Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 May 22;66(Pt 6):o1435. doi: 10.1107/S1600536810018684

2,6-Bis(2,4-dimethyl­benzyl­idene)cyclo­hexa­none

Katarzyna A Solanko a, Andrew D Bond a,*
PMCID: PMC2979581  PMID: 21579510

Abstract

In the crystal structure of the title compound, C24H6O, the mol­ecule exhibits point symmetry m but the mirror plane is not utilized as part of the space-group symmetry. The structure contains face-to-face inter­actions between the 2,4-dimethyl­benzyl­idene substituents in which the methyl groups lie directly above the centroids of adjacent benzene rings.

Related literature

For related structures, see: Guo et al. (2008); Jia et al. (1989); Liu (2009); Ompraba et al. (2003); Shi et al. (2008); Zhang et al. (2005); Zhou (2007). For quanti­fication of the mol­ecular point symmetry, see: Pilati & Forni (1998, 2000).graphic file with name e-66-o1435-scheme1.jpg

Experimental

Crystal data

  • C24H26O

  • M r = 330.45

  • Monoclinic, Inline graphic

  • a = 6.9784 (4) Å

  • b = 19.2540 (12) Å

  • c = 14.2829 (10) Å

  • β = 102.179 (3)°

  • V = 1875.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 120 K

  • 0.60 × 0.20 × 0.20 mm

Data collection

  • Bruker–Nonius X8 APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003) T min = 0.895, T max = 0.986

  • 32106 measured reflections

  • 3565 independent reflections

  • 2399 reflections with I > 2σ(I)

  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.113

  • S = 1.08

  • 3565 reflections

  • 230 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810018684/jh2159sup1.cif

e-66-o1435-sup1.cif (27.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810018684/jh2159Isup2.hkl

e-66-o1435-Isup2.hkl (174.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. C—H⋯π interactions (Å, °).

Cg1 and Cg2 are the centroids of the C21–C26 and C11–C16 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17BCg1i 0.98 3.00 3.532 (1) 154
C17—H17CCg1ii 0.98 2.62 3.469 (1) 111
C27—H27BCg2iii 0.98 2.64 3.486 (1) 145
C27—H27CCg2iv 0.98 2.80 3.510 (1) 130

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

We are grateful to the Danish Natural Sciences Research Council for funding (grant No. 272-08-0237).

supplementary crystallographic information

Comment

We were interested in the crystal structure of 2,6-bis(2,4-dichlorobenzylidene)cyclohexanone (Guo et al., 2008) because we have found that it exhibits a relatively large change in structure on cooling from room temperature to 100 K (Solanko & Bond, unpublished results). We synthesised the analogous tetra-methyl-substituted compound to examine whether it might form a similar structure and display similar behaviour. It does not.

We note that in the publication of Guo et al. (2008), the chloro compound is stated to be synthesised by reaction of 2,4-dichlorobenzophenone with cyclohexanone. It seems likely that this should be 2,4-dichlorobenzaldehyde with cyclohexanone, as described here in the Experimental section.

The molecular point symmetry m referred to in the Abstract was quantified using the program SYMMOL (Pilati & Forni, 1998, 2000): the rms deviation of the molecule from its m symmetrised counterpart is 0.055 Å.

Experimental

2,4-Dimethylbenzaldehyde (2.8 ml, 0.02 mol), cyclohexanone (1.0 ml, 0.01 mol) and 30% NaOH(aq) (1 ml) were stirred in ethanol (3 ml) at room temperature for 6 h. The yellow product was filtered and washed using EtOH (3 × 2 ml). Crystals were obtained by slow evaporation from acetone under ambient conditions.

Refinement

H atoms bound to C atoms were positioned geometrically and allowed to ride during subsequent refinement with C—H = 0.95–0.98 Å, and with Uiso(H) = 1.2 or 1.5 Ueq(C). Methyl groups were allowed to rotate about their local threefold axes.

Figures

Fig. 1.

Fig. 1.

Molecular unit showing displacement ellipsoids at 50% probability. H atoms are shown as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Face-to-face interactions between the 2,4-dimethylbenzylidene substituents, with C(methyl)···centroid interactions highlighted.

Crystal data

C24H26O F(000) = 712
Mr = 330.45 Dx = 1.170 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5996 reflections
a = 6.9784 (4) Å θ = 2.6–24.5°
b = 19.2540 (12) Å µ = 0.07 mm1
c = 14.2829 (10) Å T = 120 K
β = 102.179 (3)° Needle, yellow
V = 1875.9 (2) Å3 0.60 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker–Nonius X8 APEXII CCD diffractometer 3565 independent reflections
Radiation source: fine-focus sealed tube 2399 reflections with I > 2σ(I)
graphite Rint = 0.042
ω and φ scans θmax = 25.8°, θmin = 3.6°
Absorption correction: multi-scan (SADABS; Bruker, 2003) h = −8→8
Tmin = 0.895, Tmax = 0.986 k = −19→23
32106 measured reflections l = −17→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0604P)2 + 0.133P] where P = (Fo2 + 2Fc2)/3
3565 reflections (Δ/σ)max < 0.001
230 parameters Δρmax = 0.21 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.0853 (2) 0.39396 (5) 0.26683 (9) 0.0545 (4)
C1 0.1796 (2) 0.39689 (7) 0.20350 (11) 0.0297 (4)
C2 0.2281 (2) 0.46589 (7) 0.16524 (10) 0.0243 (3)
C3 0.3539 (2) 0.46722 (7) 0.09156 (10) 0.0250 (4)
H3A 0.4324 0.5105 0.0989 0.030*
H3B 0.2687 0.4673 0.0267 0.030*
C4 0.4907 (2) 0.40496 (7) 0.10168 (11) 0.0274 (4)
H4A 0.5727 0.4074 0.0531 0.033*
H4B 0.5785 0.4051 0.1659 0.033*
C5 0.3697 (2) 0.33903 (7) 0.08813 (10) 0.0246 (4)
H5A 0.2836 0.3391 0.0234 0.030*
H5B 0.4583 0.2985 0.0924 0.030*
C6 0.24585 (19) 0.33209 (7) 0.16204 (10) 0.0226 (3)
C10 0.1637 (2) 0.52272 (7) 0.20284 (10) 0.0243 (4)
H10A 0.0927 0.5149 0.2518 0.029*
C11 0.18876 (19) 0.59566 (7) 0.17793 (10) 0.0205 (3)
C12 0.23238 (18) 0.64565 (7) 0.25081 (10) 0.0207 (3)
C13 0.25309 (18) 0.71416 (7) 0.22573 (10) 0.0215 (3)
H13A 0.2840 0.7477 0.2754 0.026*
C14 0.23096 (18) 0.73622 (7) 0.13169 (10) 0.0227 (3)
C15 0.18354 (19) 0.68668 (7) 0.05996 (10) 0.0225 (3)
H15A 0.1646 0.7003 −0.0053 0.027*
C16 0.16363 (19) 0.61763 (7) 0.08281 (10) 0.0217 (3)
H16A 0.1322 0.5844 0.0328 0.026*
C17 0.2599 (2) 0.62591 (8) 0.35419 (10) 0.0271 (4)
H17A 0.3140 0.6655 0.3944 0.041*
H17B 0.3505 0.5865 0.3677 0.041*
H17C 0.1332 0.6128 0.3682 0.041*
C18 0.2627 (2) 0.81108 (8) 0.11040 (11) 0.0330 (4)
H18A 0.2040 0.8406 0.1527 0.049*
H18B 0.2012 0.8211 0.0435 0.049*
H18C 0.4036 0.8205 0.1210 0.049*
C20 0.19241 (19) 0.27140 (7) 0.19475 (10) 0.0225 (3)
H20A 0.1265 0.2743 0.2464 0.027*
C21 0.22247 (18) 0.20107 (7) 0.16113 (9) 0.0198 (3)
C22 0.25798 (18) 0.14544 (7) 0.22633 (10) 0.0199 (3)
C23 0.27183 (19) 0.07907 (7) 0.19172 (10) 0.0247 (4)
H23A 0.2970 0.0417 0.2361 0.030*
C24 0.2504 (2) 0.06452 (8) 0.09459 (11) 0.0278 (4)
C25 0.2156 (2) 0.11958 (8) 0.03073 (11) 0.0268 (4)
H25A 0.2004 0.1113 −0.0360 0.032*
C26 0.20303 (19) 0.18648 (8) 0.06376 (10) 0.0239 (4)
H26A 0.1805 0.2236 0.0190 0.029*
C27 0.28382 (19) 0.15735 (8) 0.33191 (9) 0.0255 (4)
H27A 0.3023 0.1127 0.3655 0.038*
H27B 0.1671 0.1804 0.3450 0.038*
H27C 0.3990 0.1868 0.3543 0.038*
C28 0.2652 (3) −0.00880 (8) 0.06076 (13) 0.0441 (5)
H28A 0.1693 −0.0379 0.0835 0.066*
H28B 0.3975 −0.0266 0.0861 0.066*
H28C 0.2384 −0.0097 −0.0094 0.066*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0908 (10) 0.0269 (7) 0.0671 (9) −0.0005 (6) 0.0645 (8) 0.0014 (6)
C1 0.0368 (9) 0.0268 (10) 0.0313 (9) −0.0015 (7) 0.0202 (7) 0.0008 (7)
C2 0.0257 (8) 0.0240 (9) 0.0256 (8) 0.0008 (6) 0.0105 (6) 0.0022 (7)
C3 0.0293 (8) 0.0223 (9) 0.0276 (8) −0.0005 (6) 0.0154 (6) 0.0029 (6)
C4 0.0286 (8) 0.0266 (9) 0.0316 (9) 0.0009 (7) 0.0170 (7) 0.0030 (7)
C5 0.0292 (8) 0.0232 (9) 0.0242 (8) 0.0044 (6) 0.0117 (6) 0.0032 (6)
C6 0.0247 (8) 0.0225 (9) 0.0220 (8) 0.0002 (6) 0.0080 (6) 0.0012 (6)
C10 0.0251 (8) 0.0258 (9) 0.0255 (8) 0.0013 (6) 0.0130 (6) 0.0022 (7)
C11 0.0153 (7) 0.0233 (9) 0.0251 (9) 0.0033 (6) 0.0095 (6) 0.0033 (7)
C12 0.0127 (7) 0.0269 (9) 0.0231 (8) 0.0042 (6) 0.0055 (6) 0.0022 (7)
C13 0.0171 (7) 0.0232 (9) 0.0237 (8) 0.0020 (6) 0.0034 (6) −0.0026 (6)
C14 0.0171 (7) 0.0229 (8) 0.0283 (9) 0.0038 (6) 0.0056 (6) 0.0047 (7)
C15 0.0203 (7) 0.0262 (9) 0.0217 (8) 0.0058 (6) 0.0062 (6) 0.0059 (7)
C16 0.0195 (7) 0.0249 (9) 0.0218 (8) 0.0027 (6) 0.0070 (6) −0.0024 (6)
C17 0.0236 (8) 0.0331 (9) 0.0252 (8) 0.0007 (7) 0.0065 (6) 0.0032 (7)
C18 0.0369 (9) 0.0268 (9) 0.0350 (10) 0.0000 (7) 0.0071 (7) 0.0045 (7)
C20 0.0233 (7) 0.0252 (9) 0.0201 (8) −0.0003 (6) 0.0071 (6) 0.0001 (6)
C21 0.0162 (7) 0.0220 (8) 0.0218 (8) −0.0019 (6) 0.0051 (6) −0.0016 (6)
C22 0.0115 (7) 0.0241 (9) 0.0245 (8) −0.0026 (6) 0.0044 (6) 0.0000 (7)
C23 0.0170 (7) 0.0222 (9) 0.0353 (10) −0.0009 (6) 0.0060 (6) 0.0031 (7)
C24 0.0190 (7) 0.0254 (9) 0.0401 (10) −0.0016 (6) 0.0089 (7) −0.0071 (8)
C25 0.0233 (8) 0.0324 (10) 0.0243 (8) −0.0026 (7) 0.0044 (6) −0.0078 (7)
C26 0.0212 (7) 0.0263 (9) 0.0241 (9) −0.0010 (6) 0.0048 (6) 0.0003 (7)
C27 0.0223 (7) 0.0296 (9) 0.0248 (9) −0.0024 (7) 0.0049 (6) 0.0038 (7)
C28 0.0447 (10) 0.0295 (10) 0.0590 (12) −0.0009 (8) 0.0129 (9) −0.0138 (9)

Geometric parameters (Å, °)

O1—C1 1.2272 (17) C16—H16A 0.950
C1—C6 1.4954 (19) C17—H17A 0.980
C1—C2 1.5022 (19) C17—H17B 0.980
C2—C10 1.3378 (19) C17—H17C 0.980
C2—C3 1.5062 (19) C18—H18A 0.980
C3—C4 1.5198 (19) C18—H18B 0.980
C3—H3A 0.990 C18—H18C 0.980
C3—H3B 0.990 C20—C21 1.4665 (19)
C4—C5 1.5140 (19) C20—H20A 0.950
C4—H4A 0.990 C21—C26 1.3970 (19)
C4—H4B 0.990 C21—C22 1.4067 (19)
C5—C6 1.5049 (19) C22—C23 1.381 (2)
C5—H5A 0.990 C22—C27 1.4981 (19)
C5—H5B 0.990 C23—C24 1.392 (2)
C6—C20 1.3402 (18) C23—H23A 0.950
C10—C11 1.4683 (19) C24—C25 1.386 (2)
C10—H10A 0.950 C24—C28 1.503 (2)
C11—C16 1.3983 (19) C25—C26 1.381 (2)
C11—C12 1.4033 (19) C25—H25A 0.950
C12—C13 1.3824 (19) C26—H26A 0.950
C12—C17 1.4973 (19) C27—H27A 0.980
C13—C14 1.3858 (19) C27—H27B 0.980
C13—H13A 0.950 C27—H27C 0.980
C14—C15 1.3878 (19) C28—H28A 0.980
C14—C18 1.499 (2) C28—H28B 0.980
C15—C16 1.3829 (19) C28—H28C 0.980
C15—H15A 0.950
O1—C1—C6 120.80 (13) C11—C16—H16A 119.3
O1—C1—C2 120.39 (13) C12—C17—H17A 109.5
C6—C1—C2 118.80 (12) C12—C17—H17B 109.5
C10—C2—C1 117.17 (12) H17A—C17—H17B 109.5
C10—C2—C3 124.17 (12) C12—C17—H17C 109.5
C1—C2—C3 118.58 (12) H17A—C17—H17C 109.5
C2—C3—C4 111.52 (11) H17B—C17—H17C 109.5
C2—C3—H3A 109.3 C14—C18—H18A 109.5
C4—C3—H3A 109.3 C14—C18—H18B 109.5
C2—C3—H3B 109.3 H18A—C18—H18B 109.5
C4—C3—H3B 109.3 C14—C18—H18C 109.5
H3A—C3—H3B 108.0 H18A—C18—H18C 109.5
C5—C4—C3 109.10 (12) H18B—C18—H18C 109.5
C5—C4—H4A 109.9 C6—C20—C21 128.42 (13)
C3—C4—H4A 109.9 C6—C20—H20A 115.8
C5—C4—H4B 109.9 C21—C20—H20A 115.8
C3—C4—H4B 109.9 C26—C21—C22 118.20 (13)
H4A—C4—H4B 108.3 C26—C21—C20 121.40 (12)
C6—C5—C4 111.84 (11) C22—C21—C20 120.25 (12)
C6—C5—H5A 109.2 C23—C22—C21 118.92 (13)
C4—C5—H5A 109.2 C23—C22—C27 119.96 (13)
C6—C5—H5B 109.2 C21—C22—C27 121.12 (12)
C4—C5—H5B 109.2 C22—C23—C24 122.82 (13)
H5A—C5—H5B 107.9 C22—C23—H23A 118.6
C20—C6—C1 117.23 (12) C24—C23—H23A 118.6
C20—C6—C5 124.42 (12) C25—C24—C23 117.97 (13)
C1—C6—C5 118.35 (11) C25—C24—C28 121.41 (14)
C2—C10—C11 128.14 (13) C23—C24—C28 120.61 (14)
C2—C10—H10A 115.9 C26—C25—C24 120.23 (14)
C11—C10—H10A 115.9 C26—C25—H25A 119.9
C16—C11—C12 118.44 (12) C24—C25—H25A 119.9
C16—C11—C10 121.86 (13) C25—C26—C21 121.85 (13)
C12—C11—C10 119.65 (12) C25—C26—H26A 119.1
C13—C12—C11 118.72 (12) C21—C26—H26A 119.1
C13—C12—C17 119.94 (13) C22—C27—H27A 109.5
C11—C12—C17 121.33 (12) C22—C27—H27B 109.5
C12—C13—C14 123.18 (13) H27A—C27—H27B 109.5
C12—C13—H13A 118.4 C22—C27—H27C 109.5
C14—C13—H13A 118.4 H27A—C27—H27C 109.5
C13—C14—C15 117.73 (13) H27B—C27—H27C 109.5
C13—C14—C18 120.01 (13) C24—C28—H28A 109.5
C15—C14—C18 122.24 (13) C24—C28—H28B 109.5
C16—C15—C14 120.44 (13) H28A—C28—H28B 109.5
C16—C15—H15A 119.8 C24—C28—H28C 109.5
C14—C15—H15A 119.8 H28A—C28—H28C 109.5
C15—C16—C11 121.47 (13) H28B—C28—H28C 109.5
C15—C16—H16A 119.3
O1—C1—C2—C10 −0.3 (2) C12—C13—C14—C15 0.74 (19)
C6—C1—C2—C10 178.86 (13) C12—C13—C14—C18 −177.85 (12)
O1—C1—C2—C3 176.57 (15) C13—C14—C15—C16 −1.32 (19)
C6—C1—C2—C3 −4.3 (2) C18—C14—C15—C16 177.24 (13)
C10—C2—C3—C4 148.79 (14) C14—C15—C16—C11 0.5 (2)
C1—C2—C3—C4 −27.81 (19) C12—C11—C16—C15 0.91 (19)
C2—C3—C4—C5 60.25 (16) C10—C11—C16—C15 178.63 (12)
C3—C4—C5—C6 −60.88 (15) C1—C6—C20—C21 174.29 (13)
O1—C1—C6—C20 2.1 (2) C5—C6—C20—C21 −6.7 (2)
C2—C1—C6—C20 −177.03 (13) C6—C20—C21—C26 −39.0 (2)
O1—C1—C6—C5 −176.96 (15) C6—C20—C21—C22 145.61 (14)
C2—C1—C6—C5 3.9 (2) C26—C21—C22—C23 −0.09 (18)
C4—C5—C6—C20 −150.24 (14) C20—C21—C22—C23 175.44 (11)
C4—C5—C6—C1 28.73 (18) C26—C21—C22—C27 178.95 (12)
C1—C2—C10—C11 −179.33 (13) C20—C21—C22—C27 −5.52 (19)
C3—C2—C10—C11 4.0 (2) C21—C22—C23—C24 −0.58 (19)
C2—C10—C11—C16 43.5 (2) C27—C22—C23—C24 −179.63 (12)
C2—C10—C11—C12 −138.83 (15) C22—C23—C24—C25 0.6 (2)
C16—C11—C12—C13 −1.47 (18) C22—C23—C24—C28 −179.46 (13)
C10—C11—C12—C13 −179.23 (12) C23—C24—C25—C26 0.0 (2)
C16—C11—C12—C17 179.60 (12) C28—C24—C25—C26 −179.90 (13)
C10—C11—C12—C17 1.84 (19) C24—C25—C26—C21 −0.7 (2)
C11—C12—C13—C14 0.66 (19) C22—C21—C26—C25 0.71 (19)
C17—C12—C13—C14 179.61 (12) C20—C21—C26—C25 −174.76 (12)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C21–C26 and C11–C16 rings, respectively.
D—H···A D—H H···A D···A D—H···A
C17—H17B···Cg1i 0.98 3.00 3.532 (1) 154
C17—H17C···Cg1ii 0.98 2.62 3.469 (1) 111
C27—H27B···Cg2iii 0.98 2.64 3.486 (1) 145
C27—H27C···Cg2iv 0.98 2.80 3.510 (1) 130

Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x+1, y+1/2, −z+1/2; (iii) −x, y−1/2, −z+1/2; (iv) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2159).

References

  1. Bruker (2003). SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Guo, H.-M., Liu, L. & Jian, F.-F. (2008). Acta Cryst. E64, o1626. [DOI] [PMC free article] [PubMed]
  4. Jia, Z., Quail, J. W., Arora, V. K. & Dimmock, J. R. (1989). Acta Cryst. C45, 285–289.
  5. Liu, D. (2009). Acta Cryst. E65, o694. [DOI] [PMC free article] [PubMed]
  6. Ompraba, G., Rafi, Z. A., Yogavel, M., Velmurugan, D., Sekar, K., Karthikeyan, E., Perumal, S., Choudhury, A. R. & Guru Row, T. N. (2003). Cryst. Res. Technol.38, 822–828.
  7. Pilati, T. & Forni, A. (1998). J. Appl. Cryst.31, 503–504.
  8. Pilati, T. & Forni, A. (2000). J. Appl. Cryst.33, 417.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Shi, X., Li, S. & Liu, Z. (2008). Acta Cryst. E64, o2199. [DOI] [PMC free article] [PubMed]
  11. Zhang, L., Wang, S., Sheng, E. & Zhou, S. (2005). Green Chem.7, 683–686.
  12. Zhou, L.-Y. (2007). Acta Cryst. E63, o3113.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810018684/jh2159sup1.cif

e-66-o1435-sup1.cif (27.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810018684/jh2159Isup2.hkl

e-66-o1435-Isup2.hkl (174.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES