Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 May 12;66(Pt 6):o1309. doi: 10.1107/S160053681001384X

4-[(Z)-Allyl­amino­(phen­yl)methyl­ene]-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one

Hai-Zhen Xu a,*, Yan-Xia Yang b, Jing Yan a, You-Quan Zhu c,*
PMCID: PMC2979603  PMID: 21579404

Abstract

The title compound, C20H19N3O, exists in a keto–enamine tautomeric form. The pyrazolone ring makes dihedral angles of 20.52 (10) and 77.73 (5)° with the two phenyl rings and an intra­molecular N—H⋯O hydrogen bond occurs. A weak inter­molecular C—H⋯O hydrogen bond is observed in the crystal structure. The allyl group is disordered over two positions, with site-occupancy factors of 0.533 (5) and 0.467 (5).

Related literature

For the analgesic activity of metal complexes with 1-phenyl-3-methyl-4-benzoyl­pyrazolon-5-one, see: Li et al. (1997); Liu et al. (1980); Zhou et al. (1999). For related structures, see: Bao et al. (2004); Sun et al. (2007); Zhu et al. (2005).graphic file with name e-66-o1309-scheme1.jpg

Experimental

Crystal data

  • C20H19N3O

  • M r = 317.38

  • Triclinic, Inline graphic

  • a = 9.295 (1) Å

  • b = 9.8440 (12) Å

  • c = 10.0670 (14) Å

  • α = 86.175 (8)°

  • β = 89.280 (9)°

  • γ = 74.329 (7)°

  • V = 884.90 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.22 × 0.18 × 0.16 mm

Data collection

  • Rigaku Saturn724 CCD camera diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2009) T min = 0.984, T max = 0.988

  • 10726 measured reflections

  • 3910 independent reflections

  • 2135 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.133

  • S = 0.94

  • 3910 reflections

  • 242 parameters

  • 16 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CrystalClear (Rigaku, 2009); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2009); software used to prepare material for publication: CrystalStructure.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681001384X/is2538sup1.cif

e-66-o1309-sup1.cif (21.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681001384X/is2538Isup2.hkl

e-66-o1309-Isup2.hkl (191.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1 1.06 (2) 1.75 (2) 2.687 (2) 145 (2)
C17—H17⋯O1i 0.95 2.41 3.345 (2) 168

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (grant No. 20772066).

supplementary crystallographic information

Comment

1-Phenyl-3-methyl-4-benzoylpyrazolon-5-one (HPMBP), an effective β-diketonate, is widely used and well known for its extractive ability. In recent years, HPMBP and its metal complexes have also been found to have good antibacterial and biological properties. Its metal complexes have analgesic activity (Liu et al., 1980; Li et al., 1997; Zhou et al., 1999). In order to develop new medicines, we have synthesized the title compound, (I), and its structure is reported here.

The structure of (I) is shown in Fig. 1. The dihedral angles formed by the pyrazolone ring with the two phenyl rings C5–C10 and C12–C17 are 20.52 (10) and 77.73 (5)°, respectively. The O atom of the 3-methyl-1-phenylpyrazol-5-one moiety and the N atom of the allylamino group are available for coordination with metals. The pyrazole ring is planar and atoms O1, C1, C2, C11 and N3 are almost coplanar, the largest deviation being 0.0195 (11) Å for atom C11. The dihedral angle between this mean plane and the pyrazoline ring of PMBP is 2.01 (12)°. The bond lengths within this part of the molecule lie between classical single- and double-bond lengths, indicating extensive conjugation. A strong intramolecular N3—H3···O1 hydrogen bond (Table 1) is observed, leading to a keto-enamine form. The crystal structure includes intermolecular C—H···O hydrogen bonds (Table 1 and Fig. 2).

Experimental

Compound (I) was synthesized by refluxing a mixture of 1-phenyl-3-methyl-4-benzoylpyrazol-5-one (10 mmol) and allylamine (10 mmol) in ethanol (80 ml) over a steam bath for about 10 h. Excess solvent was removed by evaporation and the solution was cooled to room temperature. After 4 d, a colorless solid was obtained and this was dried in air. The product was recrystallized from ethanol, to afford colorless crystals of (I) suitable for X-ray analysis.

Refinement

C-bound H atoms were positioned geometrically, with C—H = 0.95–0.96 Å and were refined as riding, with Uiso(H) = 1.2Ueq(C). The amine H atom (H3) found in a difference map was refined freely. The allyl group shows positional disorder. In the final refinement, the occupancy factors of two possible sites, C19/C20 and C19'/C20', converged to 0.533 (5) and 0.467 (5). For the disordered unit, distance restraints [C18—C19 = C18—C19' = 1.50 (1) Å and C19—C20 = C19'—C20' = 1.34 (1) Å] were applied. The terminal C20 and C20' atoms were also restrained to be approximately isotropic (ISOR).

Figures

Fig. 1.

Fig. 1.

View of the title compound, with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Intermolecular hydrogen bonds (dashed line) in the structure of (I).

Crystal data

C20H19N3O Z = 2
Mr = 317.38 F(000) = 336
Triclinic, P1 Dx = 1.191 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71075 Å
a = 9.295 (1) Å Cell parameters from 2516 reflections
b = 9.8440 (12) Å θ = 2.0–27.2°
c = 10.0670 (14) Å µ = 0.08 mm1
α = 86.175 (8)° T = 293 K
β = 89.280 (9)° Prism, colorless
γ = 74.329 (7)° 0.22 × 0.18 × 0.16 mm
V = 884.90 (19) Å3

Data collection

Rigaku Saturn724 CCD camera diffractometer 3910 independent reflections
Radiation source: rotating anode 2135 reflections with I > 2σ(I)
multilayer Rint = 0.032
ω scans θmax = 27.2°, θmin = 2.0°
Absorption correction: multi-scan (CrystalClear; Rigaku, 2009) h = −11→11
Tmin = 0.984, Tmax = 0.988 k = −12→12
10726 measured reflections l = −12→12

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0682P)2] where P = (Fo2 + 2Fc2)/3
S = 0.94 (Δ/σ)max < 0.001
3910 reflections Δρmax = 0.17 e Å3
242 parameters Δρmin = −0.19 e Å3
16 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.044 (6)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.20365 (11) 0.99841 (12) 0.85524 (11) 0.0659 (4)
N1 0.08977 (14) 1.17446 (14) 0.69281 (13) 0.0581 (4)
N2 −0.03759 (15) 1.20734 (14) 0.61172 (14) 0.0623 (4)
N3 0.04161 (16) 0.81085 (15) 0.89396 (14) 0.0668 (4)
H3 0.130 (2) 0.858 (2) 0.9078 (19) 0.098 (6)*
C1 0.10280 (17) 1.05164 (17) 0.77140 (15) 0.0532 (4)
C2 −0.02439 (16) 1.00449 (16) 0.73734 (15) 0.0523 (4)
C3 −0.10420 (17) 1.10712 (17) 0.63795 (16) 0.0570 (4)
C4 −0.2423 (2) 1.1118 (2) 0.56172 (19) 0.0750 (5)
H4A −0.2771 1.2037 0.5118 0.090*
H4B −0.3202 1.0983 0.6237 0.090*
H4C −0.2203 1.0364 0.4996 0.090*
C5 0.17910 (19) 1.27022 (17) 0.69264 (16) 0.0593 (4)
C6 0.1197 (2) 1.40867 (19) 0.64376 (18) 0.0724 (5)
H6 0.0188 1.4392 0.6140 0.087*
C7 0.2068 (3) 1.5026 (2) 0.6381 (2) 0.0905 (7)
H7 0.1662 1.5972 0.6031 0.109*
C8 0.3519 (3) 1.4595 (2) 0.6831 (2) 0.0945 (7)
H8 0.4120 1.5238 0.6788 0.113*
C9 0.4100 (2) 1.3225 (2) 0.7344 (2) 0.0852 (6)
H9 0.5097 1.2934 0.7674 0.102*
C10 0.3249 (2) 1.2272 (2) 0.73843 (19) 0.0716 (5)
H10 0.3664 1.1325 0.7725 0.086*
C11 −0.05472 (16) 0.88577 (16) 0.80315 (15) 0.0531 (4)
C12 −0.19394 (17) 0.84403 (16) 0.77922 (16) 0.0536 (4)
C13 −0.2147 (2) 0.77965 (19) 0.66608 (18) 0.0703 (5)
H13 −0.1366 0.7554 0.6029 0.084*
C14 −0.3499 (2) 0.7506 (2) 0.6453 (2) 0.0828 (6)
H14 −0.3645 0.7065 0.5674 0.099*
C15 −0.4624 (2) 0.7848 (2) 0.7356 (2) 0.0779 (6)
H15 −0.5556 0.7662 0.7197 0.093*
C16 −0.44114 (19) 0.8458 (2) 0.8489 (2) 0.0732 (5)
H16 −0.5192 0.8681 0.9122 0.088*
C17 −0.30750 (18) 0.87516 (18) 0.87209 (17) 0.0642 (5)
H17 −0.2931 0.9167 0.9516 0.077*
C18 0.0316 (2) 0.68276 (19) 0.9706 (2) 0.0775 (6)
H18A −0.0194 0.6319 0.9183 0.093* 0.533 (9)
H18B −0.0251 0.7075 1.0499 0.093* 0.533 (9)
H18C 0.0338 0.6098 0.9113 0.093* 0.467 (9)
H18D −0.0616 0.7019 1.0174 0.093* 0.467 (9)
C19 0.1772 (5) 0.5941 (6) 1.0070 (7) 0.0726 (16) 0.533 (9)
H19 0.2349 0.5531 0.9340 0.087* 0.533 (9)
C20 0.2430 (9) 0.5605 (8) 1.1187 (6) 0.106 (2) 0.533 (9)
H20A 0.1939 0.5966 1.1973 0.128* 0.533 (9)
H20B 0.3415 0.4993 1.1237 0.128* 0.533 (9)
C19' 0.1553 (8) 0.6368 (9) 1.0669 (8) 0.098 (2) 0.467 (9)
H19' 0.1399 0.6733 1.1525 0.118* 0.467 (9)
C20' 0.2789 (10) 0.5535 (13) 1.0447 (12) 0.178 (4) 0.467 (9)
H20C 0.2984 0.5148 0.9602 0.214* 0.467 (9)
H20D 0.3537 0.5286 1.1122 0.214* 0.467 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0607 (7) 0.0729 (8) 0.0680 (8) −0.0270 (6) −0.0173 (6) 0.0090 (6)
N1 0.0619 (8) 0.0603 (8) 0.0555 (8) −0.0236 (7) −0.0107 (7) 0.0028 (7)
N2 0.0655 (9) 0.0643 (9) 0.0591 (9) −0.0222 (7) −0.0147 (7) 0.0036 (7)
N3 0.0652 (9) 0.0676 (9) 0.0717 (10) −0.0284 (7) −0.0162 (8) 0.0144 (8)
C1 0.0540 (9) 0.0574 (10) 0.0496 (9) −0.0171 (7) −0.0043 (8) −0.0023 (8)
C2 0.0510 (9) 0.0576 (9) 0.0503 (9) −0.0184 (7) −0.0055 (7) −0.0023 (8)
C3 0.0556 (9) 0.0645 (10) 0.0520 (10) −0.0176 (8) −0.0064 (8) −0.0032 (8)
C4 0.0705 (12) 0.0822 (13) 0.0747 (13) −0.0268 (10) −0.0227 (10) 0.0081 (10)
C5 0.0696 (11) 0.0620 (11) 0.0527 (10) −0.0284 (9) −0.0022 (8) −0.0043 (8)
C6 0.0852 (13) 0.0670 (12) 0.0705 (12) −0.0303 (10) −0.0113 (10) 0.0000 (9)
C7 0.1128 (17) 0.0687 (13) 0.0989 (17) −0.0404 (12) −0.0136 (14) −0.0006 (11)
C8 0.1163 (18) 0.0822 (15) 0.1049 (18) −0.0598 (14) −0.0044 (14) −0.0092 (13)
C9 0.0827 (13) 0.0890 (15) 0.0965 (16) −0.0437 (11) −0.0090 (12) −0.0093 (12)
C10 0.0711 (12) 0.0700 (12) 0.0800 (13) −0.0302 (9) −0.0061 (10) −0.0027 (10)
C11 0.0518 (9) 0.0589 (10) 0.0496 (9) −0.0162 (8) −0.0045 (7) −0.0047 (8)
C12 0.0554 (9) 0.0572 (9) 0.0509 (9) −0.0201 (7) −0.0051 (8) −0.0015 (7)
C13 0.0753 (12) 0.0874 (13) 0.0586 (11) −0.0371 (10) 0.0013 (9) −0.0164 (10)
C14 0.0929 (14) 0.1009 (15) 0.0694 (13) −0.0478 (12) −0.0109 (11) −0.0197 (11)
C15 0.0674 (12) 0.0878 (14) 0.0875 (15) −0.0360 (10) −0.0143 (11) −0.0044 (12)
C16 0.0557 (10) 0.0876 (13) 0.0795 (13) −0.0234 (9) −0.0013 (9) −0.0108 (11)
C17 0.0580 (10) 0.0765 (12) 0.0617 (11) −0.0218 (8) −0.0027 (9) −0.0140 (9)
C18 0.0852 (13) 0.0719 (12) 0.0779 (13) −0.0302 (10) −0.0147 (11) 0.0179 (10)
C19 0.052 (3) 0.067 (3) 0.092 (4) −0.005 (2) −0.003 (3) −0.001 (3)
C20 0.095 (4) 0.118 (4) 0.093 (4) −0.012 (3) −0.024 (3) 0.029 (3)
C19' 0.123 (6) 0.092 (5) 0.059 (4) 0.006 (4) 0.005 (4) 0.000 (3)
C20' 0.115 (6) 0.273 (9) 0.110 (7) 0.013 (6) −0.002 (5) −0.025 (6)

Geometric parameters (Å, °)

O1—C1 1.2494 (17) C11—C12 1.487 (2)
N1—C1 1.378 (2) C12—C13 1.380 (2)
N1—N2 1.3981 (17) C12—C17 1.386 (2)
N1—C5 1.4145 (19) C13—C14 1.383 (2)
N2—C3 1.3106 (19) C13—H13 0.9500
N3—C11 1.3249 (19) C14—C15 1.364 (3)
N3—C18 1.458 (2) C14—H14 0.9500
N3—H3 1.062 (19) C15—C16 1.364 (3)
C1—C2 1.435 (2) C15—H15 0.9500
C2—C11 1.398 (2) C16—C17 1.375 (2)
C2—C3 1.432 (2) C16—H16 0.9500
C3—C4 1.492 (2) C17—H17 0.9500
C4—H4A 0.9800 C18—C19 1.436 (5)
C4—H4B 0.9800 C18—C19' 1.468 (6)
C4—H4C 0.9800 C18—H18A 0.9601
C5—C10 1.382 (2) C18—H18B 0.9600
C5—C6 1.384 (2) C18—H18C 0.9600
C6—C7 1.382 (3) C18—H18D 0.9600
C6—H6 0.9500 C19—C20 1.267 (7)
C7—C8 1.373 (3) C19—H19 0.9500
C7—H7 0.9500 C20—H20A 0.9500
C8—C9 1.378 (3) C20—H20B 0.9500
C8—H8 0.9500 C19'—C20' 1.246 (8)
C9—C10 1.379 (2) C19'—H19' 0.9500
C9—H9 0.9500 C20'—H20C 0.9500
C10—H10 0.9500 C20'—H20D 0.9500
C1—N1—N2 111.74 (12) C13—C12—C17 119.47 (15)
C1—N1—C5 128.86 (14) C13—C12—C11 122.02 (15)
N2—N1—C5 119.21 (13) C17—C12—C11 118.47 (14)
C3—N2—N1 106.53 (13) C12—C13—C14 119.53 (18)
C11—N3—C18 126.82 (15) C12—C13—H13 120.2
C11—N3—H3 110.9 (10) C14—C13—H13 120.2
C18—N3—H3 122.3 (10) C15—C14—C13 120.61 (18)
O1—C1—N1 125.78 (15) C15—C14—H14 119.7
O1—C1—C2 129.30 (15) C13—C14—H14 119.7
N1—C1—C2 104.91 (13) C16—C15—C14 119.97 (18)
C11—C2—C3 132.68 (15) C16—C15—H15 120.0
C11—C2—C1 121.72 (14) C14—C15—H15 120.0
C3—C2—C1 105.45 (13) C15—C16—C17 120.51 (18)
N2—C3—C2 111.37 (14) C15—C16—H16 119.7
N2—C3—C4 118.53 (15) C17—C16—H16 119.7
C2—C3—C4 130.07 (15) C16—C17—C12 119.87 (16)
C3—C4—H4A 109.5 C16—C17—H17 120.1
C3—C4—H4B 109.5 C12—C17—H17 120.1
H4A—C4—H4B 109.5 C19—C18—N3 111.1 (3)
C3—C4—H4C 109.5 N3—C18—C19' 110.1 (4)
H4A—C4—H4C 109.5 C19—C18—H18A 109.6
H4B—C4—H4C 109.5 N3—C18—H18A 109.1
C10—C5—C6 119.66 (17) C19—C18—H18B 109.0
C10—C5—N1 121.11 (15) N3—C18—H18B 109.6
C6—C5—N1 119.23 (16) H18A—C18—H18B 108.3
C7—C6—C5 120.17 (19) N3—C18—H18C 109.6
C7—C6—H6 119.9 C19'—C18—H18C 110.4
C5—C6—H6 119.9 N3—C18—H18D 109.1
C8—C7—C6 120.1 (2) C19'—C18—H18D 109.3
C8—C7—H7 120.0 H18C—C18—H18D 108.3
C6—C7—H7 120.0 C20—C19—C18 131.8 (9)
C7—C8—C9 119.77 (19) C20—C19—H19 114.1
C7—C8—H8 120.1 C18—C19—H19 114.1
C9—C8—H8 120.1 C19—C20—H20A 120.0
C8—C9—C10 120.6 (2) C19—C20—H20B 120.0
C8—C9—H9 119.7 H20A—C20—H20B 120.0
C10—C9—H9 119.7 C20'—C19'—C18 124.8 (11)
C9—C10—C5 119.68 (18) C20'—C19'—H19' 117.6
C9—C10—H10 120.2 C18—C19'—H19' 117.6
C5—C10—H10 120.2 C19'—C20'—H20C 120.0
N3—C11—C2 118.69 (14) C19'—C20'—H20D 120.0
N3—C11—C12 118.78 (14) H20C—C20'—H20D 120.0
C2—C11—C12 122.48 (14)
C1—N1—N2—C3 −0.16 (18) C8—C9—C10—C5 −1.2 (3)
C5—N1—N2—C3 −175.66 (13) C6—C5—C10—C9 −0.3 (3)
N2—N1—C1—O1 −178.45 (15) N1—C5—C10—C9 178.70 (16)
C5—N1—C1—O1 −3.5 (3) C18—N3—C11—C2 −178.50 (16)
N2—N1—C1—C2 0.05 (17) C18—N3—C11—C12 4.1 (3)
C5—N1—C1—C2 175.00 (15) C3—C2—C11—N3 −178.88 (16)
O1—C1—C2—C11 2.3 (3) C1—C2—C11—N3 −3.9 (2)
N1—C1—C2—C11 −176.11 (14) C3—C2—C11—C12 −1.5 (3)
O1—C1—C2—C3 178.50 (16) C1—C2—C11—C12 173.46 (14)
N1—C1—C2—C3 0.07 (16) N3—C11—C12—C13 −106.78 (19)
N1—N2—C3—C2 0.21 (18) C2—C11—C12—C13 75.9 (2)
N1—N2—C3—C4 −177.88 (14) N3—C11—C12—C17 75.2 (2)
C11—C2—C3—N2 175.40 (17) C2—C11—C12—C17 −102.11 (19)
C1—C2—C3—N2 −0.18 (18) C17—C12—C13—C14 1.7 (3)
C11—C2—C3—C4 −6.8 (3) C11—C12—C13—C14 −176.21 (16)
C1—C2—C3—C4 177.63 (16) C12—C13—C14—C15 −0.1 (3)
C1—N1—C5—C10 24.4 (3) C13—C14—C15—C16 −1.2 (3)
N2—N1—C5—C10 −161.01 (15) C14—C15—C16—C17 1.0 (3)
C1—N1—C5—C6 −156.64 (16) C15—C16—C17—C12 0.7 (3)
N2—N1—C5—C6 18.0 (2) C13—C12—C17—C16 −2.0 (3)
C10—C5—C6—C7 1.4 (3) C11—C12—C17—C16 176.02 (15)
N1—C5—C6—C7 −177.61 (17) C11—N3—C18—C19 151.5 (4)
C5—C6—C7—C8 −1.1 (3) C11—N3—C18—C19' −176.4 (4)
C6—C7—C8—C9 −0.4 (3) N3—C18—C19—C20 111.7 (6)
C7—C8—C9—C10 1.5 (3) N3—C18—C19'—C20' −90.6 (11)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3···O1 1.06 (2) 1.75 (2) 2.687 (2) 145 (2)
C17—H17···O1i 0.95 2.41 3.345 (2) 168

Symmetry codes: (i) −x, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2538).

References

  1. Bao, F., Lü, X.-Q., Qiao, Y.-Q., Wu, Q. & Ng, S. W. (2004). Acta Cryst. E60, o2191–o2192.
  2. Li, J.-Z., Yu, W.-J. & Du, X.-Y. (1997). Chin. J. Appl. Chem.14, 98–100.
  3. Liu, J.-M., Yang, R.-D. & Ma, T.-R. (1980). Chem. J. Chin. Univ.1, 23–29.
  4. Rigaku (2009). CrystalClear and CrystalStrcuture Rigaku Corporation, Tokyo, Japan.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Sun, Y.-F., Li, J.-K., Wu, R.-T. & Zheng, Z.-B. (2007). Acta Cryst. E63, o2176–o2177.
  7. Zhou, Y.-P., Yang, Zh.-Y., Yu, H.-J. & Yang, R.-D. (1999). Chin. J. Appl. Chem.16, 37–41.
  8. Zhu, H., Zhang, X., Song, Y., Xu, H. & Dong, M. (2005). Acta Cryst. E61, o2387–o2388.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681001384X/is2538sup1.cif

e-66-o1309-sup1.cif (21.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681001384X/is2538Isup2.hkl

e-66-o1309-Isup2.hkl (191.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES