Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 May 29;66(Pt 6):o1493. doi: 10.1107/S1600536810019446

(E)-N′-(2,4,6-Trimethyl­benzyl­idene)isonicotinohydrazide

H S Naveenkumar a, Amirin Sadikun a,, Pazilah Ibrahim a, Jia Hao Goh b,§, Hoong-Kun Fun b,*,
PMCID: PMC2979577  PMID: 21579555

Abstract

The title isoniazid derivative, C16H17N3O, exists in an E configuration with respect to the Schiff base C=N bond. The pyridine ring is essentially planar [maximum deviation = 0.009 (3) Å]. The mean plane through the hydrazide unit forms dihedral angles of 38.38 (16) and 39.42 (16)°, respectively, with the pyridine and benzene rings. In the crystal structure, symmetry-related mol­ecules are linked via inter­molecular N—H⋯O hydrogen bonds into chains along [100]. The crystal structure is further stabilized by weak inter­molecular C—H⋯π inter­actions.

Related literature

For general background to and applications of isoniazid derivatives, see: Janin (2007); Maccari et al. (2005); Slayden & Barry (2000); Kahwa et al. (1986). For the preparation of the title compound, see: Lourenco et al. (2008). For related structures, see: Naveenkumar et al. (2009, 2010a,b ); Shi (2005).graphic file with name e-66-o1493-scheme1.jpg

Experimental

Crystal data

  • C16H17N3O

  • M r = 267.33

  • Monoclinic, Inline graphic

  • a = 4.7966 (7) Å

  • b = 34.268 (7) Å

  • c = 8.3795 (14) Å

  • β = 96.203 (14)°

  • V = 1369.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.35 × 0.10 × 0.07 mm

Data collection

  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.971, T max = 0.994

  • 12980 measured reflections

  • 3127 independent reflections

  • 2043 reflections with I > 2σ(I)

  • R int = 0.070

Refinement

  • R[F 2 > 2σ(F 2)] = 0.074

  • wR(F 2) = 0.160

  • S = 1.11

  • 3127 reflections

  • 188 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810019446/lh5051sup1.cif

e-66-o1493-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810019446/lh5051Isup2.hkl

e-66-o1493-Isup2.hkl (153.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1-C5/N1 pyridine ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1i 0.93 (3) 1.97 (3) 2.844 (3) 157 (3)
C16—H16BCg1i 0.96 2.96 3.551 (3) 121

Symmetry code: (i) Inline graphic.

Acknowledgments

This research was supported by Universiti Sains Malaysia (USM) under the Fundamental Research Grant Scheme (203/PFARMASI/671157). HSN and JHG are grateful to USM for USM Fellowships. HKF and JHG thank USM for the Research University Golden Goose Grant (1001/PFIZIK/811012).

supplementary crystallographic information

Comment

In the search of new compounds, isoniazid derivatives have been found to possess potential tuberculostatic activity (Janin, 2007; Maccari et al., 2005; Slayden & Barry, 2000). Schiff bases have attracted much attention because of their biological activity (Kahwa et al., 1986). As part of our current work on the synthesis of (E)-N'-substituted isonicotinohydrazide derivatives, in this paper we report the crystal structure of the title isoniazid derivative.

The title isoniazid derivative (Fig. 1) exists in an E configuration with respective to the Schiff base C7═N3 bond [C7═N3 = 1.280 (3) Å; torsion angle N2–N3–C7–C8 = 179.4 (2)°]. The pyridine ring with atom sequence C1/C2/N1/C3/C4/C5 is essentially planar, with a maximum deviation of 0.009 (3) Å at atom C4. The mean plane through the hydrazide unit (O1/C6/N2/N3/C7) forms dihedral angles of 38.38 (16) and 39.42 (16)°, respectively, with the pyridine and benzene (C8-C13) rings. The bond lengths and angles are consistent to those observed in closely related structures (Naveenkumar et al., 2009; 2010a,b; Shi, 2005).

In the crystal structure (Fig. 2), adjacent molecules are linked into one-dimensional chains along the [100] direction via intermolecular N2—H1N2···O1i hydrogen bonds (Table 1). The crystal structure is further stabilized by weak intermolecular C16—H16B···Cg1i interactions (Table 1) involving the centroid of the pyridine ring.

Experimental

The title isoniazid derivative was prepared following the procedure by Lourenco et al., (2008). The title derivative was prepared by the reaction between 2,4,6-trimethylbenzaldehyde (1.0 eq) with isoniazid (1.0 eq) in ethanol/water. After stirring for 1-3 h at room temperature, the resulting mixture was concentrated under reduced pressure. The residue was purified by washing with cold ethanol and ethyl ether to afford the pure derivative. Colourless single crystals suitable for X-ray analysis were obtained by slow evaporation with dimethyl sulfoxide.

Refinement

Atom H1N2 was located from difference Fourier map and allowed to refine freely. All other H atoms were placed in calculated positions, with C—H = 0.93 or 0.96 Å, Uiso = 1.2 or 1.5 Ueq(C). These H atoms were refined as riding on their parent atoms. A rotating group model was used for the methyl groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title derivative with atom labels and 50% probability ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

The crystal structure of title derivative, viewed along the c axis, showing adjacent molecules being linked into one-dimensional chains along the [100] direction. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C16H17N3O F(000) = 568
Mr = 267.33 Dx = 1.297 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2541 reflections
a = 4.7966 (7) Å θ = 2.4–30.0°
b = 34.268 (7) Å µ = 0.08 mm1
c = 8.3795 (14) Å T = 100 K
β = 96.203 (14)° Needle, colourless
V = 1369.3 (4) Å3 0.35 × 0.10 × 0.07 mm
Z = 4

Data collection

Bruker APEXII DUO CCD area-detector diffractometer 3127 independent reflections
Radiation source: fine-focus sealed tube 2043 reflections with I > 2σ(I)
graphite Rint = 0.070
φ and ω scans θmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −6→6
Tmin = 0.971, Tmax = 0.994 k = −44→43
12980 measured reflections l = −10→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160 H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0432P)2 + 1.4572P] where P = (Fo2 + 2Fc2)/3
3127 reflections (Δ/σ)max < 0.001
188 parameters Δρmax = 0.48 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.9087 (4) 0.22119 (6) 0.3351 (3) 0.0317 (5)
N1 0.3263 (5) 0.34311 (7) 0.2703 (3) 0.0306 (6)
N2 0.4637 (5) 0.19838 (6) 0.2872 (3) 0.0213 (5)
N3 0.5529 (4) 0.16006 (6) 0.2958 (3) 0.0225 (5)
C1 0.3140 (5) 0.27683 (7) 0.1801 (3) 0.0219 (6)
H1A 0.2303 0.2581 0.1102 0.026*
C2 0.2194 (6) 0.31475 (8) 0.1741 (4) 0.0258 (6)
H2A 0.0708 0.3210 0.0977 0.031*
C3 0.5418 (6) 0.33331 (8) 0.3769 (4) 0.0329 (7)
H3A 0.6210 0.3526 0.4457 0.039*
C4 0.6534 (6) 0.29642 (8) 0.3909 (3) 0.0268 (6)
H4A 0.8062 0.2913 0.4660 0.032*
C5 0.5375 (5) 0.26708 (7) 0.2929 (3) 0.0213 (6)
C6 0.6561 (5) 0.22694 (8) 0.3077 (3) 0.0216 (6)
C7 0.3557 (5) 0.13476 (7) 0.2787 (3) 0.0225 (6)
H7A 0.1699 0.1429 0.2631 0.027*
C8 0.4207 (5) 0.09301 (7) 0.2837 (3) 0.0218 (6)
C9 0.6338 (5) 0.07743 (8) 0.3932 (3) 0.0230 (6)
C10 0.6948 (5) 0.03831 (8) 0.3826 (3) 0.0239 (6)
H10A 0.8364 0.0279 0.4547 0.029*
C11 0.5558 (5) 0.01384 (7) 0.2701 (3) 0.0219 (6)
C12 0.3405 (5) 0.02938 (7) 0.1670 (3) 0.0219 (6)
H12A 0.2411 0.0131 0.0924 0.026*
C13 0.2675 (5) 0.06847 (7) 0.1712 (3) 0.0212 (6)
C14 0.7896 (6) 0.10107 (8) 0.5253 (3) 0.0289 (7)
H14A 0.8591 0.0841 0.6117 0.043*
H14B 0.6652 0.1200 0.5639 0.043*
H14C 0.9440 0.1142 0.4848 0.043*
C15 0.6406 (6) −0.02825 (8) 0.2617 (3) 0.0278 (6)
H15A 0.6317 −0.0403 0.3644 0.042*
H15C 0.8287 −0.0299 0.2331 0.042*
H15D 0.5155 −0.0415 0.1823 0.042*
C16 0.0339 (5) 0.08385 (8) 0.0537 (3) 0.0266 (6)
H16A −0.0566 0.0625 −0.0053 0.040*
H16D 0.1094 0.1015 −0.0194 0.040*
H16B −0.1001 0.0973 0.1108 0.040*
H1N2 0.271 (7) 0.2019 (8) 0.278 (4) 0.033 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0158 (10) 0.0349 (11) 0.0431 (13) 0.0011 (8) −0.0035 (9) 0.0082 (9)
N1 0.0296 (14) 0.0280 (13) 0.0340 (15) 0.0002 (10) 0.0018 (11) −0.0029 (11)
N2 0.0157 (12) 0.0217 (11) 0.0252 (13) 0.0021 (8) −0.0035 (9) 0.0027 (9)
N3 0.0204 (12) 0.0230 (12) 0.0232 (13) 0.0026 (9) −0.0012 (9) 0.0003 (9)
C1 0.0199 (13) 0.0243 (14) 0.0207 (15) −0.0034 (10) −0.0023 (11) 0.0017 (11)
C2 0.0199 (14) 0.0277 (15) 0.0287 (16) 0.0012 (11) −0.0029 (12) 0.0033 (12)
C3 0.0346 (18) 0.0314 (16) 0.0317 (18) −0.0073 (12) −0.0013 (14) −0.0062 (13)
C4 0.0228 (14) 0.0329 (16) 0.0227 (15) −0.0039 (11) −0.0068 (12) 0.0000 (12)
C5 0.0172 (13) 0.0267 (14) 0.0206 (14) −0.0013 (10) 0.0039 (11) 0.0045 (11)
C6 0.0153 (13) 0.0291 (14) 0.0193 (14) −0.0018 (10) −0.0033 (11) 0.0048 (11)
C7 0.0163 (13) 0.0282 (14) 0.0226 (15) 0.0023 (10) 0.0007 (11) 0.0024 (11)
C8 0.0244 (14) 0.0175 (13) 0.0252 (15) 0.0002 (10) 0.0103 (12) 0.0013 (11)
C9 0.0224 (14) 0.0269 (14) 0.0200 (15) −0.0015 (11) 0.0031 (11) 0.0018 (11)
C10 0.0203 (14) 0.0291 (15) 0.0213 (15) 0.0046 (10) −0.0019 (11) 0.0046 (11)
C11 0.0211 (14) 0.0245 (14) 0.0205 (14) −0.0005 (10) 0.0037 (11) 0.0016 (11)
C12 0.0206 (14) 0.0222 (13) 0.0231 (15) −0.0016 (10) 0.0032 (11) −0.0006 (11)
C13 0.0161 (13) 0.0243 (14) 0.0239 (15) −0.0005 (10) 0.0059 (11) 0.0028 (11)
C14 0.0318 (16) 0.0275 (15) 0.0261 (16) 0.0015 (11) −0.0028 (13) 0.0014 (12)
C15 0.0316 (16) 0.0277 (15) 0.0232 (16) 0.0053 (12) −0.0018 (12) 0.0022 (12)
C16 0.0214 (14) 0.0246 (14) 0.0337 (17) 0.0007 (11) 0.0033 (12) 0.0015 (12)

Geometric parameters (Å, °)

O1—C6 1.225 (3) C8—C13 1.409 (4)
N1—C2 1.330 (4) C9—C10 1.377 (4)
N1—C3 1.334 (4) C9—C14 1.504 (4)
N2—C6 1.343 (3) C10—C11 1.378 (4)
N2—N3 1.380 (3) C10—H10A 0.9300
N2—H1N2 0.93 (3) C11—C12 1.380 (4)
N3—C7 1.280 (3) C11—C15 1.502 (4)
C1—C2 1.375 (4) C12—C13 1.386 (3)
C1—C5 1.391 (4) C12—H12A 0.9300
C1—H1A 0.9300 C13—C16 1.505 (4)
C2—H2A 0.9300 C14—H14A 0.9600
C3—C4 1.373 (4) C14—H14B 0.9600
C3—H3A 0.9300 C14—H14C 0.9600
C4—C5 1.377 (4) C15—H15A 0.9600
C4—H4A 0.9300 C15—H15C 0.9600
C5—C6 1.489 (4) C15—H15D 0.9600
C7—C8 1.464 (4) C16—H16A 0.9600
C7—H7A 0.9300 C16—H16D 0.9600
C8—C9 1.403 (4) C16—H16B 0.9600
C2—N1—C3 116.2 (2) C8—C9—C14 123.1 (2)
C6—N2—N3 118.8 (2) C9—C10—C11 123.1 (3)
C6—N2—H1N2 125.5 (18) C9—C10—H10A 118.5
N3—N2—H1N2 115.4 (18) C11—C10—H10A 118.5
C7—N3—N2 114.7 (2) C10—C11—C12 117.9 (2)
C2—C1—C5 118.6 (3) C10—C11—C15 120.2 (2)
C2—C1—H1A 120.7 C12—C11—C15 122.0 (2)
C5—C1—H1A 120.7 C11—C12—C13 122.1 (3)
N1—C2—C1 124.4 (3) C11—C12—H12A 119.0
N1—C2—H2A 117.8 C13—C12—H12A 119.0
C1—C2—H2A 117.8 C12—C13—C8 118.6 (2)
N1—C3—C4 123.8 (3) C12—C13—C16 119.6 (2)
N1—C3—H3A 118.1 C8—C13—C16 121.8 (2)
C4—C3—H3A 118.1 C9—C14—H14A 109.5
C3—C4—C5 119.5 (3) C9—C14—H14B 109.5
C3—C4—H4A 120.2 H14A—C14—H14B 109.5
C5—C4—H4A 120.2 C9—C14—H14C 109.5
C4—C5—C1 117.5 (2) H14A—C14—H14C 109.5
C4—C5—C6 119.9 (2) H14B—C14—H14C 109.5
C1—C5—C6 122.5 (2) C11—C15—H15A 109.5
O1—C6—N2 124.0 (2) C11—C15—H15C 109.5
O1—C6—C5 121.7 (2) H15A—C15—H15C 109.5
N2—C6—C5 114.3 (2) C11—C15—H15D 109.5
N3—C7—C8 120.4 (2) H15A—C15—H15D 109.5
N3—C7—H7A 119.8 H15C—C15—H15D 109.5
C8—C7—H7A 119.8 C13—C16—H16A 109.5
C9—C8—C13 120.1 (2) C13—C16—H16D 109.5
C9—C8—C7 121.9 (2) H16A—C16—H16D 109.5
C13—C8—C7 118.0 (2) C13—C16—H16B 109.5
C10—C9—C8 118.2 (2) H16A—C16—H16B 109.5
C10—C9—C14 118.7 (2) H16D—C16—H16B 109.5
C6—N2—N3—C7 178.4 (2) N3—C7—C8—C13 −138.1 (3)
C3—N1—C2—C1 0.9 (4) C13—C8—C9—C10 2.7 (4)
C5—C1—C2—N1 −0.5 (4) C7—C8—C9—C10 −175.6 (2)
C2—N1—C3—C4 −0.1 (4) C13—C8—C9—C14 −174.7 (2)
N1—C3—C4—C5 −1.2 (5) C7—C8—C9—C14 7.1 (4)
C3—C4—C5—C1 1.7 (4) C8—C9—C10—C11 −0.3 (4)
C3—C4—C5—C6 −179.7 (3) C14—C9—C10—C11 177.2 (2)
C2—C1—C5—C4 −0.9 (4) C9—C10—C11—C12 −1.9 (4)
C2—C1—C5—C6 −179.5 (2) C9—C10—C11—C15 177.8 (3)
N3—N2—C6—O1 −0.6 (4) C10—C11—C12—C13 1.8 (4)
N3—N2—C6—C5 178.9 (2) C15—C11—C12—C13 −177.9 (2)
C4—C5—C6—O1 −37.5 (4) C11—C12—C13—C8 0.6 (4)
C1—C5—C6—O1 141.0 (3) C11—C12—C13—C16 178.9 (2)
C4—C5—C6—N2 142.9 (3) C9—C8—C13—C12 −2.8 (4)
C1—C5—C6—N2 −38.5 (4) C7—C8—C13—C12 175.5 (2)
N2—N3—C7—C8 179.4 (2) C9—C8—C13—C16 178.9 (2)
N3—C7—C8—C9 40.1 (4) C7—C8—C13—C16 −2.9 (4)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1-C5/N1 pyridine ring.
D—H···A D—H H···A D···A D—H···A
N2—H1N2···O1i 0.93 (3) 1.97 (3) 2.844 (3) 157 (3)
C16—H16B···Cg1i 0.96 2.96 3.551 (3) 121

Symmetry codes: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5051).

References

  1. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Janin, Y. L. (2007). Bioorg. Med. Chem.15, 2479–2513. [DOI] [PubMed]
  3. Kahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.
  4. Lourenco, M. C. S., Ferreira, M. L., de Souza, M. V. N., Peralta, M. A., Vasconcelos, T. R. A. & Henriques, M. G. M. O. (2008). Eur. J. Med. Chem.43, 1344–1347. [DOI] [PubMed]
  5. Maccari, R., Ottana, R. & Vigorita, M. G. (2005). Bioorg. Med. Chem. Lett.15, 2509–2513. [DOI] [PubMed]
  6. Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Loh, W.-S. & Fun, H.-K. (2009). Acta Cryst. E65, o2540–o2541. [DOI] [PMC free article] [PubMed]
  7. Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Quah, C. K. & Fun, H.-K. (2010a). Acta Cryst. E66, o291. [DOI] [PMC free article] [PubMed]
  8. Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Yeap, C. S. & Fun, H.-K. (2010b). Acta Cryst. E66, o579. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Shi, J. (2005). Acta Cryst. E61, o3933–o3934.
  11. Slayden, R. A. & Barry, C. E. (2000). Microbes Infect.2, 659–669. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810019446/lh5051sup1.cif

e-66-o1493-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810019446/lh5051Isup2.hkl

e-66-o1493-Isup2.hkl (153.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES