Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 May 8;66(Pt 6):m606. doi: 10.1107/S1600536810015680

Tetra-μ-acetato-κ4 O:O′;κ3 O,O′:O′;κ3 O:O,O′-bis­[(acetato-κ2 O,O′)(1,10-phenanthroline-κ2 N,N′)europium(III)]

Wen-Jing Liu a, Zhao-Yang Li a, Zhi-Qiang Wei a, Shan-Tang Yue a,*
PMCID: PMC2979550  PMID: 21579268

Abstract

In the title centrosymmetric dinuclear EuIII complex, [Eu2(CH3COO)6(C12H8N2)2], each EuIII cation is coordinated by seven O atoms from five acetate anions and two N atoms from one phenanthroline ligand in a distorted tricapped trigonal-prismatic geometry. Four acetate anions bridge two EuIII cations to form the dinuclear complex, with an Eu⋯Eu distance of 3.9409 (8) Å. Weak inter­molecular C—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For related lanthanide complexes with 1,10-phenanthroline and acetate ligands, see: Hu et al. (2006); Panagiotopoulos et al. (1995).graphic file with name e-66-0m606-scheme1.jpg

Experimental

Crystal data

  • [Eu2(C2H3O2)6(C12H8N2)2]

  • M r = 1018.61

  • Triclinic, Inline graphic

  • a = 8.7671 (19) Å

  • b = 8.9265 (19) Å

  • c = 12.992 (3) Å

  • α = 103.631 (2)°

  • β = 109.254 (2)°

  • γ = 98.300 (3)°

  • V = 905.1 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 3.50 mm−1

  • T = 298 K

  • 0.20 × 0.19 × 0.18 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.541, T max = 0.571

  • 5010 measured reflections

  • 3474 independent reflections

  • 3062 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.062

  • S = 1.05

  • 3474 reflections

  • 247 parameters

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.64 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810015680/xu2753sup1.cif

e-66-0m606-sup1.cif (20.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015680/xu2753Isup2.hkl

e-66-0m606-Isup2.hkl (170.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.93 2.57 3.287 (6) 135
C12—H8⋯O6ii 0.93 2.44 3.078 (6) 126
C16—H10C⋯O1iii 0.96 2.45 3.390 (6) 165

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported financially by Guangdong Provincial Science and Technology Bureau (grant No. 2008B010600009) and the NSFC (grant Nos. 20971047 and U0734005).

supplementary crystallographic information

Comment

Dinuclear lanthanide complexes with 1,10-phenanthroline and acetate ligands had previously been reported (Panagiotopoulos et al., 1995; Hu et al., 2006). In this title complex, each Eu atom is coordinated by two N atoms from one chelating phenanthroline ligand and seven oxygen atoms from acetate ions, to form a distorted tricapped trigonal prism, giving a dimeric structure with an inversion center (Fig.1). The result of the dinuclear centrosymmetric molecule with the Eu···Eu distance of 3.9409 (8) Å was that acetate ions exhibit three different coordination modes: common bidentate chelating mode, bidentate bridging mode and tridentate bridging mode. The Eu1—O bond distances vary from 2.359 (3) Å to 2.586 (3) Å and the Eu1—N bond length are 2.594 (3) Å and 2.649 (4) Å. The C—O distances of CH3COO- are within the range of 1.257 (5)Å to 1.273 (5) Å. This complex exhibits a three-dimensional structure via C—H···O hydrogen-bonds (Table 1).

Experimental

A stoichiometric amount of acetic acid and a quantitative amount of 1,10-phenanthroline (0.5 mmol) were mixed and then dissolved in 95% ethanol solution (20 ml). The pH value of the solution was adjusted to 6.5 by adding 1.0 M NaOH solution, and then added dropwise to the ethanol solution (20 ml) of Eu(NO3)3.6H2O (0.5 mmol). The solution mixture was stirred continuously for 2 h at room temperature and then filtered. Single crystals were obtained by evaporation after one week.

Refinement

H atoms were positioned in calculated positions, with C—H = 0.93 (aromatic) and 0.96 Å (methyl), and refined in riding mode with Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C) for the others.

Figures

Fig. 1.

Fig. 1.

Displacement ellipsoid plot (40% probability level) of the title compound [symmetry code: (A) -x+1, -y+2, -z+1].

Crystal data

[Eu2(C2H3O2)6(C12H8N2)2] Z = 1
Mr = 1018.61 F(000) = 500
Triclinic, P1 Dx = 1.869 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.7671 (19) Å Cell parameters from 2079 reflections
b = 8.9265 (19) Å θ = 0.7–25.2°
c = 12.992 (3) Å µ = 3.50 mm1
α = 103.631 (2)° T = 298 K
β = 109.254 (2)° Block, colorless
γ = 98.300 (3)° 0.20 × 0.19 × 0.18 mm
V = 905.1 (3) Å3

Data collection

Bruker SMART CCD diffractometer 3474 independent reflections
Radiation source: fine-focus sealed tube 3062 reflections with I > 2σ(I)
graphite Rint = 0.021
ω scans θmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −10→10
Tmin = 0.541, Tmax = 0.571 k = −8→10
5010 measured reflections l = −14→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.025P)2] where P = (Fo2 + 2Fc2)/3
3474 reflections (Δ/σ)max < 0.001
247 parameters Δρmax = 0.80 e Å3
0 restraints Δρmin = −0.64 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Eu1 0.47430 (3) 0.84412 (3) 0.356229 (17) 0.02341 (8)
O3 0.5788 (4) 1.1409 (4) 0.4756 (2) 0.0312 (7)
O4 0.6208 (4) 1.0735 (4) 0.3157 (2) 0.0336 (7)
O2 0.2565 (4) 0.5955 (4) 0.2687 (3) 0.0419 (8)
O1 0.5000 (4) 0.5829 (4) 0.3834 (3) 0.0373 (8)
O5 0.7449 (4) 0.8969 (4) 0.4988 (2) 0.0310 (7)
N1 0.6375 (4) 0.7194 (4) 0.2384 (3) 0.0277 (8)
C1 0.7671 (6) 0.6658 (5) 0.2863 (4) 0.0362 (11)
H1 0.7915 0.6637 0.3612 0.043*
C2 0.8702 (6) 0.6116 (6) 0.2307 (4) 0.0423 (12)
H2 0.9609 0.5753 0.2678 0.051*
C3 0.8341 (6) 0.6134 (6) 0.1215 (4) 0.0450 (13)
H3 0.9007 0.5782 0.0829 0.054*
C4 0.6972 (6) 0.6680 (6) 0.0664 (4) 0.0368 (11)
C7 0.4176 (6) 0.7809 (6) −0.0387 (4) 0.0421 (13)
C6 0.4559 (6) 0.7750 (5) 0.0747 (3) 0.0294 (10)
N2 0.3612 (5) 0.8179 (4) 0.1353 (3) 0.0323 (9)
C12 0.2280 (6) 0.8637 (6) 0.0849 (4) 0.0437 (13)
H8 0.1601 0.8895 0.1249 0.052*
C11 0.1825 (7) 0.8757 (7) −0.0271 (4) 0.0565 (16)
H7 0.0883 0.9110 −0.0592 0.068*
C10 0.2789 (7) 0.8348 (7) −0.0871 (4) 0.0524 (15)
H6 0.2516 0.8431 −0.1607 0.063*
C5 0.6006 (6) 0.7203 (5) 0.1290 (4) 0.0299 (10)
C15 0.6463 (5) 1.1743 (5) 0.4079 (4) 0.0284 (10)
C13 0.3479 (6) 0.5207 (5) 0.3230 (4) 0.0327 (11)
C8 0.5223 (7) 0.7281 (7) −0.0976 (4) 0.0534 (15)
H5 0.4986 0.7328 −0.1718 0.064*
O6 0.7627 (4) 1.0478 (4) 0.6690 (2) 0.0336 (7)
C14 0.2753 (7) 0.3534 (6) 0.3168 (5) 0.0506 (14)
H9A 0.1575 0.3255 0.2737 0.076*
H9B 0.2959 0.3470 0.3927 0.076*
H9C 0.3264 0.2814 0.2800 0.076*
C16 0.7559 (6) 1.3374 (6) 0.4417 (4) 0.0422 (12)
H10A 0.8097 1.3412 0.3886 0.063*
H10B 0.8385 1.3612 0.5172 0.063*
H10C 0.6894 1.4140 0.4409 0.063*
C9 0.6513 (7) 0.6730 (7) −0.0494 (4) 0.0539 (15)
H4 0.7136 0.6367 −0.0914 0.065*
C18 0.9975 (5) 0.9554 (6) 0.6560 (4) 0.0395 (12)
H11A 1.0003 0.8457 0.6445 0.059*
H11B 1.0414 1.0106 0.7365 0.059*
H11C 1.0636 1.0025 0.6206 0.059*
C17 0.8220 (5) 0.9669 (5) 0.6038 (4) 0.0277 (10)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Eu1 0.02392 (12) 0.02795 (13) 0.02150 (12) 0.00926 (9) 0.01093 (9) 0.00800 (9)
O3 0.0368 (18) 0.0376 (18) 0.0297 (16) 0.0146 (15) 0.0192 (14) 0.0159 (15)
O4 0.0410 (19) 0.0386 (19) 0.0242 (16) 0.0079 (15) 0.0181 (14) 0.0077 (15)
O2 0.039 (2) 0.038 (2) 0.045 (2) 0.0085 (16) 0.0110 (16) 0.0142 (17)
O1 0.038 (2) 0.0360 (19) 0.0442 (19) 0.0151 (15) 0.0170 (16) 0.0167 (16)
O5 0.0288 (17) 0.0393 (19) 0.0243 (16) 0.0108 (14) 0.0111 (13) 0.0056 (14)
N1 0.030 (2) 0.028 (2) 0.0260 (19) 0.0091 (16) 0.0132 (16) 0.0064 (16)
C1 0.044 (3) 0.038 (3) 0.032 (3) 0.017 (2) 0.019 (2) 0.011 (2)
C2 0.034 (3) 0.047 (3) 0.050 (3) 0.018 (2) 0.018 (2) 0.013 (3)
C3 0.046 (3) 0.047 (3) 0.048 (3) 0.016 (3) 0.031 (3) 0.004 (3)
C4 0.043 (3) 0.037 (3) 0.032 (3) 0.011 (2) 0.021 (2) 0.003 (2)
C7 0.050 (3) 0.048 (3) 0.025 (2) 0.007 (3) 0.014 (2) 0.010 (2)
C6 0.036 (3) 0.027 (2) 0.022 (2) 0.004 (2) 0.011 (2) 0.0032 (19)
N2 0.034 (2) 0.035 (2) 0.027 (2) 0.0104 (18) 0.0096 (17) 0.0088 (18)
C12 0.039 (3) 0.061 (4) 0.031 (3) 0.024 (3) 0.011 (2) 0.012 (3)
C11 0.064 (4) 0.074 (4) 0.033 (3) 0.033 (3) 0.009 (3) 0.021 (3)
C10 0.069 (4) 0.060 (4) 0.027 (3) 0.018 (3) 0.013 (3) 0.016 (3)
C5 0.037 (3) 0.025 (2) 0.028 (2) 0.005 (2) 0.015 (2) 0.005 (2)
C15 0.027 (2) 0.034 (3) 0.031 (2) 0.012 (2) 0.014 (2) 0.015 (2)
C13 0.043 (3) 0.033 (3) 0.029 (2) 0.012 (2) 0.024 (2) 0.006 (2)
C8 0.067 (4) 0.071 (4) 0.029 (3) 0.018 (3) 0.027 (3) 0.015 (3)
O6 0.0333 (18) 0.0416 (19) 0.0257 (16) 0.0171 (15) 0.0109 (14) 0.0052 (15)
C14 0.064 (4) 0.033 (3) 0.057 (3) 0.004 (3) 0.027 (3) 0.016 (3)
C16 0.049 (3) 0.036 (3) 0.046 (3) 0.007 (2) 0.027 (3) 0.009 (2)
C9 0.063 (4) 0.066 (4) 0.037 (3) 0.017 (3) 0.030 (3) 0.008 (3)
C18 0.030 (3) 0.044 (3) 0.041 (3) 0.013 (2) 0.009 (2) 0.009 (2)
C17 0.027 (2) 0.028 (2) 0.034 (3) 0.0086 (19) 0.014 (2) 0.014 (2)

Geometric parameters (Å, °)

Eu1—O3i 2.358 (3) C7—C10 1.384 (7)
Eu1—O6i 2.374 (3) C7—C6 1.415 (6)
Eu1—O5 2.377 (3) C7—C8 1.438 (7)
Eu1—O2 2.453 (3) C6—N2 1.355 (5)
Eu1—O1 2.470 (3) C6—C5 1.448 (6)
Eu1—O4 2.513 (3) N2—C12 1.311 (6)
Eu1—O3 2.586 (3) C12—C11 1.411 (7)
Eu1—N1 2.594 (3) C12—H8 0.9300
Eu1—N2 2.649 (4) C11—C10 1.358 (7)
Eu1—C13 2.815 (5) C11—H7 0.9300
Eu1—C15 2.920 (4) C10—H6 0.9300
Eu1—Eu1i 3.9409 (8) C15—C16 1.500 (6)
O3—C15 1.276 (5) C13—C14 1.508 (6)
O3—Eu1i 2.358 (3) C8—C9 1.324 (8)
O4—C15 1.245 (5) C8—H5 0.9300
O2—C13 1.262 (6) O6—C17 1.273 (5)
O1—C13 1.262 (5) O6—Eu1i 2.374 (3)
O5—C17 1.256 (5) C14—H9A 0.9600
N1—C1 1.319 (6) C14—H9B 0.9600
N1—C5 1.351 (5) C14—H9C 0.9600
C1—C2 1.402 (6) C16—H10A 0.9600
C1—H1 0.9300 C16—H10B 0.9600
C2—C3 1.352 (7) C16—H10C 0.9600
C2—H2 0.9300 C9—H4 0.9300
C3—C4 1.399 (7) C18—C17 1.492 (6)
C3—H3 0.9300 C18—H11A 0.9600
C4—C5 1.410 (6) C18—H11B 0.9600
C4—C9 1.437 (7) C18—H11C 0.9600
O3i—Eu1—O6i 75.03 (10) C5—N1—Eu1 120.7 (3)
O3i—Eu1—O5 76.96 (10) N1—C1—C2 123.7 (4)
O6i—Eu1—O5 137.07 (10) N1—C1—H1 118.2
O3i—Eu1—O2 86.29 (10) C2—C1—H1 118.2
O6i—Eu1—O2 81.08 (11) C3—C2—C1 118.2 (5)
O5—Eu1—O2 128.67 (11) C3—C2—H2 120.9
O3i—Eu1—O1 77.36 (10) C1—C2—H2 120.9
O6i—Eu1—O1 127.36 (11) C2—C3—C4 120.5 (4)
O5—Eu1—O1 75.84 (10) C2—C3—H3 119.8
O2—Eu1—O1 53.10 (11) C4—C3—H3 119.8
O3i—Eu1—O4 125.07 (10) C3—C4—C5 117.4 (4)
O6i—Eu1—O4 90.28 (11) C3—C4—C9 123.4 (5)
O5—Eu1—O4 79.96 (10) C5—C4—C9 119.2 (5)
O2—Eu1—O4 144.17 (10) C10—C7—C6 117.6 (5)
O1—Eu1—O4 141.79 (10) C10—C7—C8 123.9 (5)
O3i—Eu1—O3 74.40 (11) C6—C7—C8 118.5 (5)
O6i—Eu1—O3 72.72 (10) N2—C6—C7 122.5 (4)
O5—Eu1—O3 68.79 (10) N2—C6—C5 118.0 (4)
O2—Eu1—O3 150.59 (10) C7—C6—C5 119.5 (4)
O1—Eu1—O3 138.62 (10) C12—N2—C6 117.9 (4)
O4—Eu1—O3 50.80 (9) C12—N2—Eu1 122.8 (3)
O3i—Eu1—N1 143.33 (11) C6—N2—Eu1 118.7 (3)
O6i—Eu1—N1 139.90 (10) N2—C12—C11 123.2 (5)
O5—Eu1—N1 77.84 (10) N2—C12—H8 118.4
O2—Eu1—N1 89.07 (11) C11—C12—H8 118.4
O1—Eu1—N1 70.92 (11) C10—C11—C12 118.8 (5)
O4—Eu1—N1 75.40 (10) C10—C11—H7 120.6
O3—Eu1—N1 119.64 (10) C12—C11—H7 120.6
O3i—Eu1—N2 149.00 (11) C11—C10—C7 120.0 (5)
O6i—Eu1—N2 77.11 (11) C11—C10—H6 120.0
O5—Eu1—N2 133.80 (10) C7—C10—H6 120.0
O2—Eu1—N2 76.19 (11) N1—C5—C4 122.1 (4)
O1—Eu1—N2 110.07 (11) N1—C5—C6 118.6 (4)
O4—Eu1—N2 67.99 (10) C4—C5—C6 119.3 (4)
O3—Eu1—N2 109.76 (10) O4—C15—O3 120.4 (4)
N1—Eu1—N2 62.79 (11) O4—C15—C16 121.0 (4)
O3i—Eu1—C13 79.18 (11) O3—C15—C16 118.5 (4)
O6i—Eu1—C13 103.79 (13) O4—C15—Eu1 58.8 (2)
O5—Eu1—C13 102.11 (13) O3—C15—Eu1 62.3 (2)
O2—Eu1—C13 26.59 (12) C16—C15—Eu1 172.3 (3)
O1—Eu1—C13 26.61 (12) O2—C13—O1 121.4 (4)
O4—Eu1—C13 154.90 (11) O2—C13—C14 119.9 (4)
O3—Eu1—C13 153.35 (11) O1—C13—C14 118.8 (5)
N1—Eu1—C13 80.57 (12) O2—C13—Eu1 60.5 (2)
N2—Eu1—C13 94.65 (12) O1—C13—Eu1 61.3 (2)
O3i—Eu1—C15 99.99 (11) C14—C13—Eu1 173.6 (3)
O6i—Eu1—C15 82.87 (11) C9—C8—C7 122.1 (5)
O5—Eu1—C15 70.72 (11) C9—C8—H5 119.0
O2—Eu1—C15 160.62 (12) C7—C8—H5 119.0
O1—Eu1—C15 146.09 (11) C17—O6—Eu1i 136.1 (3)
O4—Eu1—C15 25.08 (10) C13—C14—H9A 109.5
O3—Eu1—C15 25.89 (10) C13—C14—H9B 109.5
N1—Eu1—C15 96.31 (11) H9A—C14—H9B 109.5
N2—Eu1—C15 89.71 (11) C13—C14—H9C 109.5
C13—Eu1—C15 172.71 (13) H9A—C14—H9C 109.5
O3i—Eu1—Eu1i 39.20 (7) H9B—C14—H9C 109.5
O6i—Eu1—Eu1i 69.54 (7) C15—C16—H10A 109.5
O5—Eu1—Eu1i 68.14 (7) C15—C16—H10B 109.5
O2—Eu1—Eu1i 122.20 (8) H10A—C16—H10B 109.5
O1—Eu1—Eu1i 111.19 (7) C15—C16—H10C 109.5
O4—Eu1—Eu1i 85.93 (7) H10A—C16—H10C 109.5
O3—Eu1—Eu1i 35.19 (6) H10B—C16—H10C 109.5
N1—Eu1—Eu1i 143.56 (8) C8—C9—C4 121.4 (5)
N2—Eu1—Eu1i 137.30 (8) C8—C9—H4 119.3
C13—Eu1—Eu1i 118.30 (9) C4—C9—H4 119.3
C15—Eu1—Eu1i 60.89 (9) C17—C18—H11A 109.5
C15—O3—Eu1i 160.5 (3) C17—C18—H11B 109.5
C15—O3—Eu1 91.8 (3) H11A—C18—H11B 109.5
Eu1i—O3—Eu1 105.60 (10) C17—C18—H11C 109.5
C15—O4—Eu1 96.1 (2) H11A—C18—H11C 109.5
C13—O2—Eu1 92.9 (3) H11B—C18—H11C 109.5
C13—O1—Eu1 92.1 (3) O5—C17—O6 125.1 (4)
C17—O5—Eu1 139.2 (3) O5—C17—C18 117.4 (4)
C1—N1—C5 118.2 (4) O6—C17—C18 117.5 (4)
C1—N1—Eu1 120.9 (3)

Symmetry codes: (i) −x+1, −y+2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2···O2ii 0.93 2.57 3.287 (6) 135
C12—H8···O6i 0.93 2.44 3.078 (6) 126
C16—H10C···O1iii 0.96 2.45 3.390 (6) 165

Symmetry codes: (ii) x+1, y, z; (i) −x+1, −y+2, −z+1; (iii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2753).

References

  1. Bruker (2001). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Hu, X.-L., Qiu, L., Sun, W.-B. & Chen, Z. (2006). Acta Cryst. E62, m3213–m3214.
  3. Panagiotopoulos, A., Zafiropoulos, T. F., Perlepes, S. P., Bakalbassis, E., Masson-Ramade, I., Kahn, O., Terzis, A. & Raptopoulou, C. P. (1995). Inorg. Chem.34, 4918–4923.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810015680/xu2753sup1.cif

e-66-0m606-sup1.cif (20.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015680/xu2753Isup2.hkl

e-66-0m606-Isup2.hkl (170.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES