Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 May 15;66(Pt 6):o1353. doi: 10.1107/S1600536810016715

2-(9-Anthrylmethyl­ideneamino)-4-methyl­phenol

Andrés Villalpando a, Frank R Fronczek b, Ralph Isovitsch a,*
PMCID: PMC2979592  PMID: 21579439

Abstract

The title compound, C22H17NO, is a novel Schiff base synthesized via a condensation reaction between 9-anthracenecarboxaldehyde and 2-amino-p-cresol. The asymmetric unit contains two independent mol­ecules that are joined by an O—H⋯OH hydrogen bond. An intra­molecular O—H⋯N hydrogen bond occurs in each mol­ecule. π-stacking about inversion centers was observed between adjacent phenol rings [centroid–centroid distance = 3.850 (2) Å] and adjacent anthracene rings [centroid–centroid distance = 3.834 (2) Å]. The C—N=C—C torsion angles between the phenol and anthracene rings are close to 180° with values of 174.06 (15) and 179.85 (14)°.

Related literature

For related structures, see: De et al. (2008); Ünver et al. (2009). For bond-length data, see: Allen et al. (1987). For background to the use of luminescent metal complexes formed by Schiff bases in light emitting diode construction and solar energy collection, see: Liao et al. (2009); Mak et al. (2009).graphic file with name e-66-o1353-scheme1.jpg

Experimental

Crystal data

  • C22H17NO

  • M r = 311.37

  • Triclinic, Inline graphic

  • a = 8.6037 (15) Å

  • b = 12.839 (3) Å

  • c = 15.015 (3) Å

  • α = 94.508 (9)°

  • β = 97.164 (11)°

  • γ = 106.490 (11)°

  • V = 1566.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 90 K

  • 0.37 × 0.15 × 0.05 mm

Data collection

  • Nonius KappaCCD diffractometer with Oxford Cryostream

  • 35942 measured reflections

  • 7462 independent reflections

  • 4454 reflections with I > 2σ(I)

  • R int = 0.057

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.127

  • S = 1.02

  • 7462 reflections

  • 442 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810016715/zq2039sup1.cif

e-66-o1353-sup1.cif (29.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810016715/zq2039Isup2.hkl

e-66-o1353-Isup2.hkl (357.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H10H⋯N1 0.82 (2) 2.27 (2) 2.754 (2) 118.0 (17)
O2—H20H⋯O1 0.86 (2) 2.11 (2) 2.8602 (18) 144.9 (18)
O2—H20H⋯N2 0.86 (2) 2.17 (2) 2.695 (2) 119.1 (17)

Acknowledgments

Whittier College is acknowledged for the funds that supported this research. The Edison Inter­national Foundation is thanked for a summer research stipend for AV. The purchase of the diffractometer was made possible by grant No. LEQSF(1999-2000)-ENH-TR-13, administered by the Louisiana Board of Regents.

supplementary crystallographic information

Comment

Schiff bases can form luminescent metal complexes that are used in research areas that range from light emitting diode construction to solar energy collection (Liao et al., 2009; Mak et al., 2009). Our research explores the synthesis and photophysics of novel anthracenyl Schiff bases and their metal complexes toward the goal of utilizing them in the preparation of light emitting diodes.

The structure of the title compound is shown in Figure 1. The asymmetric unit is comprised of two independent molecules of the title compound joined together by a hydrogen bond of length 2.8602 (18) Å, which is formed from the interaction of the OH groups on the phenol rings. π-stacking about inversion centers was observed between adjacent phenol rings with a centroid-centroid distance of 3.850 Å and between adjacent anthracene rings with a centroid-centroid distance of 3.834 Å.

There is slight variation in the bond lengths and angles of the two independent molecules. The central C—N double bond, C15—N1, has a bond length of 1.280 (2) Å. This bond length is close to the literature value of 1.279 Å for a C(sp2)═N(sp2) bond (Allen et al., 1987). The C—C bond, C1—C15 and C23—C37, that connects the anthracene to the central C—N double bond has bond lengths of 1.477 (2) and 1.470 (2) Å, respectively. The C—N bond, N1—C16 and N2—C38, that connects the phenyl ring to the central C—N double bond has bond lengths of 1.419 (2) and 1.414 (2) Å, respectively. The phenol ring has a C—O bond, O1—C17 and O2—C39, with a bond length of 1.368 (2) and 1.371 (2) Å. The bond angles of the nitrogen and carbon atoms of the central C—N double bond were 118.53 (15); 119.84 (15)° and 123.23 (16); 123.46 (16)°, which indicate the sp2 hybridization of these atoms. The observed bond lengths and angles compare well with those found in similar compounds (Ünver et al., 2008; De et al., 2008). The angles between the planes of the anthracene and phenyl rings, C16—N1—C15—C1 and C38—N2—C37—C23, are 174.06 (15) and 179.85 (14)°, respectively.

Experimental

Synthetic procedures were carried out using standard techniques. Solvents and reagents were used as received. The melting point was determined in open capillaries and is uncorrected. 1H and 13C NMR spectra were recorded on a JEOL ECX 300 MHz spectrometer using TMS as the internal standard. The IR spectrum was recorded as a KBr disk on a JASCO 460 FTIR. Mass spectrometry was provided by the Washington University Mass Spectrometry Resource with support from the NIH National Center for Research Resources (Grant No. P41RR0954).

The title compound was synthesized using a modification of the method of De et al. (2008). 20 ml of methanol, 9-anthracenecarboxaldehyde (0.251 g, 1.22 mmol), and 2-amino-p-cresol (0.124 g, 1.01 mmol), and four drops of acetic acid were added to a 50 ml round bottom flask with a magnetic stir bar. The solution was refluxed for 1.5 hours until it was a bright orange color. The solution was then gravity filtered hot and allowed to slowly cool, yielding 0.185 g (59% yield) of bright orange-yellow needle-like crystals.

MP 170-174° C; IR (KBr disk) 3465, 3356, 3052, 3018, 2922, 2860, 1604, 1502 cm–1; 1H NMR (300 MHz, CDCl3) ppm 9.84 (s, 1H), 8.69 (d, 2H), 8.51 (s, 1H), 8.02 (d, 2H), 7.54 (m, 5H), 7.31 (s, 1H), 7.11 (m, 1H), 7.02 (d, 1H), 2.43 (s, 3H); 13C NMR (75 MHz, CDCl3) ppm 157.8, 150.0, 137.9, 131.5, 130.6, 130.5, 129.1, 129.0, 128.9, 128.1, 127.2, 125.6, 125.2, 118.3, 115.4, 21.1; EI—HR—MS: m/z for [M+H]+ = 312.1373, Calcd. m/z for [M+H]+ = 312.1388.

Refinement

Hydrogen atoms on C were placed in idealized positions with C—H bond distances 0.95 - 0.98 Å and thereafter treated as riding. Displacement parameters for H were assigned as Uiso = 1.2Ueq of the attached atom (1.5 for methyl and OH). A torsional parameter was refined for each methyl group, and OH hydrogen positions were refined.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit with ellipsoids at the 50% probability level and H atoms having arbitrary radius.

Crystal data

C22H17NO Z = 4
Mr = 311.37 F(000) = 656
Triclinic, P1 Dx = 1.320 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.6037 (15) Å Cell parameters from 7377 reflections
b = 12.839 (3) Å θ = 2.5–27.8°
c = 15.015 (3) Å µ = 0.08 mm1
α = 94.508 (9)° T = 90 K
β = 97.164 (11)° Lath, yellow
γ = 106.490 (11)° 0.37 × 0.15 × 0.05 mm
V = 1566.6 (6) Å3

Data collection

Nonius KappaCCD diffractometer with Oxford Cryostream 4454 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.057
graphite θmax = 27.9°, θmin = 2.5°
ω scans with κ offsets h = −11→11
35942 measured reflections k = −16→16
7462 independent reflections l = −19→19

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0571P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
7462 reflections Δρmax = 0.30 e Å3
442 parameters Δρmin = −0.28 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0034 (10)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.30490 (15) 0.14730 (11) 0.20434 (9) 0.0223 (3)
H10H 0.261 (2) 0.1946 (17) 0.2172 (14) 0.033*
N1 0.13998 (16) 0.26290 (12) 0.10202 (10) 0.0177 (3)
C1 0.0939 (2) 0.44058 (15) 0.09855 (11) 0.0164 (4)
C2 −0.0671 (2) 0.42007 (15) 0.11964 (11) 0.0167 (4)
C3 −0.1820 (2) 0.31351 (16) 0.10892 (12) 0.0215 (4)
H3 −0.1516 0.2527 0.0851 0.026*
C4 −0.3344 (2) 0.29700 (16) 0.13208 (13) 0.0246 (5)
H4 −0.4084 0.2251 0.1244 0.029*
C5 −0.3837 (2) 0.38605 (17) 0.16758 (13) 0.0249 (5)
H5 −0.4894 0.3733 0.1850 0.030*
C6 −0.2806 (2) 0.48933 (16) 0.17677 (12) 0.0213 (4)
H6 −0.3157 0.5486 0.1994 0.026*
C7 −0.1195 (2) 0.51040 (15) 0.15290 (11) 0.0170 (4)
C8 −0.0120 (2) 0.61631 (15) 0.16377 (12) 0.0196 (4)
H8 −0.0473 0.6754 0.1867 0.023*
C9 0.1462 (2) 0.63784 (15) 0.14184 (12) 0.0181 (4)
C10 0.2576 (2) 0.74645 (16) 0.15396 (13) 0.0237 (4)
H10 0.2225 0.8059 0.1763 0.028*
C11 0.4120 (2) 0.76605 (17) 0.13417 (14) 0.0289 (5)
H11 0.4841 0.8386 0.1425 0.035*
C12 0.4657 (2) 0.67730 (16) 0.10083 (13) 0.0262 (5)
H12 0.5740 0.6911 0.0870 0.031*
C13 0.3642 (2) 0.57331 (16) 0.08864 (13) 0.0222 (4)
H13 0.4031 0.5156 0.0665 0.027*
C14 0.2004 (2) 0.54824 (15) 0.10823 (12) 0.0178 (4)
C15 0.1512 (2) 0.34955 (15) 0.06342 (12) 0.0181 (4)
H15 0.1987 0.3556 0.0095 0.022*
C16 0.1843 (2) 0.17612 (14) 0.05799 (12) 0.0165 (4)
C17 0.2645 (2) 0.11812 (15) 0.11268 (12) 0.0170 (4)
C18 0.3106 (2) 0.03190 (15) 0.07482 (12) 0.0191 (4)
H18 0.3682 −0.0058 0.1120 0.023*
C19 0.2723 (2) 0.00072 (15) −0.01782 (13) 0.0218 (4)
H19 0.3061 −0.0577 −0.0435 0.026*
C20 0.1853 (2) 0.05329 (15) −0.07398 (12) 0.0202 (4)
C21 0.1432 (2) 0.14129 (16) −0.03464 (12) 0.0198 (4)
H21 0.0850 0.1787 −0.0718 0.024*
C22 0.1364 (2) 0.01475 (18) −0.17348 (13) 0.0316 (5)
H22A 0.0264 −0.0380 −0.1843 0.047*
H22B 0.2149 −0.0203 −0.1943 0.047*
H22C 0.1359 0.0774 −0.2067 0.047*
O2 0.53743 (15) 0.04269 (11) 0.27603 (8) 0.0207 (3)
H20H 0.488 (2) 0.0923 (17) 0.2760 (13) 0.031*
N2 0.52578 (16) 0.20557 (12) 0.39729 (10) 0.0168 (3)
C23 0.48926 (19) 0.38573 (14) 0.40197 (11) 0.0142 (4)
C24 0.3154 (2) 0.35684 (14) 0.38026 (11) 0.0150 (4)
C25 0.2085 (2) 0.25083 (15) 0.38727 (11) 0.0175 (4)
H25 0.2540 0.1949 0.4049 0.021*
C26 0.0420 (2) 0.22873 (15) 0.36905 (12) 0.0197 (4)
H26 −0.0263 0.1578 0.3746 0.024*
C27 −0.0304 (2) 0.30931 (16) 0.34210 (12) 0.0205 (4)
H27 −0.1463 0.2922 0.3290 0.025*
C28 0.0661 (2) 0.41141 (16) 0.33494 (12) 0.0195 (4)
H28 0.0167 0.4656 0.3175 0.023*
C29 0.2409 (2) 0.43844 (15) 0.35330 (11) 0.0161 (4)
C30 0.3395 (2) 0.54295 (15) 0.34506 (11) 0.0172 (4)
H30 0.2891 0.5956 0.3249 0.021*
C31 0.5098 (2) 0.57245 (14) 0.36561 (11) 0.0167 (4)
C32 0.6089 (2) 0.67977 (15) 0.35648 (13) 0.0229 (4)
H32 0.5579 0.7320 0.3359 0.027*
C33 0.7750 (2) 0.70842 (15) 0.37681 (13) 0.0236 (4)
H33 0.8392 0.7804 0.3709 0.028*
C34 0.8524 (2) 0.63117 (15) 0.40679 (12) 0.0211 (4)
H34 0.9686 0.6519 0.4210 0.025*
C35 0.7631 (2) 0.52775 (15) 0.41557 (12) 0.0188 (4)
H35 0.8181 0.4771 0.4350 0.023*
C36 0.5874 (2) 0.49345 (14) 0.39604 (11) 0.0152 (4)
C37 0.5733 (2) 0.30621 (15) 0.43076 (12) 0.0157 (4)
H37 0.6671 0.3307 0.4763 0.019*
C38 0.61304 (19) 0.13383 (14) 0.42820 (12) 0.0145 (4)
C39 0.61383 (19) 0.05028 (15) 0.36290 (12) 0.0157 (4)
C40 0.69549 (19) −0.02469 (14) 0.38538 (12) 0.0164 (4)
H40 0.6983 −0.0807 0.3409 0.020*
C41 0.77342 (19) −0.01782 (15) 0.47339 (12) 0.0172 (4)
H41 0.8307 −0.0690 0.4881 0.021*
C42 0.76957 (19) 0.06220 (15) 0.54060 (12) 0.0172 (4)
C43 0.68877 (19) 0.13757 (14) 0.51648 (12) 0.0161 (4)
H43 0.6850 0.1930 0.5612 0.019*
C44 0.8441 (2) 0.06293 (16) 0.63718 (12) 0.0219 (4)
H44A 0.8793 0.1379 0.6678 0.033*
H44B 0.9391 0.0350 0.6380 0.033*
H44C 0.7624 0.0163 0.6685 0.033*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0282 (7) 0.0235 (8) 0.0179 (7) 0.0142 (6) −0.0002 (6) 0.0010 (6)
N1 0.0183 (8) 0.0189 (9) 0.0177 (8) 0.0092 (6) 0.0015 (6) 0.0003 (7)
C1 0.0197 (9) 0.0186 (10) 0.0134 (9) 0.0097 (8) 0.0013 (7) 0.0030 (8)
C2 0.0191 (9) 0.0201 (10) 0.0128 (9) 0.0099 (8) −0.0006 (7) 0.0029 (8)
C3 0.0212 (10) 0.0212 (11) 0.0224 (10) 0.0094 (8) 0.0001 (8) −0.0016 (8)
C4 0.0196 (9) 0.0238 (11) 0.0290 (11) 0.0055 (8) 0.0021 (8) 0.0014 (9)
C5 0.0202 (10) 0.0313 (12) 0.0253 (11) 0.0110 (9) 0.0043 (8) 0.0018 (9)
C6 0.0217 (10) 0.0283 (12) 0.0184 (10) 0.0151 (9) 0.0032 (8) 0.0009 (8)
C7 0.0195 (9) 0.0232 (11) 0.0116 (9) 0.0121 (8) 0.0008 (7) 0.0036 (8)
C8 0.0262 (10) 0.0200 (11) 0.0173 (10) 0.0150 (8) 0.0018 (8) 0.0028 (8)
C9 0.0221 (9) 0.0204 (11) 0.0139 (9) 0.0098 (8) 0.0010 (8) 0.0042 (8)
C10 0.0311 (11) 0.0165 (10) 0.0264 (11) 0.0118 (8) 0.0034 (9) 0.0034 (9)
C11 0.0289 (11) 0.0217 (12) 0.0369 (13) 0.0070 (9) 0.0053 (9) 0.0087 (10)
C12 0.0225 (10) 0.0264 (12) 0.0333 (12) 0.0099 (9) 0.0077 (9) 0.0095 (10)
C13 0.0240 (10) 0.0228 (11) 0.0248 (11) 0.0136 (8) 0.0051 (8) 0.0062 (9)
C14 0.0217 (9) 0.0201 (11) 0.0138 (9) 0.0103 (8) 0.0006 (7) 0.0038 (8)
C15 0.0162 (9) 0.0228 (11) 0.0162 (10) 0.0077 (8) 0.0013 (7) 0.0021 (8)
C16 0.0151 (8) 0.0163 (10) 0.0194 (10) 0.0056 (7) 0.0054 (7) 0.0016 (8)
C17 0.0163 (9) 0.0159 (10) 0.0176 (10) 0.0033 (7) 0.0029 (8) 0.0000 (8)
C18 0.0176 (9) 0.0169 (10) 0.0232 (11) 0.0067 (8) 0.0002 (8) 0.0030 (8)
C19 0.0168 (9) 0.0189 (11) 0.0287 (11) 0.0045 (8) 0.0057 (8) −0.0043 (9)
C20 0.0148 (9) 0.0242 (11) 0.0191 (10) 0.0030 (8) 0.0034 (8) −0.0034 (8)
C21 0.0166 (9) 0.0244 (11) 0.0188 (10) 0.0060 (8) 0.0027 (8) 0.0052 (8)
C22 0.0275 (11) 0.0411 (14) 0.0234 (11) 0.0081 (10) 0.0041 (9) −0.0059 (10)
O2 0.0236 (7) 0.0198 (8) 0.0208 (7) 0.0118 (6) −0.0003 (6) 0.0000 (6)
N2 0.0180 (8) 0.0160 (9) 0.0193 (8) 0.0086 (6) 0.0051 (6) 0.0032 (7)
C23 0.0185 (9) 0.0141 (10) 0.0117 (9) 0.0076 (7) 0.0028 (7) 0.0001 (7)
C24 0.0202 (9) 0.0162 (10) 0.0101 (9) 0.0083 (7) 0.0025 (7) −0.0003 (7)
C25 0.0201 (9) 0.0177 (10) 0.0179 (10) 0.0092 (8) 0.0052 (8) 0.0036 (8)
C26 0.0195 (9) 0.0170 (10) 0.0214 (10) 0.0032 (8) 0.0048 (8) 0.0000 (8)
C27 0.0148 (9) 0.0281 (12) 0.0193 (10) 0.0085 (8) 0.0007 (8) 0.0017 (8)
C28 0.0213 (9) 0.0255 (11) 0.0157 (10) 0.0142 (8) 0.0006 (8) 0.0021 (8)
C29 0.0210 (9) 0.0204 (10) 0.0095 (9) 0.0107 (8) 0.0021 (7) 0.0003 (8)
C30 0.0250 (10) 0.0163 (10) 0.0150 (9) 0.0127 (8) 0.0043 (8) 0.0036 (8)
C31 0.0243 (9) 0.0143 (10) 0.0139 (9) 0.0079 (8) 0.0060 (8) 0.0017 (8)
C32 0.0314 (11) 0.0156 (10) 0.0249 (11) 0.0096 (8) 0.0087 (9) 0.0049 (8)
C33 0.0300 (11) 0.0115 (10) 0.0286 (11) 0.0031 (8) 0.0100 (9) 0.0006 (8)
C34 0.0199 (9) 0.0191 (11) 0.0218 (10) 0.0027 (8) 0.0053 (8) −0.0039 (8)
C35 0.0209 (9) 0.0195 (10) 0.0176 (10) 0.0084 (8) 0.0048 (8) 0.0005 (8)
C36 0.0208 (9) 0.0131 (10) 0.0120 (9) 0.0056 (7) 0.0042 (7) −0.0006 (7)
C37 0.0154 (9) 0.0185 (10) 0.0145 (9) 0.0067 (7) 0.0028 (7) 0.0021 (8)
C38 0.0128 (8) 0.0126 (9) 0.0201 (10) 0.0048 (7) 0.0060 (7) 0.0049 (8)
C39 0.0124 (8) 0.0190 (10) 0.0149 (9) 0.0028 (7) 0.0023 (7) 0.0036 (8)
C40 0.0161 (9) 0.0135 (10) 0.0216 (10) 0.0058 (7) 0.0071 (8) 0.0023 (8)
C41 0.0136 (8) 0.0162 (10) 0.0254 (10) 0.0064 (7) 0.0071 (8) 0.0089 (8)
C42 0.0127 (8) 0.0193 (10) 0.0209 (10) 0.0039 (7) 0.0059 (7) 0.0076 (8)
C43 0.0157 (9) 0.0134 (10) 0.0190 (10) 0.0037 (7) 0.0043 (7) 0.0007 (8)
C44 0.0210 (9) 0.0244 (11) 0.0224 (11) 0.0087 (8) 0.0040 (8) 0.0069 (9)

Geometric parameters (Å, °)

O1—C17 1.371 (2) O2—C39 1.368 (2)
O1—H10H 0.82 (2) O2—H20H 0.86 (2)
N1—C15 1.280 (2) N2—C37 1.279 (2)
N1—C16 1.419 (2) N2—C38 1.414 (2)
C1—C14 1.410 (2) C23—C36 1.417 (2)
C1—C2 1.416 (2) C23—C24 1.423 (2)
C1—C15 1.477 (2) C23—C37 1.470 (2)
C2—C3 1.426 (2) C24—C25 1.430 (2)
C2—C7 1.435 (2) C24—C29 1.434 (2)
C3—C4 1.361 (2) C25—C26 1.366 (2)
C3—H3 0.9500 C25—H25 0.9500
C4—C5 1.417 (3) C26—C27 1.411 (3)
C4—H4 0.9500 C26—H26 0.9500
C5—C6 1.356 (3) C27—C28 1.359 (3)
C5—H5 0.9500 C27—H27 0.9500
C6—C7 1.431 (2) C28—C29 1.429 (2)
C6—H6 0.9500 C28—H28 0.9500
C7—C8 1.395 (2) C29—C30 1.393 (2)
C8—C9 1.396 (2) C30—C31 1.393 (2)
C8—H8 0.9500 C30—H30 0.9500
C9—C10 1.433 (3) C31—C32 1.427 (2)
C9—C14 1.438 (2) C31—C36 1.437 (2)
C10—C11 1.355 (3) C32—C33 1.359 (3)
C10—H10 0.9500 C32—H32 0.9500
C11—C12 1.425 (3) C33—C34 1.414 (3)
C11—H11 0.9500 C33—H33 0.9500
C12—C13 1.356 (3) C34—C35 1.358 (2)
C12—H12 0.9500 C34—H34 0.9500
C13—C14 1.427 (2) C35—C36 1.434 (2)
C13—H13 0.9500 C35—H35 0.9500
C15—H15 0.9500 C37—H37 0.9500
C16—C21 1.396 (2) C38—C43 1.393 (2)
C16—C17 1.397 (2) C38—C39 1.397 (2)
C17—C18 1.383 (2) C39—C40 1.382 (2)
C18—C19 1.388 (3) C40—C41 1.389 (2)
C18—H18 0.9500 C40—H40 0.9500
C19—C20 1.395 (3) C41—C42 1.393 (2)
C19—H19 0.9500 C41—H41 0.9500
C20—C21 1.392 (2) C42—C43 1.388 (2)
C20—C22 1.504 (3) C42—C44 1.509 (2)
C21—H21 0.9500 C43—H43 0.9500
C22—H22A 0.9800 C44—H44A 0.9800
C22—H22B 0.9800 C44—H44B 0.9800
C22—H22C 0.9800 C44—H44C 0.9800
C17—O1—H10H 106.8 (15) C39—O2—H20H 105.9 (14)
C15—N1—C16 118.53 (15) C37—N2—C38 119.84 (15)
C14—C1—C2 120.64 (16) C36—C23—C24 120.39 (16)
C14—C1—C15 118.97 (15) C36—C23—C37 117.76 (15)
C2—C1—C15 120.36 (16) C24—C23—C37 121.85 (16)
C1—C2—C3 123.32 (16) C23—C24—C25 123.46 (16)
C1—C2—C7 119.01 (16) C23—C24—C29 119.12 (16)
C3—C2—C7 117.67 (15) C25—C24—C29 117.37 (15)
C4—C3—C2 121.46 (18) C26—C25—C24 121.06 (17)
C4—C3—H3 119.3 C26—C25—H25 119.5
C2—C3—H3 119.3 C24—C25—H25 119.5
C3—C4—C5 120.64 (18) C25—C26—C27 121.23 (17)
C3—C4—H4 119.7 C25—C26—H26 119.4
C5—C4—H4 119.7 C27—C26—H26 119.4
C6—C5—C4 120.15 (17) C28—C27—C26 119.87 (16)
C6—C5—H5 119.9 C28—C27—H27 120.1
C4—C5—H5 119.9 C26—C27—H27 120.1
C5—C6—C7 121.02 (18) C27—C28—C29 120.93 (17)
C5—C6—H6 119.5 C27—C28—H28 119.5
C7—C6—H6 119.5 C29—C28—H28 119.5
C8—C7—C6 121.19 (17) C30—C29—C28 120.78 (16)
C8—C7—C2 119.78 (15) C30—C29—C24 119.70 (15)
C6—C7—C2 119.00 (16) C28—C29—C24 119.53 (16)
C7—C8—C9 121.78 (17) C31—C30—C29 121.87 (16)
C7—C8—H8 119.1 C31—C30—H30 119.1
C9—C8—H8 119.1 C29—C30—H30 119.1
C8—C9—C10 121.89 (17) C30—C31—C32 121.12 (17)
C8—C9—C14 119.11 (16) C30—C31—C36 119.56 (16)
C10—C9—C14 118.98 (16) C32—C31—C36 119.32 (16)
C11—C10—C9 121.35 (18) C33—C32—C31 121.00 (18)
C11—C10—H10 119.3 C33—C32—H32 119.5
C9—C10—H10 119.3 C31—C32—H32 119.5
C10—C11—C12 119.68 (18) C32—C33—C34 120.05 (17)
C10—C11—H11 120.2 C32—C33—H33 120.0
C12—C11—H11 120.2 C34—C33—H33 120.0
C13—C12—C11 120.79 (17) C35—C34—C33 120.98 (17)
C13—C12—H12 119.6 C35—C34—H34 119.5
C11—C12—H12 119.6 C33—C34—H34 119.5
C12—C13—C14 121.78 (18) C34—C35—C36 121.33 (17)
C12—C13—H13 119.1 C34—C35—H35 119.3
C14—C13—H13 119.1 C36—C35—H35 119.3
C1—C14—C13 122.90 (17) C23—C36—C35 123.36 (16)
C1—C14—C9 119.66 (15) C23—C36—C31 119.28 (15)
C13—C14—C9 117.42 (16) C35—C36—C31 117.32 (16)
N1—C15—C1 123.23 (16) N2—C37—C23 122.99 (16)
N1—C15—H15 118.4 N2—C37—H37 118.5
C1—C15—H15 118.4 C23—C37—H37 118.5
C21—C16—C17 118.71 (16) C43—C38—C39 119.36 (16)
C21—C16—N1 124.14 (16) C43—C38—N2 125.80 (16)
C17—C16—N1 117.01 (15) C39—C38—N2 114.77 (16)
O1—C17—C18 118.31 (16) O2—C39—C40 119.20 (16)
O1—C17—C16 121.24 (16) O2—C39—C38 120.91 (16)
C18—C17—C16 120.41 (16) C40—C39—C38 119.88 (16)
C17—C18—C19 119.72 (17) C39—C40—C41 119.70 (17)
C17—C18—H18 120.1 C39—C40—H40 120.2
C19—C18—H18 120.1 C41—C40—H40 120.2
C18—C19—C20 121.45 (17) C40—C41—C42 121.63 (17)
C18—C19—H19 119.3 C40—C41—H41 119.2
C20—C19—H19 119.3 C42—C41—H41 119.2
C21—C20—C19 117.80 (17) C43—C42—C41 117.83 (17)
C21—C20—C22 121.23 (18) C43—C42—C44 121.43 (17)
C19—C20—C22 120.97 (17) C41—C42—C44 120.68 (16)
C20—C21—C16 121.79 (17) C42—C43—C38 121.54 (17)
C20—C21—H21 119.1 C42—C43—H43 119.2
C16—C21—H21 119.1 C38—C43—H43 119.2
C20—C22—H22A 109.5 C42—C44—H44A 109.5
C20—C22—H22B 109.5 C42—C44—H44B 109.5
H22A—C22—H22B 109.5 H44A—C44—H44B 109.5
C20—C22—H22C 109.5 C42—C44—H44C 109.5
H22A—C22—H22C 109.5 H44A—C44—H44C 109.5
H22B—C22—H22C 109.5 H44B—C44—H44C 109.5
C14—C1—C2—C3 178.20 (16) C36—C23—C24—C25 −178.08 (15)
C15—C1—C2—C3 0.0 (3) C37—C23—C24—C25 2.1 (3)
C14—C1—C2—C7 −1.3 (3) C36—C23—C24—C29 −0.7 (2)
C15—C1—C2—C7 −179.45 (16) C37—C23—C24—C29 179.52 (16)
C1—C2—C3—C4 178.37 (17) C23—C24—C25—C26 177.33 (16)
C7—C2—C3—C4 −2.1 (3) C29—C24—C25—C26 −0.1 (2)
C2—C3—C4—C5 0.2 (3) C24—C25—C26—C27 0.5 (3)
C3—C4—C5—C6 1.6 (3) C25—C26—C27—C28 −0.8 (3)
C4—C5—C6—C7 −1.4 (3) C26—C27—C28—C29 0.8 (3)
C5—C6—C7—C8 −178.84 (17) C27—C28—C29—C30 179.40 (17)
C5—C6—C7—C2 −0.6 (3) C27—C28—C29—C24 −0.4 (2)
C1—C2—C7—C8 0.1 (2) C23—C24—C29—C30 2.7 (2)
C3—C2—C7—C8 −179.44 (16) C25—C24—C29—C30 −179.73 (16)
C1—C2—C7—C6 −178.15 (16) C23—C24—C29—C28 −177.46 (15)
C3—C2—C7—C6 2.3 (2) C25—C24—C29—C28 0.1 (2)
C6—C7—C8—C9 179.17 (17) C28—C29—C30—C31 177.71 (15)
C2—C7—C8—C9 1.0 (3) C24—C29—C30—C31 −2.5 (3)
C7—C8—C9—C10 −179.25 (17) C29—C30—C31—C32 179.78 (16)
C7—C8—C9—C14 −0.8 (3) C29—C30—C31—C36 0.1 (3)
C8—C9—C10—C11 178.62 (18) C30—C31—C32—C33 179.82 (17)
C14—C9—C10—C11 0.2 (3) C36—C31—C32—C33 −0.5 (3)
C9—C10—C11—C12 −0.2 (3) C31—C32—C33—C34 0.5 (3)
C10—C11—C12—C13 0.0 (3) C32—C33—C34—C35 0.2 (3)
C11—C12—C13—C14 0.2 (3) C33—C34—C35—C36 −0.9 (3)
C2—C1—C14—C13 179.46 (16) C24—C23—C36—C35 −179.05 (15)
C15—C1—C14—C13 −2.3 (3) C37—C23—C36—C35 0.8 (2)
C2—C1—C14—C9 1.5 (3) C24—C23—C36—C31 −1.6 (2)
C15—C1—C14—C9 179.64 (16) C37—C23—C36—C31 178.21 (16)
C12—C13—C14—C1 −178.18 (17) C34—C35—C36—C23 178.33 (16)
C12—C13—C14—C9 −0.1 (3) C34—C35—C36—C31 0.8 (2)
C8—C9—C14—C1 −0.4 (3) C30—C31—C36—C23 1.9 (2)
C10—C9—C14—C1 178.07 (16) C32—C31—C36—C23 −177.74 (15)
C8—C9—C14—C13 −178.52 (17) C30—C31—C36—C35 179.50 (15)
C10—C9—C14—C13 0.0 (2) C32—C31—C36—C35 −0.1 (2)
C16—N1—C15—C1 174.06 (15) C38—N2—C37—C23 179.85 (14)
C14—C1—C15—N1 130.13 (19) C36—C23—C37—N2 −142.22 (16)
C2—C1—C15—N1 −51.7 (3) C24—C23—C37—N2 37.6 (2)
C15—N1—C16—C21 −41.7 (2) C37—N2—C38—C43 35.3 (2)
C15—N1—C16—C17 142.73 (16) C37—N2—C38—C39 −147.70 (15)
C21—C16—C17—O1 −178.70 (15) C43—C38—C39—O2 178.51 (14)
N1—C16—C17—O1 −2.9 (2) N2—C38—C39—O2 1.3 (2)
C21—C16—C17—C18 3.7 (2) C43—C38—C39—C40 −2.8 (2)
N1—C16—C17—C18 179.53 (15) N2—C38—C39—C40 179.93 (14)
O1—C17—C18—C19 −179.66 (15) O2—C39—C40—C41 −179.96 (14)
C16—C17—C18—C19 −2.0 (2) C38—C39—C40—C41 1.4 (2)
C17—C18—C19—C20 −1.2 (3) C39—C40—C41—C42 1.0 (2)
C18—C19—C20—C21 2.4 (2) C40—C41—C42—C43 −1.8 (2)
C18—C19—C20—C22 −176.54 (16) C40—C41—C42—C44 175.37 (15)
C19—C20—C21—C16 −0.6 (2) C41—C42—C43—C38 0.2 (2)
C22—C20—C21—C16 178.34 (16) C44—C42—C43—C38 −176.88 (15)
C17—C16—C21—C20 −2.4 (2) C39—C38—C43—C42 2.0 (2)
N1—C16—C21—C20 −177.88 (15) N2—C38—C43—C42 178.95 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H10H···N1 0.82 (2) 2.27 (2) 2.754 (2) 118.0 (17)
O2—H20H···O1 0.86 (2) 2.11 (2) 2.8602 (18) 144.9 (18)
O2—H20H···N2 0.86 (2) 2.17 (2) 2.695 (2) 119.1 (17)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2039).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammmer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  3. De, R. L., Mandal, M., Roy, L. & Mukherjee, J. (2008). Indian J. Chem. Sect. A, 47, 207–213.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Liao, S.-H., Shiu, J.-R., Liu, S.-W., Yeh, S.-J., Chen, Y.-H., Chen, C.-T., Chow, T. J. & Wu, C.-I. (2009). J. Am. Chem. Soc.131, 763–777. [DOI] [PubMed]
  6. Mak, C. S. K., Wong, H. L., Leung, Q. Y., Tam, W. Y., Chan, W. K. & Djurišić, A. B. (2009). J. Organomet. Chem.694, 2770–2776.
  7. Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  8. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Ünver, H., Yildiz, M., Kiraz, A. & Özgen, Ö. (2009). J. Chem. Crystallogr.39, 17–23.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810016715/zq2039sup1.cif

e-66-o1353-sup1.cif (29.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810016715/zq2039Isup2.hkl

e-66-o1353-Isup2.hkl (357.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES