Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 May 12;66(Pt 6):o1319. doi: 10.1107/S1600536810016399

N,N′-Bis(4-fluoro­phen­yl)urea

Wan-Sin Loh a,, Hoong-Kun Fun a,*,§, S Sarveswari b, V Vijayakumar b, R Venkat Ragavan b
PMCID: PMC2979587  PMID: 21579412

Abstract

The asymmetric unit of the title compound, C13H10F2N2O, contains one and a half N,N′-bis­(4-fluoro­phen­yl)urea mol­ecules. One of the mol­ecules has crystallographic twofold rotation symmetry. The benzene rings are twisted from each other by dihedral angles of 29.69 (6)° for the mol­ecule in a general position and 89.83 (6)° for the symmetry-generated mol­ecule. In the crystal structure, a pair of inter­molecular N—H⋯O hydrogen bonds link symmetry-related mol­ecules into chains along the b axis, forming R 2 1(6) ring motifs.

Related literature

For background to and the biological activity of bis-aryl­ureas, see: Khire et al. (2004); McDonnell et al. (2008); Francisco et al. (2004); Bigi et al. (1998). For the synthetic method, see: Sarveswari & Raja (2006). For a related structure, see: Jai-nhuknan et al. (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).graphic file with name e-66-o1319-scheme1.jpg

Experimental

Crystal data

  • C13H10F2N2O

  • M r = 248.23

  • Monoclinic, Inline graphic

  • a = 67.541 (4) Å

  • b = 4.5750 (3) Å

  • c = 10.7098 (6) Å

  • β = 95.969 (2)°

  • V = 3291.4 (3) Å3

  • Z = 12

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.59 × 0.12 × 0.09 mm

Data collection

  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.932, T max = 0.990

  • 21915 measured reflections

  • 5986 independent reflections

  • 4304 reflections with I > 2σ(I)

  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.159

  • S = 1.05

  • 5986 reflections

  • 257 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.51 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810016399/lh5040sup1.cif

e-66-o1319-sup1.cif (19.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810016399/lh5040Isup2.hkl

e-66-o1319-Isup2.hkl (293.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1NA⋯O1Ai 0.83 (2) 2.08 (2) 2.8331 (13) 151.7 (18)
N1B—H1NB⋯O1Bi 0.89 (3) 2.02 (3) 2.8392 (18) 153.3 (19)
N2A—H2NA⋯O1Ai 0.855 (18) 2.080 (17) 2.8547 (16) 150.5 (13)

Symmetry code: (i) Inline graphic.

Acknowledgments

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). WSL thanks the Malaysian Government and USM for the award of Research Fellowship. VV is grateful to the DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

supplementary crystallographic information

Comment

The synthesis of bis-arylureas has received considerable attention due to their wide range of biological applications. They act as potential Raf kinase inhibitors (Khire et al., 2004) and antagonists of human vanilloid receptor 1 (VR 1) (McDonnell et al., 2008). Phenyl thiazolylurea derivatives have been reported as inhibitors of Murine receptor A and Murine receptor B (Francisco et al., 2004). Some substituted ureas are used as antidiabetic and tranquilizing drugs, antioxidants in gasoline, corrosion inhibitor and herbicides (Bigi et al., 1998).

The asymmetric unit of the title compound (Fig. 1), comprises of one and a half N,N'-bis-(4-fluorophenyl)urea molecules. The half molecule has a twofold rotation symmetry, generated by symmetry code -x, y, -z+3/2. In the molecule with suffix A, both benzene rings (C1A–C6A and C8A–C13A) are twisted from each other with a dihedral angle of 29.69 (6)° whereas in molecule with suffix B, the dihedral angle between the benzene rings (C1B–C6B and C1BA–C6BA) is 89.83 (6)°. The structure is comparable to the related structure (Jai-nhuknan et al., 1997).

In the crystal packing (Fig. 2), intermolecular N1A—H1NA···O1A and N2A—H2NA···O1A hydrogen bonds (Table 1) link the adjacent molecules into chains along the b axis, forming R21(6) ring motifs (Bernstein et al., 1995).

Experimental

The compound N,N'-bis-(4-fluorophenyl)urea was synthesized using the method available in the literature (Sarveswari & Raja, 2006) and the obtained crude product was recrystallized from absolute ethanol. M.P.: 519 K. Yield: 56%.

Refinement

H1NA, H1NB and H2NA were located from a difference Fourier map and refined freely [N–H = 0.83 (2) to 0.88 (3) Å]. The remaining H atoms were positioned geometrically [C–H = 0.93 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). In the final difference Fourier map, the highest peak is 0.20 Å from atom O1B and the deepest hole is 0.45 Å from atom C7B.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Atoms with suffix BA [C1BA–C6BA/N1BA/F1BA] are generated by symmetry code -x, y, -z+3/2.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed approximately along the a axis, showing R21(6) ring motifs. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C13H10F2N2O F(000) = 1536
Mr = 248.23 Dx = 1.503 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 3635 reflections
a = 67.541 (4) Å θ = 2.4–32.1°
b = 4.5750 (3) Å µ = 0.12 mm1
c = 10.7098 (6) Å T = 100 K
β = 95.969 (2)° Block, brown
V = 3291.4 (3) Å3 0.59 × 0.12 × 0.09 mm
Z = 12

Data collection

Bruker APEXII DUO CCD area-detector diffractometer 5986 independent reflections
Radiation source: fine-focus sealed tube 4304 reflections with I > 2σ(I)
graphite Rint = 0.050
φ and ω scans θmax = 32.7°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −102→102
Tmin = 0.932, Tmax = 0.990 k = −6→6
21915 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0899P)2 + 0.1948P] where P = (Fo2 + 2Fc2)/3
5986 reflections (Δ/σ)max < 0.001
257 parameters Δρmax = 0.69 e Å3
0 restraints Δρmin = −0.51 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1A 0.244179 (12) 0.5229 (2) 0.33663 (8) 0.02522 (19)
O1A 0.167883 (13) 0.5447 (2) 0.62122 (9) 0.0198 (2)
N1A 0.180685 (15) 0.9777 (2) 0.55991 (10) 0.0162 (2)
N2A 0.153498 (15) 0.9743 (3) 0.67129 (11) 0.0175 (2)
C1A 0.209007 (17) 0.6417 (3) 0.56407 (11) 0.0163 (2)
H1AA 0.2064 0.5746 0.6426 0.020*
C2A 0.225076 (17) 0.5295 (3) 0.50863 (12) 0.0180 (2)
H2AA 0.2332 0.3860 0.5486 0.022*
C3A 0.228714 (17) 0.6362 (3) 0.39263 (12) 0.0178 (2)
C4A 0.217243 (18) 0.8517 (3) 0.33077 (11) 0.0184 (2)
H4AA 0.2203 0.9236 0.2539 0.022*
C5A 0.200924 (18) 0.9591 (3) 0.38612 (11) 0.0172 (2)
H5AA 0.1928 1.1008 0.3451 0.021*
C6A 0.196784 (16) 0.8543 (3) 0.50280 (10) 0.0142 (2)
C7A 0.167422 (16) 0.8158 (3) 0.61783 (11) 0.0150 (2)
C8A 0.138631 (16) 0.8455 (3) 0.73842 (11) 0.0154 (2)
C9A 0.143599 (18) 0.6409 (3) 0.83227 (12) 0.0187 (2)
H9AA 0.1568 0.5838 0.8508 0.022*
C10A 0.128905 (18) 0.5208 (3) 0.89873 (12) 0.0207 (3)
H10A 0.1320 0.3818 0.9610 0.025*
C11A 0.109514 (19) 0.6143 (3) 0.86946 (12) 0.0209 (3)
C12A 0.104185 (18) 0.8202 (3) 0.77910 (12) 0.0219 (3)
H12A 0.0910 0.8809 0.7630 0.026*
C13A 0.118945 (18) 0.9362 (3) 0.71211 (12) 0.0193 (2)
H13A 0.1157 1.0745 0.6497 0.023*
F2A 0.095139 (12) 0.4948 (2) 0.93363 (9) 0.0309 (2)
F1B 0.072613 (12) 0.6424 (2) 1.16351 (8) 0.0289 (2)
O1B 0.0000 0.6661 (3) 0.7500 0.0262 (3)
N1B 0.013863 (16) 1.0982 (3) 0.82126 (11) 0.0193 (2)
C1B 0.024299 (18) 0.7613 (3) 0.99248 (12) 0.0200 (2)
H1BA 0.0112 0.6961 0.9919 0.024*
C2B 0.03907 (2) 0.6455 (3) 1.07851 (12) 0.0213 (3)
H2BA 0.0362 0.4998 1.1343 0.026*
C3B 0.058161 (18) 0.7529 (3) 1.07883 (12) 0.0210 (3)
C4B 0.063141 (18) 0.9679 (3) 0.99790 (12) 0.0212 (3)
H4BA 0.0761 1.0385 1.0018 0.025*
C5B 0.048369 (18) 1.0776 (3) 0.91008 (12) 0.0194 (2)
H5BA 0.0515 1.2200 0.8533 0.023*
C6B 0.028914 (17) 0.9741 (3) 0.90722 (12) 0.0170 (2)
C7B 0.0000 0.9380 (4) 0.7500 0.0181 (3)
H1NA 0.1792 (3) 1.157 (5) 0.5567 (17) 0.028 (5)*
H1NB 0.0136 (3) 1.289 (6) 0.8078 (19) 0.043 (6)*
H2NA 0.1535 (2) 1.160 (4) 0.6624 (16) 0.022 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1A 0.0210 (3) 0.0251 (5) 0.0312 (4) 0.0051 (3) 0.0105 (3) −0.0019 (4)
O1A 0.0215 (4) 0.0090 (4) 0.0302 (5) −0.0003 (3) 0.0084 (3) −0.0003 (4)
N1A 0.0180 (4) 0.0082 (5) 0.0231 (5) 0.0010 (4) 0.0059 (4) 0.0014 (4)
N2A 0.0184 (4) 0.0094 (5) 0.0258 (5) 0.0014 (4) 0.0076 (4) 0.0010 (4)
C1A 0.0170 (5) 0.0144 (6) 0.0175 (5) 0.0004 (4) 0.0018 (4) 0.0011 (4)
C2A 0.0159 (5) 0.0147 (6) 0.0232 (6) 0.0025 (4) 0.0015 (4) 0.0012 (5)
C3A 0.0148 (5) 0.0171 (6) 0.0220 (5) 0.0005 (4) 0.0040 (4) −0.0041 (5)
C4A 0.0195 (5) 0.0187 (6) 0.0174 (5) −0.0004 (5) 0.0046 (4) 0.0001 (5)
C5A 0.0183 (5) 0.0151 (6) 0.0181 (5) 0.0007 (5) 0.0021 (4) 0.0006 (4)
C6A 0.0150 (4) 0.0106 (5) 0.0170 (5) −0.0005 (4) 0.0017 (4) −0.0015 (4)
C7A 0.0153 (4) 0.0119 (5) 0.0178 (5) 0.0006 (4) 0.0015 (4) −0.0001 (4)
C8A 0.0157 (4) 0.0114 (5) 0.0195 (5) −0.0011 (4) 0.0039 (4) −0.0013 (4)
C9A 0.0178 (5) 0.0176 (6) 0.0205 (5) −0.0003 (5) 0.0016 (4) 0.0011 (5)
C10A 0.0212 (5) 0.0207 (7) 0.0205 (6) 0.0006 (5) 0.0039 (4) 0.0035 (5)
C11A 0.0201 (5) 0.0200 (6) 0.0239 (6) −0.0038 (5) 0.0078 (4) −0.0015 (5)
C12A 0.0161 (5) 0.0215 (7) 0.0286 (6) 0.0010 (5) 0.0044 (4) 0.0005 (5)
C13A 0.0174 (5) 0.0168 (6) 0.0238 (6) 0.0019 (5) 0.0030 (4) 0.0020 (5)
F2A 0.0247 (4) 0.0319 (5) 0.0384 (5) −0.0037 (4) 0.0150 (3) 0.0060 (4)
F1B 0.0284 (4) 0.0301 (5) 0.0263 (4) 0.0062 (4) −0.0060 (3) 0.0031 (4)
O1B 0.0302 (7) 0.0107 (6) 0.0351 (7) 0.000 −0.0093 (6) 0.000
N1B 0.0177 (4) 0.0112 (5) 0.0280 (5) −0.0008 (4) −0.0017 (4) 0.0004 (4)
C1B 0.0194 (5) 0.0172 (6) 0.0235 (6) −0.0020 (5) 0.0031 (4) −0.0001 (5)
C2B 0.0275 (6) 0.0165 (6) 0.0200 (5) −0.0009 (5) 0.0029 (4) 0.0015 (5)
C3B 0.0216 (5) 0.0203 (6) 0.0201 (5) 0.0039 (5) −0.0024 (4) −0.0008 (5)
C4B 0.0168 (5) 0.0223 (7) 0.0244 (6) −0.0004 (5) 0.0011 (4) −0.0012 (5)
C5B 0.0184 (5) 0.0180 (6) 0.0218 (5) −0.0010 (5) 0.0022 (4) 0.0007 (5)
C6B 0.0171 (5) 0.0123 (6) 0.0213 (5) 0.0007 (4) 0.0010 (4) −0.0016 (4)
C7B 0.0170 (7) 0.0136 (8) 0.0234 (8) 0.000 0.0005 (6) 0.000

Geometric parameters (Å, °)

F1A—C3A 1.3601 (13) C10A—H10A 0.9300
O1A—C7A 1.2412 (15) C11A—F2A 1.3611 (14)
N1A—C7A 1.3606 (15) C11A—C12A 1.371 (2)
N1A—C6A 1.4190 (15) C12A—C13A 1.3925 (17)
N1A—H1NA 0.83 (2) C12A—H12A 0.9300
N2A—C7A 1.3602 (15) C13A—H13A 0.9300
N2A—C8A 1.4223 (15) F1B—C3B 1.3589 (15)
N2A—H2NA 0.85 (2) O1B—C7B 1.244 (2)
C1A—C2A 1.3886 (16) N1B—C7B 1.3593 (15)
C1A—C6A 1.3948 (17) N1B—C6B 1.4173 (16)
C1A—H1AA 0.9300 N1B—H1NB 0.88 (3)
C2A—C3A 1.3805 (18) C1B—C2B 1.3902 (18)
C2A—H2AA 0.9300 C1B—C6B 1.3921 (18)
C3A—C4A 1.3799 (18) C1B—H1BA 0.9300
C4A—C5A 1.3941 (16) C2B—C3B 1.3798 (19)
C4A—H4AA 0.9300 C2B—H2BA 0.9300
C5A—C6A 1.3937 (16) C3B—C4B 1.376 (2)
C5A—H5AA 0.9300 C4B—C5B 1.3916 (18)
C8A—C9A 1.3888 (18) C4B—H4BA 0.9300
C8A—C13A 1.3935 (16) C5B—C6B 1.3942 (17)
C9A—C10A 1.3929 (17) C5B—H5BA 0.9300
C9A—H9AA 0.9300 C7B—N1Bi 1.3593 (15)
C10A—C11A 1.3824 (18)
C7A—N1A—C6A 123.39 (11) C9A—C10A—H10A 121.0
C7A—N1A—H1NA 118.3 (13) F2A—C11A—C12A 118.92 (12)
C6A—N1A—H1NA 118.3 (13) F2A—C11A—C10A 118.03 (12)
C7A—N2A—C8A 123.17 (11) C12A—C11A—C10A 123.05 (12)
C7A—N2A—H2NA 118.4 (11) C11A—C12A—C13A 118.42 (12)
C8A—N2A—H2NA 118.4 (11) C11A—C12A—H12A 120.8
C2A—C1A—C6A 120.49 (11) C13A—C12A—H12A 120.8
C2A—C1A—H1AA 119.8 C12A—C13A—C8A 120.09 (12)
C6A—C1A—H1AA 119.8 C12A—C13A—H13A 120.0
C3A—C2A—C1A 118.30 (11) C8A—C13A—H13A 120.0
C3A—C2A—H2AA 120.8 C7B—N1B—C6B 123.66 (12)
C1A—C2A—H2AA 120.8 C7B—N1B—H1NB 116.0 (14)
F1A—C3A—C4A 118.63 (11) C6B—N1B—H1NB 120.2 (14)
F1A—C3A—C2A 118.60 (11) C2B—C1B—C6B 120.46 (11)
C4A—C3A—C2A 122.77 (11) C2B—C1B—H1BA 119.8
C3A—C4A—C5A 118.48 (11) C6B—C1B—H1BA 119.8
C3A—C4A—H4AA 120.8 C3B—C2B—C1B 118.17 (13)
C5A—C4A—H4AA 120.8 C3B—C2B—H2BA 120.9
C6A—C5A—C4A 120.08 (12) C1B—C2B—H2BA 120.9
C6A—C5A—H5AA 120.0 F1B—C3B—C4B 118.73 (12)
C4A—C5A—H5AA 120.0 F1B—C3B—C2B 118.40 (13)
C5A—C6A—C1A 119.84 (11) C4B—C3B—C2B 122.87 (12)
C5A—C6A—N1A 118.94 (11) C3B—C4B—C5B 118.59 (12)
C1A—C6A—N1A 121.14 (10) C3B—C4B—H4BA 120.7
O1A—C7A—N2A 122.47 (11) C5B—C4B—H4BA 120.7
O1A—C7A—N1A 122.79 (11) C4B—C5B—C6B 120.01 (13)
N2A—C7A—N1A 114.74 (11) C4B—C5B—H5BA 120.0
C9A—C8A—C13A 120.06 (11) C6B—C5B—H5BA 120.0
C9A—C8A—N2A 121.00 (10) C1B—C6B—C5B 119.87 (12)
C13A—C8A—N2A 118.90 (11) C1B—C6B—N1B 120.79 (11)
C8A—C9A—C10A 120.28 (11) C5B—C6B—N1B 119.26 (12)
C8A—C9A—H9AA 119.9 O1B—C7B—N1Bi 122.63 (9)
C10A—C9A—H9AA 119.9 O1B—C7B—N1B 122.63 (8)
C11A—C10A—C9A 118.08 (12) N1Bi—C7B—N1B 114.74 (17)
C11A—C10A—H10A 121.0

Symmetry codes: (i) −x, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1A—H1NA···O1Aii 0.83 (2) 2.08 (2) 2.8331 (13) 151.7 (18)
N1B—H1NB···O1Bii 0.89 (3) 2.02 (3) 2.8392 (18) 153.3 (19)
N2A—H2NA···O1Aii 0.855 (18) 2.080 (17) 2.8547 (16) 150.5 (13)

Symmetry codes: (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5040).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Bigi, F., Maggi, R., Sartori, G. & Zambonin, E. (1998). Chem. Commun.4, 513–514.
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  5. Francisco, G. D., Li, Z., Albright, J. D., Eudy, N. H., Katz, A. H., Petersen, P. J., Labthavikul, P., Singh, G., Yang, Y., Rasmussen, B. A., Lin, Y. I. & Mansour, T. S. (2004). Bioorg. Med. Chem. Lett.14, 235–238. [DOI] [PubMed]
  6. Jai-nhuknan, J., Karipides, A. G., Hughes, J. M. & Cantrell, J. S. (1997). Acta Cryst. C53, 455–457.
  7. Khire, U. R., Bankston, D., Barbosa, J., Brittelli, D. R., Caringal, Y., Carlson, R., Dumass, J., Gane, T., Heald, S. L., Hibner, B., Johnson, J. S., Katz, M. E., Kennure, N., Wood, K. J., Lee, W., Liu, X. G., Lowinger, T. B., McAlexander, I., Monahan, M. K., Natero, R., Renick, J., Riedl, B., Rong, H., Silbley, R. N., Smith, R. A. & Wolanin, D. (2004). Bioorg. Med. Chem. Lett.14, 783–786. [DOI] [PubMed]
  8. McDonnell, M. E., Zhang, S. P., Nasser, N., Dubin, A. E. & Dax, S. L. (2008). Bioorg. Med. Chem. Lett.14, 531–534. [DOI] [PubMed]
  9. Sarveswari, S. & Raja, T. K. (2006). Indian J. Chem. Sect. B, 45, 546–547.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810016399/lh5040sup1.cif

e-66-o1319-sup1.cif (19.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810016399/lh5040Isup2.hkl

e-66-o1319-Isup2.hkl (293.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES