Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 May 29;66(Pt 6):o1498–o1499. doi: 10.1107/S1600536810019653

3-{2-[2-(3-Hy­droxy­benzyl­idene)hydrazin-1-yl]-1,3-thia­zol-4-yl}-2H-chromen-2-one hemihydrate

Afsheen Arshad a, Hasnah Osman a,, Kit Lam Chan b, Jia Hao Goh c,§, Hoong-Kun Fun c,*,
PMCID: PMC2979574  PMID: 21579559

Abstract

In the title compound, C19H13N3O3S·0.5H2O, both organic mol­ecules (A and B) exist in E configurations with respect to the acyclic C=N bond and have similar overall conformations. In mol­ecule A, the essentially planar thia­zole ring [maximum deviation = 0.010 (2) Å] is inclined at inter­planar angles of 11.44 (10) and 32.50 (12)°, with the 2H-chromene ring system and the benzene ring, respectively. The equivalent values for mol­ecule B are 0.002 (2) Å, 7.71 (9) and 12.51 (12)°. In the crystal structure, neighbouring mol­ecules are inter­connected into infinite layers lying parallel to (010) by O—H⋯O, O—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds. Further stabilization of the crystal structure is provided by weak inter­molecular C—H⋯π and π–π [centroid–centroid distance = 3.6380 (19) Å] inter­actions.

Related literature

For general background to and applications of amino­thia­zoles, see: Anderson et al. (2002); Finn et al. (2004); Gursoy & Karah (2000); Habib & Khalil (1984); Hiremath et al. (1992); Hofmanová et al. (1998); Jayashree et al. (2005); Karah et al. (1998); Kimura et al. (1985); Laffitte et al. (2002); Mitscher (2002); Moffett (1964); Ohkuba et al. (1995); Patt et al. (1992); Tassies et al. (2002); Wattenberg et al. (1979); Weber et al. (1998). For the preparation of the title compound, see: Lv et al. (2010); Siddiqui et al. (2009). For related structures, see: Arshad et al. (2010a,b ). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).graphic file with name e-66-o1498-scheme1.jpg

Experimental

Crystal data

  • C19H13N3O3S·0.5H2O

  • M r = 372.39

  • Monoclinic, Inline graphic

  • a = 8.012 (3) Å

  • b = 32.775 (11) Å

  • c = 12.619 (4) Å

  • β = 93.034 (7)°

  • V = 3309 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 100 K

  • 0.34 × 0.14 × 0.05 mm

Data collection

  • Bruker APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.928, T max = 0.990

  • 31194 measured reflections

  • 7564 independent reflections

  • 5266 reflections with I > 2σ(I)

  • R int = 0.073

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.128

  • S = 1.06

  • 7564 reflections

  • 480 parameters

  • H-atom parameters constrained

  • Δρmax = 0.94 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810019653/hb5467sup1.cif

e-66-o1498-sup1.cif (30.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810019653/hb5467Isup2.hkl

e-66-o1498-Isup2.hkl (370.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of C14A–C19A benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3A—H3OA⋯O3Bi 0.82 2.00 2.808 (3) 170
N2A—H2NA⋯O1Wii 0.88 1.93 2.790 (3) 167
O3B—H3OB⋯O2Biii 0.82 1.93 2.726 (3) 165
N2B—H2NB⋯O2Aiv 0.84 2.05 2.878 (3) 170
O1W—H1W1⋯N1Bv 0.87 2.05 2.888 (3) 161
O1W—H2W1⋯N1Avi 0.88 2.15 2.913 (3) 145
C8A—H8A⋯O1Wvii 0.93 2.60 3.451 (3) 153
C5B—H5BCg1iv 0.93 2.95 3.708 (3) 139

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Acknowledgments

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for a Short-term Grant (No. 304/PKIMIA/639004) to conduct this research. AA thanks the Pakistan Government and PCSIR for financial scholarship support. HKF and JHG thank USM for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship.

supplementary crystallographic information

Comment

The biological activity of aminothiazoles is well documentated. Some of these compounds exhibit very good anti-fungal (Hiremath et al., 1992), anti-bacterial (Habib & Khalil, 1984), anti-tuberculosis (Gursoy & Karah, 2000; Karah et al., 1998) and anti-tumor (Wattenberg et al., 1979) activities. They also have broad applications in the treatment of allergies, Schizophrenia (Ohkuba et al., 1995), inflammation (Jayashree et al., 2005) and hypertension (Patt et al., 1992). Besides that, coumarin and its derivatives also possess significant anti-bacterial (Mitscher, 2002; Laffitte et al., 2002), anti-fungal (Moffett, 1964) and cytotoxic (Weber et al., 1998) activities. They also have pronounced medicinal value as anti-coagulants (Anderson et al., 2002; Tassies et al., 2002), free radical scavengers (Finn et al., 2004), lipoxygenese and cyclooxygenese inhibitors (Kimura et al., 1985, Hofmanová et al., 1998). The title compound, (I) was synthesized by incorporating aminothioazole moiety to a coumarin skeleton and here we present its crystal structure.

The asymmetric unit of the title compound (Fig. 1) comprises of two crystallographically independent 3-{2-[2-(3-hydroxybenzylidene)hydrazinyl]thiazol-4-yl}-2H-chromen-2-one molecules and a water molecule of crystallization. Both of the independent molecules exist in cis configurations with respect to the acyclic N3═C13 double bond. A superposition of the non-H atoms of molecules A and B (Fig. 2) using XP in SHELXTL (Sheldrick, 2008), gave an r.m.s. deviation of 0.447 Å.

In each molecule, the thiazole ring (C10/C11/S1/C12/N1) is essentially planar, with maximum deviations of -0.010 (2) and 0.002 (2) Å, respectively, for atoms C11A of molecule A and C12B of molecule B. In molecule A, the thiazole ring is inclined at interplanar angles of 11.44 (10) and 32.50 (12)°, respectively, with respect to the 2H-chromene ring system (C1A-C9A/O1A) and C14A-C19A benzene ring; the comparable angles for molecule B are 7.71 (9) and 12.51 (12)°, respectively. The bond lengths and angles are comparable to those observed in closely related structures (Arshad et al., 2010a,b).

In the crystal structure (Fig. 3), neighbouring molecules are interconnected into two-dimensional infinite networks parallel to the (010) plane by intermolecular O3A—H3OA···O3B, N2A—H2NA···O1W, O3B—H3OB···O2B, N2B—H2NB···O2A, O1W—H1W1···N1B, O1W—H2W1···N1A and C8A—H8A···O1W hydrogen bonds (Table 1). The crystal structure is further stabilized by weak intermolecular C5B—H5B···Cg1 interactions (Table 1) involving the centroid of C14A—C19A benzene ring as well as Cg2···Cg3 aromatic stacking interactions [Cg2···Cg3 = 3.6380 (19) Å, symmetry code: -x+1, -y, -z+1 where Cg2 and Cg3 are the centroids of benzene (C14B-C19B) and 2H-pyran (C1B/O1B/C2B/C7B/C8B/C9B) rings].

Experimental

3-Hydroxybenzaldehyde thiosemicarbazone (Lv et al., 2010) and 3-[ω-bromoacetyl coumarin] (Siddiqui et al., 2009) were synthesized as reported in the literatures. A solution of 3-[ω-bromoacetyl coumarin] (2.5 mmol) and 3-hydroxybenzaldehyde thiosemicarbazone (2.5 mmol) in chloroform-ethanol (2:1) was refluxed for 1 h at 353 K. A clear solution was formed followed by the deposition of thick yellow precipitates. The reaction mixture was cooled and basified with ammonia. The title compound, (I) was purified and recrystallized as shiny yellow plates of (I) from ethanol-ethyl acetate (1:2); the water of crystallisation was presumably incorporated from the atmosphere.

Refinement

The H atoms bound to O and N atoms were located from the difference Fourier map and constrained to ride with the parent atom with Uiso = 1.5 Ueq(O) or Uiso = 1.2 Ueq(N). All other H atoms were placed in their calculated positions, with C—H = 0.93 Å, and refined using a riding model, with Uiso = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 50 % probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

Fit of molecule A (dashed lines) on molecule B (solid lines). H atoms have been omitted for clarity.

Fig. 3.

Fig. 3.

The crystal structure of (I), viewed along the a axis, showing a two-dimensional infinite network parallel to the (010) plane. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C19H13N3O3S·0.5H2O F(000) = 1544
Mr = 372.39 Dx = 1.495 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3134 reflections
a = 8.012 (3) Å θ = 2.5–27.6°
b = 32.775 (11) Å µ = 0.23 mm1
c = 12.619 (4) Å T = 100 K
β = 93.034 (7)° Plate, yellow
V = 3309 (2) Å3 0.34 × 0.14 × 0.05 mm
Z = 8

Data collection

Bruker APEXII DUO CCD diffractometer 7564 independent reflections
Radiation source: fine-focus sealed tube 5266 reflections with I > 2σ(I)
graphite Rint = 0.073
φ and ω scans θmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −10→10
Tmin = 0.928, Tmax = 0.990 k = −42→42
31194 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0407P)2 + 2.6662P] where P = (Fo2 + 2Fc2)/3
7564 reflections (Δ/σ)max < 0.001
480 parameters Δρmax = 0.94 e Å3
0 restraints Δρmin = −0.31 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1A −0.04957 (8) 0.042270 (18) 0.83927 (5) 0.01871 (15)
O1A −0.0143 (2) −0.12215 (5) 0.63046 (14) 0.0206 (4)
O2A −0.1831 (2) −0.07185 (5) 0.65803 (15) 0.0254 (4)
O3A −0.0075 (3) 0.22741 (6) 0.90542 (17) 0.0346 (5)
H3OA −0.0231 0.2112 0.8563 0.052*
N1A 0.1639 (2) −0.01536 (6) 0.87974 (16) 0.0154 (4)
N2A 0.2018 (3) 0.04304 (6) 0.98605 (16) 0.0170 (4)
H2NA 0.2795 0.0332 1.0306 0.020*
N3A 0.1505 (3) 0.08281 (6) 0.99354 (17) 0.0175 (4)
C1A −0.0463 (3) −0.08587 (7) 0.6792 (2) 0.0203 (5)
C2A 0.1305 (3) −0.14405 (7) 0.6527 (2) 0.0185 (5)
C3A 0.1447 (3) −0.18124 (8) 0.6037 (2) 0.0231 (6)
H3A 0.0598 −0.1910 0.5573 0.028*
C4A 0.2874 (3) −0.20371 (8) 0.6249 (2) 0.0242 (6)
H4A 0.2986 −0.2291 0.5933 0.029*
C5A 0.4147 (3) −0.18901 (8) 0.6929 (2) 0.0242 (6)
H5A 0.5118 −0.2042 0.7052 0.029*
C6A 0.3980 (3) −0.15206 (7) 0.7422 (2) 0.0203 (5)
H6A 0.4832 −0.1425 0.7886 0.024*
C7A 0.2529 (3) −0.12857 (7) 0.7231 (2) 0.0175 (5)
C8A 0.2251 (3) −0.08987 (7) 0.7713 (2) 0.0181 (5)
H8A 0.3072 −0.0791 0.8180 0.022*
C9A 0.0829 (3) −0.06862 (7) 0.75075 (19) 0.0159 (5)
C10A 0.0537 (3) −0.02896 (7) 0.79832 (19) 0.0153 (5)
C11A −0.0693 (3) −0.00203 (7) 0.7687 (2) 0.0182 (5)
H11A −0.1532 −0.0071 0.7166 0.022*
C12A 0.1223 (3) 0.02122 (7) 0.90784 (19) 0.0167 (5)
C13A 0.2049 (3) 0.10343 (7) 1.0744 (2) 0.0183 (5)
H13A 0.2727 0.0914 1.1278 0.022*
C14A 0.1576 (3) 0.14634 (7) 1.0806 (2) 0.0182 (5)
C15A 0.1798 (3) 0.16766 (8) 1.1748 (2) 0.0220 (6)
H15A 0.2258 0.1548 1.2352 0.026*
C16A 0.1327 (3) 0.20862 (8) 1.1787 (2) 0.0286 (6)
H16A 0.1441 0.2228 1.2424 0.034*
C17A 0.0696 (3) 0.22810 (8) 1.0886 (2) 0.0277 (6)
H17A 0.0395 0.2555 1.0914 0.033*
C18A 0.0509 (3) 0.20689 (8) 0.9942 (2) 0.0256 (6)
C19A 0.0919 (3) 0.16639 (7) 0.9902 (2) 0.0207 (5)
H19A 0.0759 0.1521 0.9267 0.025*
S1B 0.78931 (7) 0.008872 (18) 0.47478 (5) 0.01707 (14)
O1B 0.7053 (2) −0.14603 (5) 0.21875 (14) 0.0202 (4)
O2B 0.8716 (2) −0.11627 (5) 0.33656 (15) 0.0234 (4)
O3B 0.9374 (2) 0.18069 (5) 0.72037 (16) 0.0260 (4)
H3OB 0.9854 0.1590 0.7115 0.039*
N1B 0.5592 (2) −0.00941 (6) 0.33149 (16) 0.0159 (4)
N2B 0.5221 (3) 0.05370 (6) 0.41319 (16) 0.0174 (4)
H2NB 0.4267 0.0584 0.3851 0.021*
N3B 0.5912 (3) 0.08171 (6) 0.48285 (16) 0.0162 (4)
C1B 0.7465 (3) −0.11277 (7) 0.2789 (2) 0.0182 (5)
C2B 0.5703 (3) −0.14700 (7) 0.14717 (19) 0.0175 (5)
C3B 0.5399 (3) −0.18320 (8) 0.0931 (2) 0.0224 (6)
H3B 0.6058 −0.2061 0.1073 0.027*
C4B 0.4100 (3) −0.18436 (8) 0.0180 (2) 0.0241 (6)
H4B 0.3878 −0.2084 −0.0195 0.029*
C5B 0.3109 (3) −0.15024 (8) −0.0028 (2) 0.0219 (6)
H5B 0.2235 −0.1515 −0.0543 0.026*
C6B 0.3415 (3) −0.11466 (8) 0.0523 (2) 0.0214 (5)
H6B 0.2751 −0.0919 0.0379 0.026*
C7B 0.4727 (3) −0.11258 (7) 0.13051 (19) 0.0174 (5)
C8B 0.5100 (3) −0.07779 (7) 0.19488 (19) 0.0177 (5)
H8B 0.4432 −0.0547 0.1860 0.021*
C9B 0.6387 (3) −0.07698 (7) 0.26843 (19) 0.0153 (5)
C10B 0.6726 (3) −0.04195 (7) 0.33772 (19) 0.0156 (5)
C11B 0.8019 (3) −0.03722 (7) 0.4095 (2) 0.0176 (5)
H11B 0.8866 −0.0563 0.4222 0.021*
C12B 0.6075 (3) 0.01856 (7) 0.39946 (19) 0.0152 (5)
C13B 0.4999 (3) 0.11281 (7) 0.50071 (19) 0.0171 (5)
H13B 0.3917 0.1141 0.4703 0.021*
C14B 0.5629 (3) 0.14618 (7) 0.56794 (19) 0.0165 (5)
C15B 0.4627 (3) 0.18039 (7) 0.5765 (2) 0.0201 (5)
H15B 0.3557 0.1808 0.5441 0.024*
C16B 0.5224 (3) 0.21406 (7) 0.6334 (2) 0.0215 (5)
H16B 0.4549 0.2369 0.6400 0.026*
C17B 0.6821 (3) 0.21366 (7) 0.6802 (2) 0.0212 (5)
H17B 0.7234 0.2365 0.7166 0.025*
C18B 0.7808 (3) 0.17906 (7) 0.6729 (2) 0.0187 (5)
C19B 0.7216 (3) 0.14544 (7) 0.61789 (19) 0.0174 (5)
H19B 0.7877 0.1222 0.6141 0.021*
O1W 0.5255 (2) 0.97623 (5) 0.87645 (14) 0.0220 (4)
H1W1 0.5231 0.9845 0.8111 0.033*
H2W1 0.4267 0.9713 0.9003 0.033*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1A 0.0181 (3) 0.0184 (3) 0.0194 (3) 0.0046 (2) −0.0013 (2) −0.0010 (2)
O1A 0.0233 (10) 0.0184 (9) 0.0196 (9) −0.0026 (7) −0.0022 (8) −0.0040 (7)
O2A 0.0188 (9) 0.0264 (10) 0.0299 (11) 0.0018 (8) −0.0097 (8) −0.0033 (8)
O3A 0.0465 (13) 0.0223 (10) 0.0337 (12) 0.0053 (9) −0.0083 (10) 0.0015 (9)
N1A 0.0152 (10) 0.0162 (10) 0.0148 (10) −0.0007 (8) −0.0002 (8) 0.0012 (8)
N2A 0.0190 (11) 0.0142 (10) 0.0173 (10) 0.0047 (8) −0.0035 (8) −0.0021 (8)
N3A 0.0172 (10) 0.0142 (10) 0.0212 (11) 0.0028 (8) 0.0017 (9) −0.0015 (8)
C1A 0.0241 (14) 0.0181 (12) 0.0184 (12) −0.0017 (10) −0.0003 (11) 0.0006 (10)
C2A 0.0226 (13) 0.0169 (12) 0.0164 (12) 0.0000 (10) 0.0046 (10) 0.0026 (10)
C3A 0.0300 (15) 0.0210 (13) 0.0184 (13) −0.0081 (11) 0.0033 (11) −0.0020 (11)
C4A 0.0351 (16) 0.0155 (12) 0.0228 (14) −0.0028 (11) 0.0088 (12) −0.0023 (11)
C5A 0.0290 (15) 0.0182 (12) 0.0259 (14) 0.0053 (11) 0.0062 (12) 0.0032 (11)
C6A 0.0224 (13) 0.0185 (12) 0.0202 (13) 0.0024 (10) 0.0016 (11) 0.0008 (10)
C7A 0.0221 (13) 0.0148 (11) 0.0158 (12) −0.0014 (10) 0.0019 (10) 0.0019 (10)
C8A 0.0181 (12) 0.0184 (12) 0.0176 (12) −0.0014 (10) −0.0019 (10) −0.0005 (10)
C9A 0.0166 (12) 0.0169 (11) 0.0143 (11) −0.0018 (10) −0.0001 (10) 0.0032 (9)
C10A 0.0134 (12) 0.0181 (11) 0.0146 (11) −0.0010 (9) 0.0022 (9) 0.0010 (10)
C11A 0.0171 (12) 0.0192 (12) 0.0180 (12) −0.0002 (10) −0.0011 (10) −0.0010 (10)
C12A 0.0143 (12) 0.0184 (12) 0.0174 (12) 0.0005 (9) 0.0016 (10) 0.0021 (10)
C13A 0.0184 (13) 0.0177 (12) 0.0188 (13) 0.0010 (10) 0.0022 (10) 0.0006 (10)
C14A 0.0141 (12) 0.0158 (12) 0.0249 (13) −0.0017 (9) 0.0035 (10) 0.0005 (10)
C15A 0.0214 (13) 0.0231 (13) 0.0217 (13) −0.0028 (11) 0.0037 (11) −0.0009 (11)
C16A 0.0296 (15) 0.0244 (14) 0.0328 (16) −0.0067 (12) 0.0102 (13) −0.0140 (12)
C17A 0.0278 (15) 0.0157 (12) 0.0400 (17) 0.0044 (11) 0.0050 (13) −0.0044 (12)
C18A 0.0220 (14) 0.0204 (13) 0.0341 (16) 0.0018 (11) −0.0020 (12) 0.0007 (12)
C19A 0.0155 (12) 0.0197 (12) 0.0270 (14) −0.0026 (10) 0.0004 (11) 0.0017 (11)
S1B 0.0155 (3) 0.0181 (3) 0.0173 (3) 0.0001 (2) −0.0027 (2) −0.0011 (2)
O1B 0.0229 (9) 0.0144 (8) 0.0230 (9) 0.0012 (7) −0.0023 (8) −0.0020 (7)
O2B 0.0223 (10) 0.0209 (9) 0.0263 (10) 0.0016 (8) −0.0055 (8) 0.0001 (8)
O3B 0.0257 (10) 0.0202 (9) 0.0310 (11) 0.0042 (8) −0.0091 (9) −0.0059 (8)
N1B 0.0148 (10) 0.0161 (10) 0.0168 (10) 0.0014 (8) 0.0012 (8) −0.0015 (8)
N2B 0.0154 (10) 0.0160 (10) 0.0202 (11) 0.0025 (8) −0.0029 (9) −0.0037 (8)
N3B 0.0194 (11) 0.0148 (10) 0.0143 (10) −0.0030 (8) 0.0005 (8) −0.0020 (8)
C1B 0.0208 (13) 0.0160 (12) 0.0180 (12) −0.0020 (10) 0.0025 (10) 0.0013 (10)
C2B 0.0159 (12) 0.0210 (12) 0.0158 (12) −0.0048 (10) 0.0032 (10) −0.0002 (10)
C3B 0.0275 (14) 0.0176 (12) 0.0227 (13) −0.0019 (11) 0.0050 (11) −0.0016 (11)
C4B 0.0288 (15) 0.0220 (13) 0.0221 (13) −0.0077 (11) 0.0071 (12) −0.0047 (11)
C5B 0.0184 (13) 0.0276 (13) 0.0200 (13) −0.0049 (11) 0.0031 (11) −0.0068 (11)
C6B 0.0181 (13) 0.0264 (13) 0.0199 (13) −0.0010 (11) 0.0015 (10) −0.0018 (11)
C7B 0.0166 (12) 0.0183 (12) 0.0178 (12) −0.0024 (10) 0.0040 (10) 0.0000 (10)
C8B 0.0182 (12) 0.0162 (11) 0.0189 (12) 0.0013 (10) 0.0012 (10) 0.0000 (10)
C9B 0.0145 (12) 0.0145 (11) 0.0174 (12) −0.0010 (9) 0.0035 (10) 0.0005 (9)
C10B 0.0169 (12) 0.0147 (11) 0.0151 (12) −0.0006 (9) 0.0016 (10) 0.0000 (9)
C11B 0.0159 (12) 0.0161 (11) 0.0206 (12) 0.0010 (10) 0.0005 (10) 0.0013 (10)
C12B 0.0136 (11) 0.0162 (11) 0.0158 (12) −0.0013 (9) 0.0010 (9) 0.0017 (9)
C13B 0.0149 (12) 0.0180 (12) 0.0183 (12) −0.0016 (10) 0.0000 (10) 0.0025 (10)
C14B 0.0209 (12) 0.0141 (11) 0.0148 (12) −0.0024 (10) 0.0043 (10) 0.0028 (9)
C15B 0.0193 (13) 0.0187 (12) 0.0226 (13) −0.0006 (10) 0.0029 (11) 0.0004 (10)
C16B 0.0239 (13) 0.0153 (12) 0.0258 (14) 0.0030 (10) 0.0059 (11) −0.0011 (10)
C17B 0.0265 (14) 0.0143 (12) 0.0229 (13) −0.0011 (10) 0.0028 (11) −0.0014 (10)
C18B 0.0208 (13) 0.0179 (12) 0.0170 (12) −0.0006 (10) −0.0030 (10) 0.0009 (10)
C19B 0.0209 (13) 0.0137 (11) 0.0179 (12) 0.0015 (10) 0.0029 (10) 0.0018 (10)
O1W 0.0188 (9) 0.0284 (10) 0.0186 (9) 0.0012 (8) −0.0019 (7) 0.0033 (8)

Geometric parameters (Å, °)

S1A—C11A 1.706 (2) S1B—C12B 1.726 (2)
S1A—C12A 1.730 (2) O1B—C1B 1.359 (3)
O1A—C1A 1.369 (3) O1B—C2B 1.372 (3)
O1A—C2A 1.380 (3) O2B—C1B 1.212 (3)
O2A—C1A 1.206 (3) O3B—C18B 1.362 (3)
O3A—C18A 1.367 (3) O3B—H3OB 0.8200
O3A—H3OA 0.8200 N1B—C12B 1.300 (3)
N1A—C12A 1.299 (3) N1B—C10B 1.400 (3)
N1A—C10A 1.392 (3) N2B—C12B 1.355 (3)
N2A—C12A 1.351 (3) N2B—N3B 1.367 (3)
N2A—N3A 1.372 (3) N2B—H2NB 0.8398
N2A—H2NA 0.8779 N3B—C13B 1.281 (3)
N3A—C13A 1.281 (3) C1B—C9B 1.459 (3)
C1A—C9A 1.452 (3) C2B—C7B 1.382 (3)
C2A—C3A 1.374 (3) C2B—C3B 1.384 (3)
C2A—C7A 1.385 (4) C3B—C4B 1.371 (4)
C3A—C4A 1.375 (4) C3B—H3B 0.9300
C3A—H3A 0.9300 C4B—C5B 1.389 (4)
C4A—C5A 1.384 (4) C4B—H4B 0.9300
C4A—H4A 0.9300 C5B—C6B 1.374 (3)
C5A—C6A 1.371 (3) C5B—H5B 0.9300
C5A—H5A 0.9300 C6B—C7B 1.404 (4)
C6A—C7A 1.404 (3) C6B—H6B 0.9300
C6A—H6A 0.9300 C7B—C8B 1.423 (3)
C7A—C8A 1.429 (3) C8B—C9B 1.350 (3)
C8A—C9A 1.348 (3) C8B—H8B 0.9300
C8A—H8A 0.9300 C9B—C10B 1.460 (3)
C9A—C10A 1.456 (3) C10B—C11B 1.348 (3)
C10A—C11A 1.361 (3) C11B—H11B 0.9300
C11A—H11A 0.9300 C13B—C14B 1.458 (3)
C13A—C14A 1.460 (3) C13B—H13B 0.9300
C13A—H13A 0.9300 C14B—C15B 1.386 (3)
C14A—C15A 1.383 (4) C14B—C19B 1.389 (3)
C14A—C19A 1.395 (4) C15B—C16B 1.388 (3)
C15A—C16A 1.396 (4) C15B—H15B 0.9300
C15A—H15A 0.9300 C16B—C17B 1.380 (4)
C16A—C17A 1.376 (4) C16B—H16B 0.9300
C16A—H16A 0.9300 C17B—C18B 1.389 (3)
C17A—C18A 1.381 (4) C17B—H17B 0.9300
C17A—H17A 0.9300 C18B—C19B 1.373 (3)
C18A—C19A 1.369 (3) C19B—H19B 0.9300
C19A—H19A 0.9300 O1W—H1W1 0.8672
S1B—C11B 1.726 (2) O1W—H2W1 0.8763
C11A—S1A—C12A 88.33 (12) C1B—O1B—C2B 123.10 (19)
C1A—O1A—C2A 122.4 (2) C18B—O3B—H3OB 109.5
C18A—O3A—H3OA 109.5 C12B—N1B—C10B 109.3 (2)
C12A—N1A—C10A 109.6 (2) C12B—N2B—N3B 117.6 (2)
C12A—N2A—N3A 114.9 (2) C12B—N2B—H2NB 123.8
C12A—N2A—H2NA 124.4 N3B—N2B—H2NB 118.5
N3A—N2A—H2NA 120.7 C13B—N3B—N2B 115.6 (2)
C13A—N3A—N2A 117.7 (2) O2B—C1B—O1B 115.4 (2)
O2A—C1A—O1A 114.9 (2) O2B—C1B—C9B 126.6 (2)
O2A—C1A—C9A 126.8 (2) O1B—C1B—C9B 118.0 (2)
O1A—C1A—C9A 118.3 (2) O1B—C2B—C7B 120.1 (2)
C3A—C2A—O1A 117.3 (2) O1B—C2B—C3B 117.2 (2)
C3A—C2A—C7A 122.7 (2) C7B—C2B—C3B 122.8 (2)
O1A—C2A—C7A 119.9 (2) C4B—C3B—C2B 118.2 (2)
C2A—C3A—C4A 118.4 (2) C4B—C3B—H3B 120.9
C2A—C3A—H3A 120.8 C2B—C3B—H3B 120.9
C4A—C3A—H3A 120.8 C3B—C4B—C5B 121.0 (2)
C3A—C4A—C5A 120.8 (2) C3B—C4B—H4B 119.5
C3A—C4A—H4A 119.6 C5B—C4B—H4B 119.5
C5A—C4A—H4A 119.6 C6B—C5B—C4B 120.2 (3)
C6A—C5A—C4A 120.1 (2) C6B—C5B—H5B 119.9
C6A—C5A—H5A 119.9 C4B—C5B—H5B 119.9
C4A—C5A—H5A 119.9 C5B—C6B—C7B 120.3 (2)
C5A—C6A—C7A 120.4 (2) C5B—C6B—H6B 119.9
C5A—C6A—H6A 119.8 C7B—C6B—H6B 119.9
C7A—C6A—H6A 119.8 C2B—C7B—C6B 117.6 (2)
C2A—C7A—C6A 117.5 (2) C2B—C7B—C8B 117.8 (2)
C2A—C7A—C8A 118.5 (2) C6B—C7B—C8B 124.5 (2)
C6A—C7A—C8A 124.0 (2) C9B—C8B—C7B 122.5 (2)
C9A—C8A—C7A 121.7 (2) C9B—C8B—H8B 118.7
C9A—C8A—H8A 119.1 C7B—C8B—H8B 118.7
C7A—C8A—H8A 119.1 C8B—C9B—C1B 118.2 (2)
C8A—C9A—C1A 119.0 (2) C8B—C9B—C10B 122.6 (2)
C8A—C9A—C10A 122.3 (2) C1B—C9B—C10B 119.2 (2)
C1A—C9A—C10A 118.7 (2) C11B—C10B—N1B 115.0 (2)
C11A—C10A—N1A 114.6 (2) C11B—C10B—C9B 127.2 (2)
C11A—C10A—C9A 126.6 (2) N1B—C10B—C9B 117.7 (2)
N1A—C10A—C9A 118.7 (2) C10B—C11B—S1B 111.06 (18)
C10A—C11A—S1A 111.28 (19) C10B—C11B—H11B 124.5
C10A—C11A—H11A 124.4 S1B—C11B—H11B 124.5
S1A—C11A—H11A 124.4 N1B—C12B—N2B 123.3 (2)
N1A—C12A—N2A 124.7 (2) N1B—C12B—S1B 116.50 (18)
N1A—C12A—S1A 116.15 (18) N2B—C12B—S1B 120.19 (18)
N2A—C12A—S1A 119.10 (18) N3B—C13B—C14B 121.1 (2)
N3A—C13A—C14A 118.2 (2) N3B—C13B—H13B 119.5
N3A—C13A—H13A 120.9 C14B—C13B—H13B 119.5
C14A—C13A—H13A 120.9 C15B—C14B—C19B 119.9 (2)
C15A—C14A—C19A 119.4 (2) C15B—C14B—C13B 117.9 (2)
C15A—C14A—C13A 120.7 (2) C19B—C14B—C13B 122.1 (2)
C19A—C14A—C13A 119.9 (2) C14B—C15B—C16B 119.9 (2)
C14A—C15A—C16A 119.6 (3) C14B—C15B—H15B 120.1
C14A—C15A—H15A 120.2 C16B—C15B—H15B 120.1
C16A—C15A—H15A 120.2 C17B—C16B—C15B 120.0 (2)
C17A—C16A—C15A 120.4 (3) C17B—C16B—H16B 120.0
C17A—C16A—H16A 119.8 C15B—C16B—H16B 120.0
C15A—C16A—H16A 119.8 C16B—C17B—C18B 119.8 (2)
C16A—C17A—C18A 119.8 (2) C16B—C17B—H17B 120.1
C16A—C17A—H17A 120.1 C18B—C17B—H17B 120.1
C18A—C17A—H17A 120.1 O3B—C18B—C19B 122.6 (2)
O3A—C18A—C19A 121.3 (3) O3B—C18B—C17B 117.0 (2)
O3A—C18A—C17A 118.4 (2) C19B—C18B—C17B 120.4 (2)
C19A—C18A—C17A 120.3 (3) C18B—C19B—C14B 119.9 (2)
C18A—C19A—C14A 120.5 (3) C18B—C19B—H19B 120.0
C18A—C19A—H19A 119.7 C14B—C19B—H19B 120.0
C14A—C19A—H19A 119.7 H1W1—O1W—H2W1 114.1
C11B—S1B—C12B 88.11 (12)
C12A—N2A—N3A—C13A 170.9 (2) C12B—N2B—N3B—C13B −174.0 (2)
C2A—O1A—C1A—O2A −174.4 (2) C2B—O1B—C1B—O2B −178.3 (2)
C2A—O1A—C1A—C9A 4.7 (3) C2B—O1B—C1B—C9B 1.8 (3)
C1A—O1A—C2A—C3A 176.2 (2) C1B—O1B—C2B—C7B 2.5 (3)
C1A—O1A—C2A—C7A −2.9 (3) C1B—O1B—C2B—C3B −178.3 (2)
O1A—C2A—C3A—C4A −179.7 (2) O1B—C2B—C3B—C4B −177.3 (2)
C7A—C2A—C3A—C4A −0.7 (4) C7B—C2B—C3B—C4B 1.8 (4)
C2A—C3A—C4A—C5A −0.9 (4) C2B—C3B—C4B—C5B −0.4 (4)
C3A—C4A—C5A—C6A 1.6 (4) C3B—C4B—C5B—C6B −0.3 (4)
C4A—C5A—C6A—C7A −0.9 (4) C4B—C5B—C6B—C7B −0.3 (4)
C3A—C2A—C7A—C6A 1.3 (4) O1B—C2B—C7B—C6B 176.7 (2)
O1A—C2A—C7A—C6A −179.7 (2) C3B—C2B—C7B—C6B −2.4 (4)
C3A—C2A—C7A—C8A −179.0 (2) O1B—C2B—C7B—C8B −4.4 (3)
O1A—C2A—C7A—C8A 0.1 (4) C3B—C2B—C7B—C8B 176.6 (2)
C5A—C6A—C7A—C2A −0.5 (4) C5B—C6B—C7B—C2B 1.6 (4)
C5A—C6A—C7A—C8A 179.8 (2) C5B—C6B—C7B—C8B −177.3 (2)
C2A—C7A—C8A—C9A 0.8 (4) C2B—C7B—C8B—C9B 1.9 (4)
C6A—C7A—C8A—C9A −179.5 (2) C6B—C7B—C8B—C9B −179.3 (2)
C7A—C8A—C9A—C1A 1.1 (4) C7B—C8B—C9B—C1B 2.3 (4)
C7A—C8A—C9A—C10A −179.3 (2) C7B—C8B—C9B—C10B −177.2 (2)
O2A—C1A—C9A—C8A 175.3 (3) O2B—C1B—C9B—C8B 175.9 (2)
O1A—C1A—C9A—C8A −3.7 (3) O1B—C1B—C9B—C8B −4.2 (3)
O2A—C1A—C9A—C10A −4.4 (4) O2B—C1B—C9B—C10B −4.5 (4)
O1A—C1A—C9A—C10A 176.6 (2) O1B—C1B—C9B—C10B 175.4 (2)
C12A—N1A—C10A—C11A −0.7 (3) C12B—N1B—C10B—C11B −0.3 (3)
C12A—N1A—C10A—C9A 176.8 (2) C12B—N1B—C10B—C9B 179.0 (2)
C8A—C9A—C10A—C11A 167.1 (2) C8B—C9B—C10B—C11B −176.3 (2)
C1A—C9A—C10A—C11A −13.3 (4) C1B—C9B—C10B—C11B 4.1 (4)
C8A—C9A—C10A—N1A −10.1 (4) C8B—C9B—C10B—N1B 4.5 (3)
C1A—C9A—C10A—N1A 169.6 (2) C1B—C9B—C10B—N1B −175.1 (2)
N1A—C10A—C11A—S1A 1.5 (3) N1B—C10B—C11B—S1B 0.1 (3)
C9A—C10A—C11A—S1A −175.7 (2) C9B—C10B—C11B—S1B −179.1 (2)
C12A—S1A—C11A—C10A −1.42 (19) C12B—S1B—C11B—C10B 0.09 (19)
C10A—N1A—C12A—N2A 178.9 (2) C10B—N1B—C12B—N2B −179.2 (2)
C10A—N1A—C12A—S1A −0.4 (3) C10B—N1B—C12B—S1B 0.4 (3)
N3A—N2A—C12A—N1A 172.1 (2) N3B—N2B—C12B—N1B −176.3 (2)
N3A—N2A—C12A—S1A −8.7 (3) N3B—N2B—C12B—S1B 4.2 (3)
C11A—S1A—C12A—N1A 1.1 (2) C11B—S1B—C12B—N1B −0.3 (2)
C11A—S1A—C12A—N2A −178.2 (2) C11B—S1B—C12B—N2B 179.3 (2)
N2A—N3A—C13A—C14A 177.0 (2) N2B—N3B—C13B—C14B −176.0 (2)
N3A—C13A—C14A—C15A 165.4 (2) N3B—C13B—C14B—C15B 174.6 (2)
N3A—C13A—C14A—C19A −15.7 (3) N3B—C13B—C14B—C19B −1.8 (4)
C19A—C14A—C15A—C16A 1.4 (4) C19B—C14B—C15B—C16B 1.1 (4)
C13A—C14A—C15A—C16A −179.7 (2) C13B—C14B—C15B—C16B −175.4 (2)
C14A—C15A—C16A—C17A −2.1 (4) C14B—C15B—C16B—C17B 0.9 (4)
C15A—C16A—C17A—C18A 0.7 (4) C15B—C16B—C17B—C18B −1.9 (4)
C16A—C17A—C18A—O3A −178.1 (3) C16B—C17B—C18B—O3B 179.7 (2)
C16A—C17A—C18A—C19A 1.2 (4) C16B—C17B—C18B—C19B 1.1 (4)
O3A—C18A—C19A—C14A 177.4 (2) O3B—C18B—C19B—C14B −177.7 (2)
C17A—C18A—C19A—C14A −1.9 (4) C17B—C18B—C19B—C14B 0.9 (4)
C15A—C14A—C19A—C18A 0.5 (4) C15B—C14B—C19B—C18B −2.0 (4)
C13A—C14A—C19A—C18A −178.4 (2) C13B—C14B—C19B—C18B 174.4 (2)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of C14A–C19A benzene ring.
D—H···A D—H H···A D···A D—H···A
O3A—H3OA···O3Bi 0.82 2.00 2.808 (3) 170
N2A—H2NA···O1Wii 0.88 1.93 2.790 (3) 167
O3B—H3OB···O2Biii 0.82 1.93 2.726 (3) 165
N2B—H2NB···O2Aiv 0.84 2.05 2.878 (3) 170
O1W—H1W1···N1Bv 0.87 2.05 2.888 (3) 161
O1W—H2W1···N1Avi 0.88 2.15 2.913 (3) 145
C8A—H8A···O1Wvii 0.93 2.60 3.451 (3) 153
C5B—H5B···Cg1iv 0.93 2.95 3.708 (3) 139

Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+1, −z+2; (iii) −x+2, −y, −z+1; (iv) −x, −y, −z+1; (v) −x+1, −y+1, −z+1; (vi) x, y+1, z; (vii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5467).

References

  1. Anderson, D. M., Shelley, S., Crick, N. & Buraglio, L. (2002). J. Clin. Pharmacol.42, 1358–1365. [DOI] [PubMed]
  2. Arshad, A., Osman, H., Chan, K. L., Goh, J. H. & Fun, H.-K. (2010a). Acta Cryst. E66, o1491–o1492. [DOI] [PMC free article] [PubMed]
  3. Arshad, A., Osman, H., Lam, C. K., Quah, C. K. & Fun, H.-K. (2010b). Acta Cryst. E66, o1446–o1447. [DOI] [PMC free article] [PubMed]
  4. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  6. Finn, G. J., Creaven, B. S. & Egan, D. A. (2004). Cancer Lett.214, 43–54. [DOI] [PubMed]
  7. Gursoy, A. & Karah, N. (2000). Arzneim. Forsch. Drug Res.50, 167–172.
  8. Habib, N. S. & Khalil, M. A. (1984). J. Pharm. Sci.73, 982–985. [DOI] [PubMed]
  9. Hiremath, S. P., Swamy, K. M. K. & Mrnthyunjayaswamy, B. H. M. (1992). J. Indian Chem. Soc.69, 87–89.
  10. Hofmanová, J., Kozubík, A., Dusék, L. & Pacherník, J. (1998). Eur. J. Pharmacol.350, 273–284. [DOI] [PubMed]
  11. Jayashree, B. S., Anuradha, D. & Venugopala, N. K. (2005). Asian J. Chem.17, 2093–2095.
  12. Karah, N., Terzioglu, N. & Gursoy, A. (1998). Arzneim. Forsch. Drug Res.48, 758–763. [PubMed]
  13. Kimura, Y., Okuda, H., Arichi, S., Baba, K. & Kozawa, M. (1985). Biochim. Biophys. Acta, 834, 224–229. [PubMed]
  14. Laffitte, D., Lamour, V., Tsvetkov, P. O., Makarov, A. A., Klich, M., Deprez, P., Moras, D., Braind, C. & Gilli, R. (2002). Biochemistry, 41, 7217–7223. [DOI] [PubMed]
  15. Lv, P.-C., Zhou, C.-F., Chen, J., Liu, P.-G., Wang, K.-R., Mao, W.-J., Li, H.-Q., Yang, Y., Xiong, J. & Zhu, H.-L. (2010). Bioorg. Med. Chem.18, 314–319. [DOI] [PubMed]
  16. Mitscher, L. A. (2002). Principles of Medicinal Chemistry, 5th ed., pp. 819–864. Baltimore: Williams & Wilkinsons.
  17. Moffett, R. B. (1964). J. Med. Chem.7, 446–449. [DOI] [PubMed]
  18. Ohkuba, M., Kuno, A., Nakanishi, I. & Takasugi, H. (1995). Chem. Pharm. Bull.43, 1497–1501. [DOI] [PubMed]
  19. Patt, W. C., Hamilton, H. W., Taylor, M. D., Ryan, M. J., Taylor, D. G., Conolly, C. J. C., Doherty, A. M., Klutchko, S. R., Sircar, I., Steinbaugh, B. A., Batley, B. L., Painchaud, C. A., Rapundalo, S. T., Michniewicz, B. M. & Olson, S. C. J. (1992). J. Med. Chem.35, 2562–2572. [DOI] [PubMed]
  20. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  21. Siddiqui, N., Arshad, M. F. & Khan, S. A. (2009). Acta Pol. Pharm. Drug Res.66, 161–167. [PubMed]
  22. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  23. Tassies, D., Freire, C., Puoan, J., Maragall, S., Moonteagudo, J., Ordinas, A. & Reverter, J. C. (2002). Haematologica, 87, 1185–1191. [PubMed]
  24. Wattenberg, L. W., Low, L. K. T. & Fladmoe, A. V. (1979). Cancer Res.39, 1651–1654. [PubMed]
  25. Weber, U. S., Steffen, B. & Siegers, C. (1998). Res. Commun. Mol. Pathol. Pharmacol.99, 193–206. [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810019653/hb5467sup1.cif

e-66-o1498-sup1.cif (30.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810019653/hb5467Isup2.hkl

e-66-o1498-Isup2.hkl (370.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES