Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 May 29;66(Pt 6):o1495. doi: 10.1107/S1600536810019367

4-(1H-Benzimidazol-2-ylmeth­yl)-2H-1,4-benzothia­zin-3(4H)-one

Hoong-Kun Fun a,*,, Mohd Mustaqim Rosli a, Janardhana Gowda b, A M A Khader b, B Kalluraya b
PMCID: PMC2979569  PMID: 21579557

Abstract

In the title compound, C16H13N3OS, the thio­morpholine ring exists in a screw boat conformation. The angle between the benzimidazole ring system and the benzene ring fused to the thia­zine ring is 67.22 (6)°. In the crystal, mol­ecules form infinite chains along the a axis via inter­molecular N—H⋯N inter­actions. C—H⋯π inter­actions also contribute to the stability of the crystal structure.

Related literature

For the biological activity of mol­ecules containing 1H-benzimidazole, see: Sridhar & Ramesh (2001); Guven et al. (2007); Nofal et al. (2002); Pedini et al. (1994). For a related structure, see: Fun et al. (2009). For ring puckering parameters, see: Cremer & Pople (1975). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).graphic file with name e-66-o1495-scheme1.jpg

Experimental

Crystal data

  • C16H13N3OS

  • M r = 295.35

  • Orthorhombic, Inline graphic

  • a = 9.4498 (8) Å

  • b = 17.0223 (16) Å

  • c = 17.4454 (16) Å

  • V = 2806.2 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 100 K

  • 0.50 × 0.20 × 0.13 mm

Data collection

  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.893, T max = 0.969

  • 16727 measured reflections

  • 4075 independent reflections

  • 3185 reflections with I > 2σ(I)

  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.119

  • S = 1.03

  • 4075 reflections

  • 194 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810019367/wn2387sup1.cif

e-66-o1495-sup1.cif (19.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810019367/wn2387Isup2.hkl

e-66-o1495-Isup2.hkl (199.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1–C6 and C11–C16 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯N2i 0.859 (19) 1.926 (19) 2.7800 (15) 173 (2)
C12—H12ACg1ii 0.93 2.97 3.6736 (16) 134
C3—H3ACg2iii 0.93 2.61 3.4750 (17) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

FHK and MMR thank Universiti Sains Malaysia for the Research University Golden Goose grant (No. 1001/PFIZIK/811012).

supplementary crystallographic information

Comment

A number of molecules containing the 1H-benzimidazole nucleus exhibit a broad spectrum of biological activity, including anti-inflammatory (Sridhar et al., 2001), antifungal (Guven et al., 2007), antibacterial (Nofal et al., 2002) and anthelmintic (Pedini et al., 1994) properties. With these results in mind, we have paid particular attention to the preparation of derivatives of 1H-benzimidazole and we report here the crystal structure of the title compound, a 1H-benzimidazole derivative containing 2H-1,4-benzothiazin-3(4H)-one.

The bond lengths and angles are within normal ranges. The thiomorpholine ring (C1, C6-C8, N3, S1) adopts a screw boat confirmation with puckering parameters (Cremer & Pople, 1975) being Q = 0.6563 (13) Å; θ = 66.76 (12)° and φ = 334.16 (14)°. The angle between the benzimidazole ring system and the benzene ring fused to the thiazine ring is 67.22 (6)°.

The intermolecular interaction N1—H1N1···N2 links the molecules to form infinite chains along the a-axis. The crystal structure is further stabilized by C—H···π interactions involving the C1-C6 (Cg1) and C11-C16 (Cg2) benzene rings (Table 1).

Experimental

A mixture of 2-(3-oxo-2,3-dihydro-4H-1,4-benzothiazin-4-yl)acetic acid (3.3 mmol) (Fun et al., 2009) and o-phenylenediamine (2.2 mmol) was heated at 140 °C under solvent-free conditions for 3 h and completion of the reaction was checked by TLC. The reaction mixture was cooled to room temperature and the solid product was washed with a saturated solution of sodium bicarbonate to yield 4-(1H-benzimidazol-2-ylmethyl)-2H-1,4-benzothiazin-3(4H)-one as a red solid. Single crystals suitable for X-ray analysis were obtained by crystallization from absolute ethanol under slow evaporation (M.p. 493 K).

Refinement

The H atom attached to N1 was located in a difference map and refined isotropically; N1—H1N1 = 0.86 (2) Å. The carbon-bound H atoms were positioned geometrically [C—H = 0.93 or 0.97 Å] and were refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen atoms are shown as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The crystal structure, showing infinite chains along the a-axis. Dashed lines indicate hydrogen bonds. H atoms not involved in the hydrogen bond interactions have been omitted for clarity.

Crystal data

C16H13N3OS F(000) = 1232
Mr = 295.35 Dx = 1.398 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 4703 reflections
a = 9.4498 (8) Å θ = 2.4–31.6°
b = 17.0223 (16) Å µ = 0.23 mm1
c = 17.4454 (16) Å T = 100 K
V = 2806.2 (4) Å3 Block, red
Z = 8 0.50 × 0.20 × 0.13 mm

Data collection

Bruker APEXII DUO CCD area-detector diffractometer 4075 independent reflections
Radiation source: fine-focus sealed tube 3185 reflections with I > 2σ(I)
graphite Rint = 0.040
φ and ω scans θmax = 30.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −13→13
Tmin = 0.893, Tmax = 0.969 k = −23→23
16727 measured reflections l = −24→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0605P)2 + 1.2202P] where P = (Fo2 + 2Fc2)/3
4075 reflections (Δ/σ)max = 0.001
194 parameters Δρmax = 0.44 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.69098 (4) 0.04490 (2) 0.49857 (2) 0.02567 (12)
O1 0.90053 (12) −0.12536 (7) 0.41611 (7) 0.0283 (2)
N1 1.05774 (11) −0.12424 (7) 0.21967 (7) 0.0169 (2)
N2 0.82471 (11) −0.10176 (7) 0.21708 (7) 0.0166 (2)
N3 0.84628 (12) −0.01064 (7) 0.35843 (7) 0.0180 (2)
C1 0.75457 (14) 0.05425 (8) 0.34596 (8) 0.0177 (3)
C2 0.74342 (15) 0.08809 (8) 0.27346 (8) 0.0210 (3)
H2A 0.7935 0.0668 0.2325 0.025*
C3 0.65796 (16) 0.15354 (9) 0.26189 (9) 0.0251 (3)
H3A 0.6530 0.1764 0.2135 0.030*
C4 0.58032 (16) 0.18488 (9) 0.32169 (10) 0.0275 (3)
H4A 0.5232 0.2286 0.3137 0.033*
C5 0.58816 (16) 0.15078 (9) 0.39359 (10) 0.0256 (3)
H5A 0.5346 0.1711 0.4337 0.031*
C6 0.67593 (15) 0.08616 (8) 0.40635 (8) 0.0206 (3)
C7 0.70051 (17) −0.05535 (9) 0.46596 (9) 0.0261 (3)
H7A 0.7100 −0.0900 0.5098 0.031*
H7B 0.6134 −0.0688 0.4396 0.031*
C8 0.82425 (15) −0.06773 (8) 0.41241 (8) 0.0209 (3)
C9 0.96991 (14) −0.02207 (8) 0.30913 (8) 0.0191 (3)
H9A 1.0499 −0.0374 0.3406 0.023*
H9B 0.9933 0.0274 0.2847 0.023*
C10 0.94729 (13) −0.08304 (8) 0.24863 (8) 0.0159 (2)
C11 1.00375 (13) −0.17492 (8) 0.16502 (8) 0.0165 (3)
C12 1.06703 (15) −0.23109 (9) 0.11796 (8) 0.0213 (3)
H12A 1.1636 −0.2415 0.1201 0.026*
C13 0.97847 (17) −0.27045 (9) 0.06787 (9) 0.0245 (3)
H13A 1.0162 −0.3086 0.0356 0.029*
C14 0.83220 (16) −0.25414 (9) 0.06449 (9) 0.0234 (3)
H14A 0.7765 −0.2809 0.0291 0.028*
C15 0.76917 (15) −0.19954 (8) 0.11228 (8) 0.0198 (3)
H15A 0.6724 −0.1898 0.1105 0.024*
C16 0.85770 (13) −0.15965 (8) 0.16350 (8) 0.0158 (2)
H1N1 1.143 (2) −0.1173 (12) 0.2353 (12) 0.033 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0341 (2) 0.02221 (19) 0.02070 (19) −0.00054 (14) 0.00590 (14) −0.00461 (13)
O1 0.0333 (6) 0.0235 (5) 0.0283 (6) 0.0070 (4) 0.0003 (5) 0.0023 (4)
N1 0.0100 (5) 0.0214 (6) 0.0192 (5) −0.0003 (4) −0.0003 (4) −0.0010 (4)
N2 0.0117 (5) 0.0174 (5) 0.0208 (6) −0.0010 (4) 0.0004 (4) −0.0003 (4)
N3 0.0166 (5) 0.0180 (5) 0.0194 (6) 0.0007 (4) 0.0020 (4) −0.0006 (4)
C1 0.0157 (6) 0.0154 (6) 0.0221 (6) −0.0018 (4) 0.0004 (5) −0.0017 (5)
C2 0.0220 (6) 0.0180 (6) 0.0230 (7) −0.0014 (5) 0.0003 (5) −0.0005 (5)
C3 0.0282 (7) 0.0192 (7) 0.0279 (8) −0.0014 (5) −0.0046 (6) 0.0018 (6)
C4 0.0238 (7) 0.0185 (6) 0.0402 (9) 0.0032 (5) −0.0036 (6) −0.0013 (6)
C5 0.0220 (7) 0.0214 (7) 0.0334 (8) 0.0014 (5) 0.0045 (6) −0.0069 (6)
C6 0.0201 (6) 0.0187 (6) 0.0230 (7) −0.0025 (5) 0.0021 (5) −0.0039 (5)
C7 0.0349 (8) 0.0197 (7) 0.0236 (7) −0.0006 (6) 0.0088 (6) −0.0004 (6)
C8 0.0247 (7) 0.0187 (6) 0.0192 (7) −0.0005 (5) −0.0001 (5) −0.0014 (5)
C9 0.0133 (5) 0.0209 (6) 0.0232 (7) −0.0019 (5) 0.0004 (5) −0.0036 (5)
C10 0.0116 (5) 0.0173 (6) 0.0188 (6) −0.0007 (4) 0.0018 (5) 0.0013 (5)
C11 0.0138 (5) 0.0191 (6) 0.0167 (6) −0.0002 (4) 0.0006 (5) 0.0011 (5)
C12 0.0182 (6) 0.0245 (7) 0.0211 (7) 0.0030 (5) 0.0035 (5) −0.0009 (5)
C13 0.0293 (7) 0.0238 (7) 0.0204 (7) 0.0013 (6) 0.0038 (6) −0.0042 (5)
C14 0.0256 (7) 0.0241 (7) 0.0204 (7) −0.0036 (5) −0.0026 (5) −0.0012 (5)
C15 0.0171 (6) 0.0214 (6) 0.0211 (7) −0.0029 (5) −0.0027 (5) 0.0019 (5)
C16 0.0134 (5) 0.0171 (6) 0.0168 (6) −0.0011 (4) 0.0003 (5) 0.0030 (5)

Geometric parameters (Å, °)

S1—C6 1.7611 (16) C5—C6 1.396 (2)
S1—C7 1.8011 (16) C5—H5A 0.9300
O1—C8 1.2191 (18) C7—C8 1.511 (2)
N1—C10 1.3552 (16) C7—H7A 0.9700
N1—C11 1.3831 (17) C7—H7B 0.9700
N1—H1N1 0.86 (2) C9—C10 1.4955 (19)
N2—C10 1.3214 (16) C9—H9A 0.9700
N2—C16 1.3936 (17) C9—H9B 0.9700
N3—C8 1.3692 (19) C11—C12 1.3950 (19)
N3—C1 1.4207 (17) C11—C16 1.4046 (18)
N3—C9 1.4637 (17) C12—C13 1.383 (2)
C1—C2 1.394 (2) C12—H12A 0.9300
C1—C6 1.3990 (19) C13—C14 1.411 (2)
C2—C3 1.391 (2) C13—H13A 0.9300
C2—H2A 0.9300 C14—C15 1.383 (2)
C3—C4 1.382 (2) C14—H14A 0.9300
C3—H3A 0.9300 C15—C16 1.3998 (19)
C4—C5 1.384 (2) C15—H15A 0.9300
C4—H4A 0.9300
C6—S1—C7 95.35 (7) H7A—C7—H7B 108.0
C10—N1—C11 107.20 (11) O1—C8—N3 121.18 (13)
C10—N1—H1N1 122.3 (14) O1—C8—C7 122.47 (14)
C11—N1—H1N1 130.5 (14) N3—C8—C7 116.35 (12)
C10—N2—C16 104.70 (11) N3—C9—C10 113.14 (11)
C8—N3—C1 124.36 (12) N3—C9—H9A 109.0
C8—N3—C9 115.55 (12) C10—C9—H9A 109.0
C1—N3—C9 120.02 (11) N3—C9—H9B 109.0
C2—C1—C6 118.86 (13) C10—C9—H9B 109.0
C2—C1—N3 120.42 (12) H9A—C9—H9B 107.8
C6—C1—N3 120.71 (13) N2—C10—N1 113.27 (12)
C3—C2—C1 120.45 (14) N2—C10—C9 125.91 (12)
C3—C2—H2A 119.8 N1—C10—C9 120.81 (11)
C1—C2—H2A 119.8 N1—C11—C12 132.45 (12)
C4—C3—C2 120.52 (15) N1—C11—C16 105.08 (11)
C4—C3—H3A 119.7 C12—C11—C16 122.47 (13)
C2—C3—H3A 119.7 C13—C12—C11 116.39 (13)
C3—C4—C5 119.58 (14) C13—C12—H12A 121.8
C3—C4—H4A 120.2 C11—C12—H12A 121.8
C5—C4—H4A 120.2 C12—C13—C14 121.59 (13)
C4—C5—C6 120.46 (14) C12—C13—H13A 119.2
C4—C5—H5A 119.8 C14—C13—H13A 119.2
C6—C5—H5A 119.8 C15—C14—C13 121.92 (14)
C5—C6—C1 120.11 (14) C15—C14—H14A 119.0
C5—C6—S1 120.53 (11) C13—C14—H14A 119.0
C1—C6—S1 119.35 (11) C14—C15—C16 116.96 (13)
C8—C7—S1 111.46 (10) C14—C15—H15A 121.5
C8—C7—H7A 109.3 C16—C15—H15A 121.5
S1—C7—H7A 109.3 N2—C16—C15 129.61 (12)
C8—C7—H7B 109.3 N2—C16—C11 109.75 (11)
S1—C7—H7B 109.3 C15—C16—C11 120.64 (13)
C8—N3—C1—C2 −150.61 (14) C8—N3—C9—C10 76.17 (15)
C9—N3—C1—C2 25.96 (19) C1—N3—C9—C10 −100.69 (14)
C8—N3—C1—C6 30.5 (2) C16—N2—C10—N1 0.06 (15)
C9—N3—C1—C6 −152.88 (13) C16—N2—C10—C9 178.82 (13)
C6—C1—C2—C3 1.4 (2) C11—N1—C10—N2 −0.62 (16)
N3—C1—C2—C3 −177.44 (13) C11—N1—C10—C9 −179.45 (12)
C1—C2—C3—C4 −1.5 (2) N3—C9—C10—N2 28.7 (2)
C2—C3—C4—C5 0.1 (2) N3—C9—C10—N1 −152.62 (12)
C3—C4—C5—C6 1.3 (2) C10—N1—C11—C12 −179.20 (15)
C4—C5—C6—C1 −1.4 (2) C10—N1—C11—C16 0.88 (14)
C4—C5—C6—S1 177.68 (12) N1—C11—C12—C13 −178.56 (14)
C2—C1—C6—C5 0.0 (2) C16—C11—C12—C13 1.3 (2)
N3—C1—C6—C5 178.85 (13) C11—C12—C13—C14 0.3 (2)
C2—C1—C6—S1 −179.06 (10) C12—C13—C14—C15 −1.7 (2)
N3—C1—C6—S1 −0.20 (18) C13—C14—C15—C16 1.3 (2)
C7—S1—C6—C5 142.33 (13) C10—N2—C16—C15 −178.42 (14)
C7—S1—C6—C1 −38.62 (13) C10—N2—C16—C11 0.52 (15)
C6—S1—C7—C8 58.75 (12) C14—C15—C16—N2 179.23 (13)
C1—N3—C8—O1 173.88 (13) C14—C15—C16—C11 0.4 (2)
C9—N3—C8—O1 −2.8 (2) N1—C11—C16—N2 −0.88 (15)
C1—N3—C8—C7 −5.6 (2) C12—C11—C16—N2 179.20 (12)
C9—N3—C8—C7 177.65 (12) N1—C11—C16—C15 178.18 (12)
S1—C7—C8—O1 137.50 (14) C12—C11—C16—C15 −1.8 (2)
S1—C7—C8—N3 −42.98 (17)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C11–C16 rings, respectively.
D—H···A D—H H···A D···A D—H···A
N1—H1N1···N2i 0.859 (19) 1.926 (19) 2.7800 (15) 173 (2)
C12—H12A···Cg1ii 0.93 2.97 3.6736 (16) 134
C3—H3A···Cg2iii 0.93 2.61 3.4750 (17) 155

Symmetry codes: (i) x+1/2, y, −z+1/2; (ii) x+5/2, −y−1/2, −z; (iii) x+1, −y−1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2387).

References

  1. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  4. Fun, H.-K., Loh, W.-S., Janardhana, G., Khader, A. M. A. & Kalluraya, B. (2009). Acta Cryst. E65, o2358–o2359. [DOI] [PMC free article] [PubMed]
  5. Güven, Ö. Ö., Erdoğan, T., Göeker, H. & Yıldız, S. (2007). Bioorg. Med. Chem. Lett.17, 2233–2236. [DOI] [PubMed]
  6. Nofal, Z. M., Fahmy, H. H. & Mohamed, H. S. (2002). Arch. Pharm. Res.25, 28–38. [DOI] [PubMed]
  7. Pedini, M., Alunni Bistochi, G., Ricci, A., Bastianini, L. & Lepri, E. (1994). Il Farmaco, 49, 823–827. [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Sridhar, S. K. & Ramesh, A. (2001). Biol. Pharm. Bull.24, 1149–1152. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810019367/wn2387sup1.cif

e-66-o1495-sup1.cif (19.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810019367/wn2387Isup2.hkl

e-66-o1495-Isup2.hkl (199.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES