Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 May 8;66(Pt 6):o1264. doi: 10.1107/S1600536810015461

4-[3-(2H-Benzotriazol-2-yl)prop­oxy]-3-methoxy­benzaldehyde

Lei Jin a,b,*, Cheng-He Zhou a
PMCID: PMC2979564  PMID: 21579366

Abstract

In the title compound, C17H17N3O3, the 3-methoxy­benzalde­hyde group and the benzotriazole fragment are connected through a flexible oxypropyl chain. The O—C—C—C torsion angle in the central link is −63.9 (2)°, while the plane of the benzene ring of the 3-methoxy­benzaldehyde substituent forms a dihedral angle of 56.4 (4)° with the benzotriazole plane.

Related literature

For general background to the biological activity of 1H-benzotriazole and its derivatives, see: Al-Soud et al. (2003); Khalafi-Nezhad et al. (2005); Nanjunda Swamy et al. (2006). For a related structure, see: Jin et al. (2009). graphic file with name e-66-o1264-scheme1.jpg

Experimental

Crystal data

  • C17H17N3O3

  • M r = 311.34

  • Monoclinic, Inline graphic

  • a = 11.328 (2) Å

  • b = 8.1278 (16) Å

  • c = 16.156 (3) Å

  • β = 100.301 (3)°

  • V = 1463.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.34 × 0.20 × 0.18 mm

Data collection

  • Bruker SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.967, T max = 0.982

  • 7400 measured reflections

  • 2716 independent reflections

  • 2257 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.111

  • S = 1.02

  • 2716 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810015461/ya2115sup1.cif

e-66-o1264-sup1.cif (19KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015461/ya2115Isup2.hkl

e-66-o1264-Isup2.hkl (133.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Southwest University (SWUB2006018, XSGX0602 and SWUF2007023) and the Natural Science Foundation of Chongqing (2007BB5369) for financial support.

supplementary crystallographic information

Comment

The incorporation of azole nucleus is an important synthetic strategy in drug discovery. The high therapeutic properties of the related drugs have encouraged the medicinal chemists to synthesize large number of novel chemotherapeutic agents. 1H-Benzotriazole and many of its derivatives exhibit important biological properties, some are showing anti-inflammatory, antiviral, antifungal, antineoplastic and antidepressant activities (Al-Soud et al., 2003; Nanjunda Swamy et al., 2006). Recently, the structure of aralkyl nitroimidazole ether, which shows inhibitory effects on several types of pathogenic bacteria, has been published (Khalafi-Nezhad et al., 2005; Jin et al., 2009). Taking into account promising therapeutic applications of benzotriazole derivatives, we are focusing on the development of new drugs belonging to this class. Herein we report the crystal structure of the title compound (Fig. 1).

The 3-methoxybenzaldehyde group and benzotriazole fragment in the molecule of the title compound are connected through the flexible oxypropyl chain. The O3—C9—C10—C11 torsion angle in the central link is equal to -63.9 (2)°, whereas the planes of the benzene ring C2—C7 and benzotriazole system N1—N3, C12—C17 form the dihedral angle of 56.4 (4)°.

Experimental

A solution of benzotriazole (0.119 g, 1 mmol), 4-(3-bromopropoxy)-3-methoxy benzaldehyde (0.273 g, 1 mmol) and triethyl amine (1.01 g, 0.01 mol) in anhydrous MeCN (40 ml) was refluxed for approximately 10 h, when TLC monitoring indicated disappearance of benzotriazole; the solvent was then evaporated and the crude mixture was suspended in 200 ml of water. The organic materials were extracted with CH2Cl2 (2 × 150 ml). Both portions were combined, dried over anhydrous Na2SO4, and then evaporated to give the crude product, further purified by column chromatography on silica gel with EtOAc to afford the title compound (yield: 0.241 g, 78%; colourless solid; Mp. 411–413 K). Single crystal used in X-ray diffraction analysis was obtained at room temperature by slow evaporation of the solution of title compound in the mixture of ethyl acetate and dichloromethane.

Refinement

Hydrogen atoms were placed in geometrically calculated positions (C—H 0.95 Å for aromatic and formyl, 0.99 Å for methylene and 0.98 Å for methyl) and included in the refinement in a riding motion approximation with Uiso(H) = 1.2Ueq(C) [for methyl groups Uiso(H) = 1.5Ueq(C)].

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C17H17N3O3 F(000) = 656
Mr = 311.34 Dx = 1.413 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2314 reflections
a = 11.328 (2) Å θ = 2.4–26.8°
b = 8.1278 (16) Å µ = 0.10 mm1
c = 16.156 (3) Å T = 173 K
β = 100.301 (3)° Block, colourless
V = 1463.6 (5) Å3 0.34 × 0.20 × 0.18 mm
Z = 4

Data collection

Bruker SMART diffractometer 2716 independent reflections
Radiation source: fine-focus sealed tube 2257 reflections with I > 2σ(I)
graphite Rint = 0.030
phi and ω scans θmax = 25.5°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −13→11
Tmin = 0.967, Tmax = 0.982 k = −9→9
7400 measured reflections l = −14→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0598P)2 + 0.2971P] where P = (Fo2 + 2Fc2)/3
2716 reflections (Δ/σ)max = 0.002
209 parameters Δρmax = 0.20 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.30868 (15) 0.3509 (2) −0.18483 (10) 0.0304 (4)
H1 0.2604 0.4172 −0.2261 0.036*
C2 0.32240 (13) 0.40484 (19) −0.09726 (9) 0.0252 (4)
C3 0.38488 (13) 0.30819 (19) −0.03210 (9) 0.0247 (4)
H3 0.4194 0.2068 −0.0447 0.030*
C4 0.39637 (13) 0.35957 (18) 0.04991 (9) 0.0233 (3)
C5 0.34662 (13) 0.51165 (19) 0.06848 (9) 0.0231 (3)
C6 0.28450 (14) 0.60657 (19) 0.00395 (10) 0.0266 (4)
H6 0.2503 0.7085 0.0161 0.032*
C7 0.27228 (14) 0.5522 (2) −0.07870 (10) 0.0283 (4)
H7 0.2290 0.6171 −0.1229 0.034*
C8 0.50723 (16) 0.12187 (19) 0.10204 (11) 0.0336 (4)
H8A 0.4451 0.0477 0.0730 0.050*
H8B 0.5457 0.0717 0.1552 0.050*
H8C 0.5675 0.1412 0.0665 0.050*
C9 0.33302 (15) 0.71678 (19) 0.17160 (10) 0.0269 (4)
H9A 0.2451 0.7318 0.1563 0.032*
H9B 0.3725 0.7982 0.1400 0.032*
C10 0.37338 (14) 0.74091 (19) 0.26499 (10) 0.0260 (4)
H10A 0.3584 0.8563 0.2798 0.031*
H10B 0.4607 0.7203 0.2798 0.031*
C11 0.30818 (14) 0.6269 (2) 0.31527 (9) 0.0283 (4)
H11A 0.2212 0.6512 0.3022 0.034*
H11B 0.3198 0.5119 0.2981 0.034*
C12 0.42907 (13) 0.73940 (19) 0.52211 (10) 0.0236 (4)
C13 0.48871 (14) 0.8333 (2) 0.59075 (10) 0.0288 (4)
H13 0.5255 0.9357 0.5829 0.035*
C14 0.49051 (14) 0.7689 (2) 0.66857 (10) 0.0296 (4)
H14 0.5296 0.8285 0.7162 0.036*
C15 0.43636 (14) 0.6163 (2) 0.68129 (10) 0.0305 (4)
H15 0.4408 0.5765 0.7371 0.037*
C16 0.37797 (15) 0.5246 (2) 0.61590 (10) 0.0297 (4)
H16 0.3416 0.4224 0.6248 0.036*
C17 0.37411 (13) 0.58889 (18) 0.53437 (10) 0.0230 (3)
N1 0.41205 (12) 0.77182 (16) 0.43877 (8) 0.0270 (3)
N2 0.34983 (11) 0.64249 (15) 0.40576 (8) 0.0238 (3)
N3 0.32342 (11) 0.52833 (16) 0.45819 (8) 0.0268 (3)
O1 0.35353 (11) 0.22907 (16) −0.20936 (7) 0.0390 (3)
O2 0.45409 (10) 0.27407 (13) 0.11862 (7) 0.0294 (3)
O3 0.36540 (10) 0.55293 (13) 0.15124 (6) 0.0276 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0309 (9) 0.0366 (10) 0.0234 (9) −0.0077 (7) 0.0045 (7) 0.0009 (7)
C2 0.0253 (8) 0.0294 (9) 0.0211 (8) −0.0072 (7) 0.0044 (6) −0.0002 (7)
C3 0.0268 (8) 0.0220 (8) 0.0261 (9) −0.0023 (6) 0.0065 (7) −0.0018 (7)
C4 0.0248 (8) 0.0234 (8) 0.0216 (8) −0.0019 (6) 0.0036 (6) 0.0017 (6)
C5 0.0251 (8) 0.0246 (8) 0.0197 (8) −0.0027 (6) 0.0043 (6) 0.0001 (6)
C6 0.0308 (9) 0.0238 (8) 0.0252 (9) 0.0024 (7) 0.0048 (7) 0.0007 (7)
C7 0.0306 (9) 0.0300 (9) 0.0235 (9) −0.0018 (7) 0.0022 (7) 0.0062 (7)
C8 0.0442 (10) 0.0256 (9) 0.0302 (9) 0.0090 (7) 0.0047 (8) 0.0024 (7)
C9 0.0361 (9) 0.0211 (8) 0.0235 (9) 0.0044 (7) 0.0053 (7) −0.0003 (6)
C10 0.0326 (9) 0.0200 (8) 0.0248 (9) 0.0015 (6) 0.0035 (7) −0.0016 (6)
C11 0.0282 (8) 0.0353 (9) 0.0204 (8) −0.0035 (7) 0.0014 (6) −0.0044 (7)
C12 0.0228 (8) 0.0257 (8) 0.0221 (8) 0.0018 (6) 0.0031 (6) −0.0005 (6)
C13 0.0291 (9) 0.0275 (8) 0.0284 (9) −0.0042 (7) 0.0014 (7) −0.0023 (7)
C14 0.0283 (9) 0.0362 (10) 0.0226 (9) 0.0002 (7) −0.0001 (7) −0.0048 (7)
C15 0.0311 (9) 0.0368 (10) 0.0229 (9) 0.0029 (7) 0.0034 (7) 0.0043 (7)
C16 0.0332 (9) 0.0271 (9) 0.0294 (9) −0.0010 (7) 0.0067 (7) 0.0038 (7)
C17 0.0216 (8) 0.0225 (8) 0.0244 (8) 0.0032 (6) 0.0026 (6) −0.0021 (6)
N1 0.0311 (8) 0.0249 (7) 0.0238 (8) −0.0048 (6) 0.0023 (6) −0.0032 (6)
N2 0.0262 (7) 0.0238 (7) 0.0214 (7) −0.0021 (5) 0.0041 (5) −0.0019 (5)
N3 0.0293 (7) 0.0246 (7) 0.0265 (8) −0.0008 (5) 0.0053 (6) −0.0006 (6)
O1 0.0457 (8) 0.0429 (8) 0.0302 (7) −0.0049 (6) 0.0113 (6) −0.0098 (6)
O2 0.0402 (7) 0.0242 (6) 0.0225 (6) 0.0084 (5) 0.0022 (5) 0.0009 (5)
O3 0.0394 (7) 0.0226 (6) 0.0199 (6) 0.0061 (5) 0.0029 (5) −0.0016 (4)

Geometric parameters (Å, °)

C1—O1 1.211 (2) C9—H9B 0.9900
C1—C2 1.463 (2) C10—C11 1.510 (2)
C1—H1 0.9500 C10—H10A 0.9900
C2—C7 1.381 (2) C10—H10B 0.9900
C2—C3 1.400 (2) C11—N2 1.459 (2)
C3—C4 1.373 (2) C11—H11A 0.9900
C3—H3 0.9500 C11—H11B 0.9900
C4—O2 1.3723 (18) C12—N1 1.352 (2)
C4—C5 1.413 (2) C12—C17 1.403 (2)
C5—O3 1.3580 (18) C12—C13 1.414 (2)
C5—C6 1.384 (2) C13—C14 1.359 (2)
C6—C7 1.390 (2) C13—H13 0.9500
C6—H6 0.9500 C14—C15 1.415 (2)
C7—H7 0.9500 C14—H14 0.9500
C8—O2 1.4220 (18) C15—C16 1.363 (2)
C8—H8A 0.9800 C15—H15 0.9500
C8—H8B 0.9800 C16—C17 1.410 (2)
C8—H8C 0.9800 C16—H16 0.9500
C9—O3 1.4350 (18) C17—N3 1.3543 (19)
C9—C10 1.509 (2) N1—N2 1.3235 (17)
C9—H9A 0.9900 N2—N3 1.3261 (18)
O1—C1—C2 125.67 (16) C11—C10—H10A 109.3
O1—C1—H1 117.2 C9—C10—H10B 109.3
C2—C1—H1 117.2 C11—C10—H10B 109.3
C7—C2—C3 119.71 (14) H10A—C10—H10B 108.0
C7—C2—C1 119.55 (15) N2—C11—C10 112.58 (13)
C3—C2—C1 120.74 (15) N2—C11—H11A 109.1
C4—C3—C2 120.20 (15) C10—C11—H11A 109.1
C4—C3—H3 119.9 N2—C11—H11B 109.1
C2—C3—H3 119.9 C10—C11—H11B 109.1
O2—C4—C3 125.16 (14) H11A—C11—H11B 107.8
O2—C4—C5 114.95 (13) N1—C12—C17 108.84 (13)
C3—C4—C5 119.89 (14) N1—C12—C13 129.72 (15)
O3—C5—C6 124.97 (14) C17—C12—C13 121.44 (15)
O3—C5—C4 115.28 (13) C14—C13—C12 116.34 (15)
C6—C5—C4 119.76 (14) C14—C13—H13 121.8
C5—C6—C7 119.77 (15) C12—C13—H13 121.8
C5—C6—H6 120.1 C13—C14—C15 122.49 (15)
C7—C6—H6 120.1 C13—C14—H14 118.8
C2—C7—C6 120.67 (15) C15—C14—H14 118.8
C2—C7—H7 119.7 C16—C15—C14 121.95 (15)
C6—C7—H7 119.7 C16—C15—H15 119.0
O2—C8—H8A 109.5 C14—C15—H15 119.0
O2—C8—H8B 109.5 C15—C16—C17 116.82 (15)
H8A—C8—H8B 109.5 C15—C16—H16 121.6
O2—C8—H8C 109.5 C17—C16—H16 121.6
H8A—C8—H8C 109.5 N3—C17—C12 108.39 (13)
H8B—C8—H8C 109.5 N3—C17—C16 130.65 (15)
O3—C9—C10 107.80 (12) C12—C17—C16 120.96 (14)
O3—C9—H9A 110.1 N2—N1—C12 102.55 (12)
C10—C9—H9A 110.1 N1—N2—N3 117.59 (12)
O3—C9—H9B 110.1 N1—N2—C11 121.76 (12)
C10—C9—H9B 110.1 N3—N2—C11 120.63 (12)
H9A—C9—H9B 108.5 N2—N3—C17 102.64 (12)
C9—C10—C11 111.61 (13) C4—O2—C8 116.40 (12)
C9—C10—H10A 109.3 C5—O3—C9 116.98 (11)
O1—C1—C2—C7 175.92 (16) N1—C12—C17—N3 0.19 (17)
O1—C1—C2—C3 −4.6 (2) C13—C12—C17—N3 179.28 (14)
C7—C2—C3—C4 0.0 (2) N1—C12—C17—C16 179.98 (14)
C1—C2—C3—C4 −179.50 (14) C13—C12—C17—C16 −0.9 (2)
C2—C3—C4—O2 179.09 (14) C15—C16—C17—N3 −179.70 (15)
C2—C3—C4—C5 −1.0 (2) C15—C16—C17—C12 0.5 (2)
O2—C4—C5—O3 1.43 (19) C17—C12—N1—N2 −0.25 (16)
C3—C4—C5—O3 −178.48 (13) C13—C12—N1—N2 −179.25 (16)
O2—C4—C5—C6 −178.82 (14) C12—N1—N2—N3 0.26 (17)
C3—C4—C5—C6 1.3 (2) C12—N1—N2—C11 178.47 (13)
O3—C5—C6—C7 179.23 (14) C10—C11—N2—N1 17.3 (2)
C4—C5—C6—C7 −0.5 (2) C10—C11—N2—N3 −164.51 (13)
C3—C2—C7—C6 0.8 (2) N1—N2—N3—C17 −0.14 (17)
C1—C2—C7—C6 −179.71 (14) C11—N2—N3—C17 −178.38 (13)
C5—C6—C7—C2 −0.5 (2) C12—C17—N3—N2 −0.03 (16)
O3—C9—C10—C11 −63.91 (17) C16—C17—N3—N2 −179.80 (15)
C9—C10—C11—N2 177.26 (13) C3—C4—O2—C8 1.1 (2)
N1—C12—C13—C14 179.44 (15) C5—C4—O2—C8 −178.83 (13)
C17—C12—C13—C14 0.6 (2) C6—C5—O3—C9 −9.2 (2)
C12—C13—C14—C15 0.1 (2) C4—C5—O3—C9 170.54 (13)
C13—C14—C15—C16 −0.5 (3) C10—C9—O3—C5 −174.10 (12)
C14—C15—C16—C17 0.1 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YA2115).

References

  1. Al-Soud, Y. A., Al-Masoudi, N. A. & Ferwanah, A. E.-R. S. (2003). Bioorg. Med. Chem.11, 1701–1708. [DOI] [PubMed]
  2. Bruker (2001). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Jin, L., Wang, G.-Z. & Zhou, C.-H. (2009). Acta Cryst. E65, o2164. [DOI] [PMC free article] [PubMed]
  4. Khalafi-Nezhad, A., Soltani Rad, M. N., Mohabatkar, H., Asrari, Z. & Hemmateenejad, B. (2005). Bioorg. Med. Chem.13, 1931–1938. [DOI] [PubMed]
  5. Nanjunda Swamy, S., Basappa, Sarala, G., Priya, B. S., Gaonkar, S. L., Shashidhara Prasad, J. & Rangappa, K. S. (2006). Bioorg. Med. Chem. Lett.16, 999–1004. [DOI] [PubMed]
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Westrip, S. P. (2010). J. Appl. Cryst.43 Submitted.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810015461/ya2115sup1.cif

e-66-o1264-sup1.cif (19KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015461/ya2115Isup2.hkl

e-66-o1264-Isup2.hkl (133.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES