Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 May 15;66(Pt 6):m657. doi: 10.1107/S1600536810016983

Hexaaqua­magnesium(II) bis­{[2-(1-phenyl-1H-tetra­zol-5-yl)sulfan­yl]acetate}

Chun-Hua Fu a, Xiang Zhou a, Qing Yu a,*, He-Dong Bian a
PMCID: PMC2979576  PMID: 21579302

Abstract

The asymmetric unit of the title compound, [Mg(H2O)6](C9H7N4O2S)2, contains one-half of a [Mg(H2O)6]2+ cation (Inline graphic symmetry) and one uncoordinated 2-[(1-phenyl-1H-tetra­zol-5-yl)sulfan­yl]acetate anion. The MgII cation is coordinated by six water mol­ecules, exhibiting a slightly distorted octa­hedral coordination. A two-dimensional network parallel to (001) is formed via extensive hydrogen-bonding inter­actions involving the water mol­ecules as donors and the tetra­zole N and carboxyl­ate O atoms of the anion as acceptors. The shortest distance between two adjacent parallel benzene rings is 3.315 (2) Å. The dihedral angle between the benzene ring and the tetra­zole ring is 40.98 (2)°.

Related literature

For general background, see: He et al. (2005); Yang et al. (2008). For synthetic details, see: D’Amico et al. (1957). For related structures with [Mg(H2O)6]2+ cations, see: Zhang et al. (2006); Zhou et al. (2008).graphic file with name e-66-0m657-scheme1.jpg

Experimental

Crystal data

  • [Mg(H2O)6](C9H7N4O2S)2

  • M r = 602.92

  • Triclinic, Inline graphic

  • a = 6.8380 (14) Å

  • b = 7.5220 (15) Å

  • c = 13.556 (3) Å

  • α = 92.57 (3)°

  • β = 99.14 (3)°

  • γ = 100.07 (3)°

  • V = 675.9 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 293 K

  • 0.25 × 0.13 × 0.08 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.806, T max = 0.931

  • 3914 measured reflections

  • 2347 independent reflections

  • 1867 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.122

  • S = 1.02

  • 2347 reflections

  • 202 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810016983/wm2320sup1.cif

e-66-0m657-sup1.cif (17.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810016983/wm2320Isup2.hkl

e-66-0m657-Isup2.hkl (115.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Mg1—O3 2.039 (2)
Mg1—O5 2.061 (2)
Mg1—O4 2.093 (2)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2 0.97 (5) 1.77 (6) 2.711 (3) 164 (5)
O3—H3B⋯O2i 0.75 (4) 2.00 (4) 2.727 (3) 162 (4)
O4—H4A⋯O1ii 0.77 (4) 2.13 (4) 2.899 (3) 172 (4)
O4—H4B⋯N4iii 0.92 (4) 2.01 (4) 2.882 (3) 158 (4)
O5—H5A⋯N3iii 0.84 (4) 2.08 (4) 2.896 (4) 164 (4)
O5—H5B⋯O1 0.84 (4) 1.85 (4) 2.682 (3) 172 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We gratefully acknowledge the Natural Science Foundation of Guangxi (0832098) and the Program of Educational Innovation of Graduate Students (06020703M242).

supplementary crystallographic information

Comment

The design and synthesis of supramolecular complexes with a high-nuclearity and N-containing carboxylate ligands, especially tetrazole-containing ligands, has been a rapidly growing area of research due to their fascinating structures and interesting physical properties (He et al., 2005). Several transition metal and rare earths metal complexes with similar ligand systems were reported (Yang et al., 2008).

We are interested in the solid-state coordination chemistry of ligands derived from 2-(1-phenyl-1H-tetrazol-5-ylthio)acetic acid (HPsta). In order to understand the behavior of alkali earth metals with the HPsta ligand, we prepared the title compound, [Mg(H2O)6](Psta)2, (I), the synthesis and structure of which are reported here.

As shown in Fig. 1, the asymmetric unit of (I) consists of one-half of a [Mg(H2O)6]2+ cation (site symmetry 1) and an uncoordinated 2-(1-phenyl-1H-tetrazol-5-ylthio)acetate monoanion. The MgII atom is coordinated by six water molecules in a slightly distorted octahedral coordination. The corresponding Mg—O distances (Table 1) are in agreement with similar complexes containing the [Mg(H2O)]2+ cation (Zhang et al., 2006; Zhou et al., 2008). The dihedral angle between the benzene ring and the tetrazole ring is 40.98 (2) °. In the crystal structure, the two Psta groups are involved in a number of intermolecular hydrogen bonds (Table 2) involving the O and N atoms as acceptors and the coordinated water molecules as donor groups (Fig. 2; Table 2), leading to a layer structure extending parallel to (001). In addition, π—π stacking is observed with a shortest distance between two adjacent parallel benzene rings of 3.315 (2) Å.

Experimental

The ligand 2-(1-phenyl-1H-tetrazol-5-ylthio)acetic acid (HPsta) was synthesized according to the literature method (D'Amico et al., 1957). To prepare the title complex, the ligand HPsta (0.4 mmol,0.0944 g) was dissolved in methanol (6 ml) at 348 K and an aqueous solution (4 ml) containing MgCO3 (0.0336 g, 0.4 mmol) was added. The resulting solution was stirred at 348 K for 4 h, then cooled to room temperature and filtered. Colorless, prismatic crystals suitable for X-ray diffraction were obtained by slow evaporation over several days, with a yield of 61%. Elemental analysis, found (%):C, 35.79; H, 4.38; O, 26.65; N, 18.52; S, 10.66 calc(%): 35.88; H, 4.32; O, 26.58; N, 18.60; S, 10.63.

Refinement

Water H atoms were located in a difference Fourier map and refined freely. All other H atoms were placed in their calculated positions and refined as riding with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular moieties of (I), showing the atom-numbering scheme. Symmetry code: A -x+2,-y,-z+2. Probability function is drawn at the 50% level.

Fig. 2.

Fig. 2.

Packing of (I), viewed down the a axis. Hydrogen bonding interactions are shown by dashed lines.

Crystal data

[Mg(H2O)6](C9H7N4O2S)2 Z = 1
Mr = 602.92 F(000) = 314.0
Triclinic, P1 Dx = 1.481 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.8380 (14) Å Cell parameters from 1867 reflections
b = 7.5220 (15) Å θ = 2.0–25.0°
c = 13.556 (3) Å µ = 0.29 mm1
α = 92.57 (3)° T = 293 K
β = 99.14 (3)° Prism, colourless
γ = 100.07 (3)° 0.25 × 0.13 × 0.08 mm
V = 675.9 (2) Å3

Data collection

Bruker SMART CCD area-detector diffractometer 2347 independent reflections
Radiation source: fine-focus sealed tube 1867 reflections with I > 2σ(I)
graphite Rint = 0.026
phi and ω scans θmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −8→7
Tmin = 0.806, Tmax = 0.931 k = −8→8
3914 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.067P)2 + 0.250P] where P = (Fo2 + 2Fc2)/3
2347 reflections (Δ/σ)max < 0.001
202 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mg1 1.0000 0.0000 1.0000 0.0290 (3)
C1 0.5668 (4) 0.3487 (4) 0.8626 (2) 0.0316 (6)
C2 0.4066 (4) 0.4641 (4) 0.8376 (2) 0.0334 (7)
H2A 0.4655 0.5792 0.8155 0.040*
H2B 0.3472 0.4874 0.8962 0.040*
C3 0.0428 (4) 0.4804 (4) 0.72657 (19) 0.0292 (6)
C4 −0.1942 (4) 0.3060 (4) 0.5768 (2) 0.0321 (7)
C5 −0.1784 (4) 0.1299 (4) 0.5934 (2) 0.0393 (7)
H5 −0.1309 0.0985 0.6572 0.047*
C6 −0.2343 (4) 0.0001 (4) 0.5137 (3) 0.0491 (9)
H6A −0.2206 −0.1191 0.5232 0.059*
C7 −0.3105 (5) 0.0470 (5) 0.4198 (2) 0.0503 (9)
H7A −0.3477 −0.0407 0.3664 0.060*
C8 −0.3314 (5) 0.2215 (5) 0.4051 (2) 0.0526 (9)
H8A −0.3861 0.2511 0.3420 0.063*
C9 −0.2721 (5) 0.3546 (4) 0.4831 (2) 0.0431 (8)
H9A −0.2842 0.4740 0.4730 0.052*
N1 −0.1273 (3) 0.4464 (3) 0.65654 (16) 0.0326 (6)
N2 −0.2303 (4) 0.5835 (4) 0.66553 (19) 0.0449 (7)
N3 −0.1245 (4) 0.6943 (4) 0.73682 (19) 0.0465 (7)
N4 0.0470 (4) 0.6354 (3) 0.77710 (17) 0.0364 (6)
O1 0.5227 (3) 0.1854 (3) 0.83268 (16) 0.0427 (6)
O2 0.7301 (3) 0.4261 (3) 0.91271 (18) 0.0550 (7)
O3 1.0502 (3) 0.2699 (3) 0.97908 (17) 0.0371 (5)
O4 1.2154 (4) −0.0513 (3) 0.91404 (18) 0.0453 (6)
O5 0.7751 (3) −0.0466 (3) 0.87611 (17) 0.0465 (6)
S1 0.21753 (11) 0.33953 (10) 0.73900 (5) 0.0384 (2)
H5B 0.700 (5) 0.027 (5) 0.857 (2) 0.050 (10)*
H3B 1.122 (5) 0.338 (5) 1.016 (3) 0.048 (11)*
H5A 0.793 (6) −0.110 (5) 0.827 (3) 0.069 (12)*
H4B 1.194 (6) −0.160 (6) 0.877 (3) 0.088 (14)*
H4A 1.291 (6) 0.020 (5) 0.893 (3) 0.058 (13)*
H3A 0.935 (8) 0.313 (7) 0.944 (4) 0.13 (2)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mg1 0.0306 (7) 0.0222 (6) 0.0334 (7) 0.0083 (5) 0.0007 (5) −0.0019 (5)
C1 0.0297 (15) 0.0306 (15) 0.0319 (14) 0.0047 (12) −0.0013 (12) 0.0008 (12)
C2 0.0324 (16) 0.0308 (14) 0.0343 (15) 0.0082 (12) −0.0033 (12) −0.0029 (12)
C3 0.0292 (15) 0.0322 (15) 0.0266 (13) 0.0097 (12) 0.0018 (11) −0.0003 (12)
C4 0.0255 (15) 0.0358 (16) 0.0339 (15) 0.0065 (12) 0.0024 (11) −0.0041 (12)
C5 0.0311 (16) 0.0384 (17) 0.0465 (17) 0.0091 (13) −0.0016 (13) 0.0013 (14)
C6 0.0349 (18) 0.0360 (17) 0.073 (2) 0.0084 (14) 0.0021 (16) −0.0108 (16)
C7 0.0375 (18) 0.057 (2) 0.053 (2) 0.0069 (15) 0.0059 (15) −0.0239 (17)
C8 0.051 (2) 0.069 (2) 0.0327 (16) 0.0058 (17) −0.0001 (14) −0.0053 (16)
C9 0.0505 (19) 0.0411 (17) 0.0350 (16) 0.0109 (14) −0.0037 (14) 0.0036 (14)
N1 0.0326 (13) 0.0342 (13) 0.0319 (12) 0.0148 (10) −0.0002 (10) −0.0021 (10)
N2 0.0429 (15) 0.0470 (15) 0.0463 (15) 0.0262 (12) −0.0046 (12) −0.0083 (13)
N3 0.0496 (16) 0.0457 (16) 0.0458 (15) 0.0250 (13) −0.0013 (12) −0.0113 (13)
N4 0.0380 (14) 0.0347 (13) 0.0375 (13) 0.0167 (11) 0.0007 (11) −0.0051 (11)
O1 0.0356 (12) 0.0297 (11) 0.0581 (13) 0.0117 (9) −0.0097 (10) −0.0065 (10)
O2 0.0371 (13) 0.0327 (12) 0.0827 (17) 0.0054 (9) −0.0239 (12) −0.0032 (11)
O3 0.0390 (13) 0.0231 (10) 0.0454 (12) 0.0059 (9) −0.0035 (10) −0.0018 (10)
O4 0.0471 (15) 0.0331 (12) 0.0552 (14) −0.0001 (11) 0.0188 (12) −0.0099 (11)
O5 0.0509 (14) 0.0469 (14) 0.0413 (13) 0.0279 (11) −0.0094 (10) −0.0129 (11)
S1 0.0359 (4) 0.0357 (4) 0.0410 (4) 0.0180 (3) −0.0097 (3) −0.0103 (3)

Geometric parameters (Å, °)

Mg1—O3i 2.039 (2) C5—C6 1.383 (4)
Mg1—O3 2.039 (2) C5—H5 0.9300
Mg1—O5i 2.061 (2) C6—C7 1.382 (5)
Mg1—O5 2.061 (2) C6—H6A 0.9300
Mg1—O4 2.093 (2) C7—C8 1.365 (5)
Mg1—O4i 2.093 (2) C7—H7A 0.9300
C1—O2 1.242 (3) C8—C9 1.383 (4)
C1—O1 1.246 (3) C8—H8A 0.9300
C1—C2 1.519 (4) C9—H9A 0.9300
C2—S1 1.803 (3) N1—N2 1.358 (3)
C2—H2A 0.9700 N2—N3 1.284 (3)
C2—H2B 0.9700 N3—N4 1.367 (3)
C3—N4 1.319 (3) O3—H3B 0.75 (4)
C3—N1 1.358 (3) O3—H3A 0.97 (6)
C3—S1 1.725 (3) O4—H4B 0.91 (5)
C4—C5 1.373 (4) O4—H4A 0.77 (4)
C4—C9 1.388 (4) O5—H5B 0.84 (4)
C4—N1 1.438 (3) O5—H5A 0.84 (4)
O3i—Mg1—O3 180.000 (1) C4—C5—H5 120.6
O3i—Mg1—O5i 90.36 (10) C6—C5—H5 120.6
O3—Mg1—O5i 89.64 (10) C7—C6—C5 120.1 (3)
O3i—Mg1—O5 89.64 (10) C7—C6—H6A 119.9
O3—Mg1—O5 90.36 (10) C5—C6—H6A 119.9
O5i—Mg1—O5 180.000 (1) C8—C7—C6 120.4 (3)
O3i—Mg1—O4 87.11 (10) C8—C7—H7A 119.8
O3—Mg1—O4 92.89 (10) C6—C7—H7A 119.8
O5i—Mg1—O4 88.33 (10) C7—C8—C9 120.6 (3)
O5—Mg1—O4 91.67 (10) C7—C8—H8A 119.7
O3i—Mg1—O4i 92.89 (10) C9—C8—H8A 119.7
O3—Mg1—O4i 87.11 (10) C8—C9—C4 118.5 (3)
O5i—Mg1—O4i 91.67 (10) C8—C9—H9A 120.8
O5—Mg1—O4i 88.33 (10) C4—C9—H9A 120.8
O4—Mg1—O4i 180.000 (1) N2—N1—C3 108.3 (2)
O2—C1—O1 125.7 (3) N2—N1—C4 120.9 (2)
O2—C1—C2 116.6 (2) C3—N1—C4 130.5 (2)
O1—C1—C2 117.6 (2) N3—N2—N1 106.2 (2)
C1—C2—S1 107.16 (18) N2—N3—N4 111.7 (2)
C1—C2—H2A 110.3 C3—N4—N3 105.8 (2)
S1—C2—H2A 110.3 Mg1—O3—H3B 123 (3)
C1—C2—H2B 110.3 Mg1—O3—H3A 115 (3)
S1—C2—H2B 110.3 H3B—O3—H3A 115 (4)
H2A—C2—H2B 108.5 Mg1—O4—H4B 119 (3)
N4—C3—N1 108.1 (2) Mg1—O4—H4A 127 (3)
N4—C3—S1 129.0 (2) H4B—O4—H4A 111 (4)
N1—C3—S1 122.93 (19) Mg1—O5—H5B 125 (2)
C5—C4—C9 121.5 (3) Mg1—O5—H5A 118 (3)
C5—C4—N1 120.5 (2) H5B—O5—H5A 110 (3)
C9—C4—N1 118.0 (3) C3—S1—C2 100.91 (12)
C4—C5—C6 118.9 (3)
O2—C1—C2—S1 164.8 (2) C5—C4—N1—N2 −142.3 (3)
O1—C1—C2—S1 −16.2 (3) C9—C4—N1—N2 38.4 (4)
C9—C4—C5—C6 2.6 (4) C5—C4—N1—C3 44.2 (4)
N1—C4—C5—C6 −176.6 (3) C9—C4—N1—C3 −135.0 (3)
C4—C5—C6—C7 −2.0 (5) C3—N1—N2—N3 0.7 (3)
C5—C6—C7—C8 −0.1 (5) C4—N1—N2—N3 −174.0 (3)
C6—C7—C8—C9 1.6 (5) N1—N2—N3—N4 −0.5 (4)
C7—C8—C9—C4 −1.0 (5) N1—C3—N4—N3 0.3 (3)
C5—C4—C9—C8 −1.1 (5) S1—C3—N4—N3 178.7 (2)
N1—C4—C9—C8 178.1 (3) N2—N3—N4—C3 0.1 (4)
N4—C3—N1—N2 −0.7 (3) N4—C3—S1—C2 −0.9 (3)
S1—C3—N1—N2 −179.1 (2) N1—C3—S1—C2 177.1 (2)
N4—C3—N1—C4 173.4 (3) C1—C2—S1—C3 176.0 (2)
S1—C3—N1—C4 −5.0 (4)

Symmetry codes: (i) −x+2, −y, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3A···O2 0.97 (5) 1.77 (6) 2.711 (3) 164 (5)
O3—H3B···O2ii 0.75 (4) 2.00 (4) 2.727 (3) 162 (4)
O4—H4A···O1iii 0.77 (4) 2.13 (4) 2.899 (3) 172 (4)
O4—H4B···N4iv 0.92 (4) 2.01 (4) 2.882 (3) 158 (4)
O5—H5A···N3iv 0.84 (4) 2.08 (4) 2.896 (4) 164 (4)
O5—H5B···O1 0.84 (4) 1.85 (4) 2.682 (3) 172 (3)

Symmetry codes: (ii) −x+2, −y+1, −z+2; (iii) x+1, y, z; (iv) x+1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2320).

References

  1. Bruker (2001). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. D’Amico, J., Harman, M. & Cooper, R. H. (1957). J. Am. Chem. Soc.79, 5270–5272.
  3. He, F., Tong, M.-L., Yu, X.-L. & Chen, X.-M. (2005). Inorg. Chem.44, 559–565. [DOI] [PubMed]
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Yang, G.-W., Li, Q.-Y., Zhou, Y., Sha, P., Ma, Y.-S. & Yuan, R.-X. (2008). Inorg. Chem. Commun.11, 723–726.
  6. Zhang, X.-F., Gao, S., Huo, L.-H. & Zhao, H. (2006). Acta Cryst. E62, m2898–m2900.
  7. Zhou, Q.-P. Zhang, G.-F & She, J.-B. (2008). J. Coord. Chem.61, 2601–2614.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810016983/wm2320sup1.cif

e-66-0m657-sup1.cif (17.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810016983/wm2320Isup2.hkl

e-66-0m657-Isup2.hkl (115.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES