
C1—N1—Pd1 127.55 (16) C18—C13—N2 118.19 (19)
C5—N1—Pd1 113.20 (13) C14—C13—N2 119.53 (18)
C6—N2—C13 122.46 (17) C15—C14—C13 117.2 (2)
C6—N2—Pd1 114.68 (13) C15—C14—C19 120.4 (2)
C13—N2—Pd1 122.48 (13) C13—C14—C19 122.3 (2)
N1—C1—C2 122.0 (2) C16—C15—C14 122.4 (2)
N1—C1—H1A 119.0 C16—C15—H15A 118.8
C2—C1—H1A 119.0 C14—C15—H15A 118.8
C3—C2—C1 119.1 (2) C15—C16—C17 118.9 (2)
C3—C2—H2A 120.5 C15—C16—C20 121.0 (3)
C1—C2—H2A 120.5 C17—C16—C20 120.2 (3)
C2—C3—C4 119.3 (2) C18—C17—C16 121.3 (2)
C2—C3—H3A 120.3 C18—C17—H17A 119.4
C4—C3—H3A 120.3 C16—C17—H17A 119.4
C5—C4—C3 118.7 (2) C13—C18—C17 118.3 (2)
C5—C4—H4A 120.7 C13—C18—C21 121.4 (2)
C3—C4—H4A 120.7 C17—C18—C21 120.3 (2)
N1—C5—C4 121.65 (19) C14—C19—H19A 109.5
N1—C5—C6 115.08 (18) C14—C19—H19B 109.5
C4—C5—C6 123.19 (19) H19A—C19—H19B 109.5
N2—C6—C5 115.63 (17) C14—C19—H19C 109.5
N2—C6—C7 124.55 (18) H19A—C19—H19C 109.5
C5—C6—C7 119.82 (17) H19B—C19—H19C 109.5
C8—C7—C12 119.2 (2) C16—C20—H20A 109.5
C8—C7—C6 119.40 (19) C16—C20—H20B 109.5
C12—C7—C6 121.3 (2) H20A—C20—H20B 109.5
C7—C8—C9 120.1 (2) C16—C20—H20C 109.5
C7—C8—H8A 119.9 H20A—C20—H20C 109.5
C9—C8—H8A 119.9 H20B—C20—H20C 109.5
C8—C9—C10 119.9 (3) C18—C21—H21A 109.5
C8—C9—H9A 120.0 C18—C21—H21B 109.5
C10—C9—H9A 120.0 H21A—C21—H21B 109.5
C11—C10—C9 119.9 (2) C18—C21—H21C 109.5
C11—C10—H10A 120.0 H21A—C21—H21C 109.5
C9—C10—H10A 120.0 H21B—C21—H21C 109.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2244).

References

  1. Bruker (2007). SMART and SAINT Bruker AXS inc., Madison, Wisconsin, USA.
  2. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  3. Hsueh, M.-L., Su, S.-Y. & Lin, C.-C. (2006). Acta Cryst. E62, m1784–m1786.
  4. Lai, Y. C., Chen, H. Y., Hung, W. C., Lin, C. C. & Hong, F. E. (2005). Tetrahedron, 61, 9484–9489.
  5. Li, C. J. (2003). Angew. Chem. Int. Ed.42, 4856–4858.
  6. Meneghetti, S. P., Lutz, P. J. & Kress, J. (1999). Organometallics, 18, 2734–2737.
  7. Miyaura, N. & Suzuki, A. (1995). Chem. Rev.95, 2457–2483.
  8. Na, Y., Park, S., Han, S. B., Han, H., Ko, S. & Chang, S. (2004). J. Am. Chem. Soc.126, 250–258. [DOI] [PubMed]
  9. Nicolaou, K. C., Bulger, P. G. & Sarlah, D. (2005). Angew. Chem. Int. Ed.44, 2–49. [DOI] [PubMed]
  10. Pelagattia, P., Carcellia, M., Costab, M., Ianellia, S., Pelizzia, C. & Rogolinoa, D. (2005). J. Mol. Catal. A Chem.226, 107–110.
  11. Rajagopal, R., Jarikote, D. V. & Srinivasan, K. V. (2002). Chem. Commun. pp. 616–617. [DOI] [PubMed]
  12. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Tomioka, H., Itoh, T. & Hirai, K. (2004). J. Am. Chem. Soc.126, 1130–1140. [DOI] [PubMed]
  15. Zhang, W., Tang, X., Ma, H., Sun, W. H. & Janiak, C. (2008). Eur. J. Inorg. Chem.18, 2830–2836.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810016466/pk2244sup1.cif

e-66-0m633-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810016466/pk2244Isup2.hkl

e-66-0m633-Isup2.hkl (193.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES