Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 May 29;66(Pt 6):o1479. doi: 10.1107/S160053681001901X

1-(2-Bromo­acet­yl)-3-methyl-2,6-diphenyl­piperidin-4-one

G Aridoss a, S Sundaramoorthy b, D Velmurugan b, K S Park a, Y T Jeong a,*
PMCID: PMC2979607  PMID: 21579545

Abstract

In the title compound, C20H20BrNO2, the piperidone ring adopts a boat conformation. The phenyl rings are oriented at dihedral angles of 97.8 (2) and 96.0 (1)° with respect to the best plane through the piperidine ring. The dihedral angle between the two phenyl rings is 49.7 (1)°. In the crystal, bifurcated C—H⋯O hydrogen bonds form a R 2 1(7) ring motif, linking the mol­ecules into centrosymmetric dimers.

Related literature

For the biological activity of functionalized piperidines, see: Richardo et al. (1979); Schneider (1996); Mukhtar & Wright (2005); Aridoss et al. (2007); Winkler & Holan (1989). For related structures see: Aridoss et al. (2009a ,b ). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983).graphic file with name e-66-o1479-scheme1.jpg

Experimental

Crystal data

  • C20H20BrNO2

  • M r = 386.28

  • Monoclinic, Inline graphic

  • a = 21.4006 (8) Å

  • b = 14.5873 (6) Å

  • c = 13.8107 (5) Å

  • β = 125.368 (2)°

  • V = 3515.7 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.35 mm−1

  • T = 292 K

  • 0.3 × 0.26 × 0.22 mm

Data collection

  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.499, T max = 0.596

  • 17094 measured reflections

  • 4398 independent reflections

  • 2725 reflections with I > 2σ(I)

  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.213

  • S = 1.02

  • 4398 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.77 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681001901X/bt5275sup1.cif

e-66-o1479-sup1.cif (20.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681001901X/bt5275Isup2.hkl

e-66-o1479-Isup2.hkl (211.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O1i 0.97 2.56 3.458 (6) 154
C13—H13⋯O1i 0.93 2.51 3.404 (5) 161

Symmetry code: (i) Inline graphic.

Acknowledgments

GA and YTJ are grateful for the support provided by the second stage of the BK21 program, Republic of Korea. SS and DV thank the TBI X-ray Facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection and the University Grants Commission (UGC&SAP) for financial support.

supplementary crystallographic information

Comment

Amides are prominent functional groups in chemistry due to their integral part in biologically important polymers such as peptides and proteins. Functionalized piperidines are among the most common building blocks in natural products and more interestingly, in many biologically active compounds such as anopterine, pergoline, scopolamine and morphine (Richardo et al., 1979, Schneider, 1996, Mukhtar & Wright, 2005). Piperidones also have high impact in medicinal field owing to their role as key chiral intermediates for the preparation of a variety of natural, synthetic and semi-synthetic pharmacophores with marked anticancer and anti-HIV activities (Winkler & Holan, 1989). It has been established by our earlier studies (Aridoss et al. 2009a, Aridoss et al. 2009b) that unlike the substitution of either alky or aryl system in the carbon skeleton of piperidone, incorporation of either chloroacetyl or bromoacetyl functionality at the nitrogen of piperidone remarkably changes the rigid chair confirmation of heterocyclic ring into non-chair conformation of its preference. Thus to find out the change in conformation of 2,6-diphenyl-3-methylpiperidin-4-one upon bromoacetylation, the title compound was synthesized and discussed here with its X-ray crystallographic data.

In the present structure, the piperidone ring adopts a boat conformation with atoms C1 and C4 deviating by 0.395 (1) and 0.334 (1) Å, respectively, from the least-sqaures plane defined by the remaining atoms (N1/C2/C3/C5) in the ring. When compared with the reported structures of piperidone derivatives (Aridoss et al., 2009b), it is clear that the conformation of the piperidone ring is highly influenced by the substitutions at various positions.The sum of the bond angles around the atom N1(357.6 (6)°) of the piperidone ring in the molecule is in accordance with sp2 hybridization.

The puckering parameters (Cremer & Pople,1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) for piperidone ring are q2 = 0.639 (4) Å, q3 = 0.062 (1) Å; QT = 0.642 (4) Å and φ2 = 84.4 (1) °, respectively. Atoms C2 and C13 act as donors to form bifurcated hydrogen bonds with atom O1' as an aceptor. In the crystal structure, the molecules at (x,y,z) and (-x,-y-1, -z ) are linked by C2—H2A···O1' hydrogen bonds into cyclic centrosymmetric R22(8) dimer.

Experimental

The title compound was obtained by adopting our earlier method (Aridoss et al. 2007). To a solution of 2,6-diphenyl-3-methylpiperidin -4-one (1 equiv.) and NEt3 (1.5 equiv.) in freshly distilled benzene, bromoacetyl chloride (1 equiv.) in benzene was added in drop wise. After the completion of reaction, the crude compound was obtained by evaporation of its ethyl acetate extract. This upon recrystallization in distilled ethanol afforded fine white crystals suitable for X-ray diffraction study.

Refinement

H atoms were positioned geometrically (C—H=0.93-0.98Å) and allowed to ride on their parent atoms, with 1.5Ueq(C) for methyl H and 1.2 Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

Perspective view of the molecule showing the thermal ellipsoids are drawn at 30% probability level.

Fig. 2.

Fig. 2.

Crystal packing showing the formation of ring R21(7) Bifurcated and the centrosymmetric R22(8) dimer. For the clarity, H atoms are deleted which are not involved in the bond formation.

Crystal data

C20H20BrNO2 F(000) = 1584
Mr = 386.28 Dx = 1.460 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 2025 reflections
a = 21.4006 (8) Å θ = 0.5–0.6°
b = 14.5873 (6) Å µ = 2.35 mm1
c = 13.8107 (5) Å T = 292 K
β = 125.368 (2)° Block, colorless
V = 3515.7 (2) Å3 0.3 × 0.26 × 0.22 mm
Z = 8

Data collection

Bruker SMART APEXII area-detector diffractometer 4398 independent reflections
Radiation source: fine-focus sealed tube 2725 reflections with I > 2σ(I)
graphite Rint = 0.035
ω and φ scans θmax = 28.5°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −27→28
Tmin = 0.499, Tmax = 0.596 k = −19→19
17094 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.213 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1259P)2 + 4.1414P] where P = (Fo2 + 2Fc2)/3
4398 reflections (Δ/σ)max < 0.001
218 parameters Δρmax = 0.53 e Å3
0 restraints Δρmin = −0.77 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.00908 (18) 0.2545 (2) 0.0494 (3) 0.0355 (7)
H1 0.0555 0.2317 0.1229 0.043*
C2 0.0317 (2) 0.3418 (3) 0.0168 (4) 0.0517 (10)
H2A 0.0432 0.3889 0.0745 0.062*
H2B 0.0780 0.3303 0.0214 0.062*
C3 −0.0287 (3) 0.3764 (3) −0.1039 (4) 0.0581 (11)
C4 −0.0933 (2) 0.3111 (3) −0.1867 (3) 0.0463 (8)
H4 −0.1307 0.3148 −0.1674 0.056*
C5 −0.06703 (18) 0.2104 (2) −0.1692 (3) 0.0359 (7)
H5 −0.0393 0.2039 −0.2056 0.043*
C6 −0.13640 (19) 0.1469 (2) −0.2373 (3) 0.0355 (7)
C7 −0.1502 (2) 0.0969 (3) −0.3328 (3) 0.0502 (9)
H7 −0.1150 0.0987 −0.3518 0.060*
C8 −0.2159 (3) 0.0440 (3) −0.4008 (3) 0.0605 (11)
H8 −0.2249 0.0115 −0.4657 0.073*
C9 −0.2672 (2) 0.0396 (3) −0.3726 (4) 0.0622 (12)
H9 −0.3110 0.0038 −0.4179 0.075*
C10 −0.2541 (2) 0.0881 (3) −0.2772 (4) 0.0526 (10)
H10 −0.2891 0.0848 −0.2577 0.063*
C11 −0.1889 (2) 0.1421 (2) −0.2096 (3) 0.0408 (8)
H11 −0.1805 0.1752 −0.1455 0.049*
C12 −0.05143 (17) 0.2656 (2) 0.0741 (3) 0.0334 (7)
C13 −0.0720 (2) 0.3505 (2) 0.0908 (4) 0.0470 (9)
H13 −0.0510 0.4034 0.0831 0.056*
C14 −0.1253 (3) 0.3567 (3) 0.1196 (4) 0.0584 (11)
H14 −0.1388 0.4140 0.1315 0.070*
C15 −0.1573 (2) 0.2800 (3) 0.1301 (4) 0.0566 (11)
H15 −0.1934 0.2850 0.1469 0.068*
C16 −0.1354 (2) 0.1944 (3) 0.1156 (3) 0.0508 (9)
H16 −0.1566 0.1417 0.1233 0.061*
C17 −0.0820 (2) 0.1873 (3) 0.0896 (3) 0.0408 (8)
H17 −0.0665 0.1297 0.0825 0.049*
C18 −0.1349 (3) 0.3390 (3) −0.3166 (5) 0.0706 (14)
H18A −0.1495 0.4023 −0.3255 0.106*
H18B −0.1800 0.3019 −0.3648 0.106*
H18C −0.1016 0.3302 −0.3412 0.106*
C19 0.02886 (17) 0.1079 (2) −0.0205 (3) 0.0353 (7)
C20 0.09463 (19) 0.0844 (3) 0.1063 (3) 0.0432 (8)
H20A 0.1063 0.0195 0.1125 0.052*
H20B 0.0803 0.0982 0.1598 0.052*
N1 −0.01254 (14) 0.18526 (19) −0.0422 (2) 0.0328 (6)
O1 −0.0265 (3) 0.4523 (2) −0.1361 (4) 0.1037 (15)
O2 0.01584 (14) 0.05669 (18) −0.1000 (2) 0.0472 (6)
Br1 0.18249 (2) 0.15486 (4) 0.14906 (5) 0.0736 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0316 (14) 0.0321 (16) 0.0404 (17) −0.0039 (12) 0.0195 (13) −0.0042 (13)
C2 0.048 (2) 0.040 (2) 0.076 (3) −0.0124 (15) 0.041 (2) −0.0081 (18)
C3 0.080 (3) 0.041 (2) 0.074 (3) −0.008 (2) 0.056 (3) 0.003 (2)
C4 0.050 (2) 0.0399 (19) 0.055 (2) 0.0067 (16) 0.0333 (18) 0.0140 (17)
C5 0.0375 (16) 0.0403 (18) 0.0344 (16) 0.0051 (13) 0.0234 (14) 0.0063 (14)
C6 0.0326 (15) 0.0386 (17) 0.0287 (14) 0.0096 (12) 0.0140 (13) 0.0056 (13)
C7 0.051 (2) 0.059 (2) 0.0373 (18) 0.0107 (18) 0.0239 (17) 0.0013 (17)
C8 0.059 (2) 0.061 (3) 0.0353 (18) 0.009 (2) 0.0120 (17) −0.0110 (18)
C9 0.042 (2) 0.058 (3) 0.050 (2) −0.0027 (18) 0.0060 (17) −0.011 (2)
C10 0.0347 (18) 0.061 (3) 0.054 (2) 0.0003 (16) 0.0205 (16) −0.0042 (19)
C11 0.0352 (16) 0.046 (2) 0.0372 (17) 0.0049 (14) 0.0187 (14) −0.0013 (15)
C12 0.0284 (13) 0.0383 (17) 0.0270 (14) −0.0006 (12) 0.0124 (12) −0.0013 (13)
C13 0.053 (2) 0.0346 (18) 0.054 (2) 0.0059 (15) 0.0313 (19) 0.0036 (16)
C14 0.066 (3) 0.057 (3) 0.064 (3) 0.021 (2) 0.044 (2) 0.007 (2)
C15 0.043 (2) 0.086 (3) 0.046 (2) 0.013 (2) 0.0288 (17) 0.009 (2)
C16 0.047 (2) 0.064 (2) 0.0411 (19) −0.0131 (19) 0.0259 (17) −0.0015 (18)
C17 0.0459 (19) 0.0381 (18) 0.0377 (17) −0.0052 (15) 0.0237 (15) −0.0045 (15)
C18 0.077 (3) 0.066 (3) 0.063 (3) 0.011 (2) 0.037 (3) 0.030 (2)
C19 0.0279 (14) 0.0363 (17) 0.0400 (17) 0.0017 (12) 0.0187 (13) 0.0006 (14)
C20 0.0322 (15) 0.0412 (19) 0.0468 (19) 0.0022 (13) 0.0175 (14) 0.0030 (15)
N1 0.0313 (13) 0.0331 (13) 0.0329 (13) 0.0013 (10) 0.0179 (11) −0.0002 (11)
O1 0.161 (4) 0.047 (2) 0.096 (3) −0.030 (2) 0.071 (3) 0.0106 (18)
O2 0.0424 (13) 0.0498 (15) 0.0456 (14) 0.0084 (11) 0.0233 (11) −0.0064 (12)
Br1 0.0406 (3) 0.0898 (5) 0.0780 (4) −0.0045 (2) 0.0272 (3) −0.0027 (3)

Geometric parameters (Å, °)

C1—N1 1.468 (4) C10—C11 1.391 (5)
C1—C2 1.521 (5) C10—H10 0.9300
C1—C12 1.527 (4) C11—H11 0.9300
C1—H1 0.9800 C12—C13 1.378 (5)
C2—C3 1.486 (7) C12—C17 1.394 (5)
C2—H2A 0.9700 C13—C14 1.411 (6)
C2—H2B 0.9700 C13—H13 0.9300
C3—O1 1.204 (5) C14—C15 1.362 (7)
C3—C4 1.516 (6) C14—H14 0.9300
C4—C18 1.525 (6) C15—C16 1.389 (6)
C4—C5 1.541 (5) C15—H15 0.9300
C4—H4 0.9800 C16—C17 1.384 (5)
C5—N1 1.485 (4) C16—H16 0.9300
C5—C6 1.527 (5) C17—H17 0.9300
C5—H5 0.9800 C18—H18A 0.9600
C6—C7 1.382 (5) C18—H18B 0.9600
C6—C11 1.381 (5) C18—H18C 0.9600
C7—C8 1.387 (6) C19—O2 1.219 (4)
C7—H7 0.9300 C19—N1 1.357 (4)
C8—C9 1.362 (7) C19—C20 1.520 (5)
C8—H8 0.9300 C20—Br1 1.912 (4)
C9—C10 1.375 (6) C20—H20A 0.9700
C9—H9 0.9300 C20—H20B 0.9700
N1—C1—C2 108.5 (3) C11—C10—H10 119.9
N1—C1—C12 112.4 (2) C6—C11—C10 120.3 (3)
C2—C1—C12 115.7 (3) C6—C11—H11 119.8
N1—C1—H1 106.6 C10—C11—H11 119.8
C2—C1—H1 106.6 C13—C12—C17 119.2 (3)
C12—C1—H1 106.6 C13—C12—C1 121.9 (3)
C3—C2—C1 113.4 (3) C17—C12—C1 118.8 (3)
C3—C2—H2A 108.9 C12—C13—C14 119.5 (4)
C1—C2—H2A 108.9 C12—C13—H13 120.2
C3—C2—H2B 108.9 C14—C13—H13 120.2
C1—C2—H2B 108.9 C15—C14—C13 121.0 (4)
H2A—C2—H2B 107.7 C15—C14—H14 119.5
O1—C3—C2 122.2 (5) C13—C14—H14 119.5
O1—C3—C4 120.8 (5) C14—C15—C16 119.4 (4)
C2—C3—C4 117.0 (3) C14—C15—H15 120.3
C3—C4—C18 112.1 (3) C16—C15—H15 120.3
C3—C4—C5 112.9 (3) C17—C16—C15 120.2 (4)
C18—C4—C5 110.5 (3) C17—C16—H16 119.9
C3—C4—H4 107.0 C15—C16—H16 119.9
C18—C4—H4 107.0 C16—C17—C12 120.6 (4)
C5—C4—H4 107.0 C16—C17—H17 119.7
N1—C5—C6 113.4 (3) C12—C17—H17 119.7
N1—C5—C4 112.7 (3) C4—C18—H18A 109.5
C6—C5—C4 110.2 (3) C4—C18—H18B 109.5
N1—C5—H5 106.7 H18A—C18—H18B 109.5
C6—C5—H5 106.7 C4—C18—H18C 109.5
C4—C5—H5 106.7 H18A—C18—H18C 109.5
C7—C6—C11 118.6 (3) H18B—C18—H18C 109.5
C7—C6—C5 120.2 (3) O2—C19—N1 122.1 (3)
C11—C6—C5 121.1 (3) O2—C19—C20 118.4 (3)
C6—C7—C8 120.8 (4) N1—C19—C20 119.5 (3)
C6—C7—H7 119.6 C19—C20—Br1 108.9 (2)
C8—C7—H7 119.6 C19—C20—H20A 109.9
C9—C8—C7 120.1 (4) Br1—C20—H20A 109.9
C9—C8—H8 120.0 C19—C20—H20B 109.9
C7—C8—H8 120.0 Br1—C20—H20B 109.9
C8—C9—C10 120.0 (4) H20A—C20—H20B 108.3
C8—C9—H9 120.0 C19—N1—C1 122.8 (3)
C10—C9—H9 120.0 C19—N1—C5 115.6 (3)
C9—C10—C11 120.1 (4) C1—N1—C5 119.2 (3)
C9—C10—H10 119.9
N1—C1—C2—C3 55.3 (4) C2—C1—C12—C13 −13.3 (5)
C12—C1—C2—C3 −72.0 (4) N1—C1—C12—C17 46.6 (4)
C1—C2—C3—O1 166.4 (5) C2—C1—C12—C17 172.0 (3)
C1—C2—C3—C4 −14.4 (5) C17—C12—C13—C14 −1.9 (5)
O1—C3—C4—C18 19.2 (6) C1—C12—C13—C14 −176.7 (3)
C2—C3—C4—C18 −159.9 (4) C12—C13—C14—C15 −0.6 (7)
O1—C3—C4—C5 144.8 (5) C13—C14—C15—C16 1.8 (7)
C2—C3—C4—C5 −34.4 (5) C14—C15—C16—C17 −0.5 (6)
C3—C4—C5—N1 41.5 (4) C15—C16—C17—C12 −2.0 (5)
C18—C4—C5—N1 167.9 (3) C13—C12—C17—C16 3.2 (5)
C3—C4—C5—C6 169.2 (3) C1—C12—C17—C16 178.1 (3)
C18—C4—C5—C6 −64.3 (4) O2—C19—C20—Br1 98.6 (3)
N1—C5—C6—C7 −119.1 (3) N1—C19—C20—Br1 −80.3 (3)
C4—C5—C6—C7 113.5 (3) O2—C19—N1—C1 −170.7 (3)
N1—C5—C6—C11 64.7 (4) C20—C19—N1—C1 8.1 (5)
C4—C5—C6—C11 −62.7 (4) O2—C19—N1—C5 −8.3 (5)
C11—C6—C7—C8 0.9 (5) C20—C19—N1—C5 170.5 (3)
C5—C6—C7—C8 −175.3 (3) C2—C1—N1—C19 113.0 (3)
C6—C7—C8—C9 −1.1 (6) C12—C1—N1—C19 −117.8 (3)
C7—C8—C9—C10 0.4 (7) C2—C1—N1—C5 −48.8 (4)
C8—C9—C10—C11 0.4 (6) C12—C1—N1—C5 80.3 (3)
C7—C6—C11—C10 −0.1 (5) C6—C5—N1—C19 71.5 (3)
C5—C6—C11—C10 176.1 (3) C4—C5—N1—C19 −162.4 (3)
C9—C10—C11—C6 −0.5 (6) C6—C5—N1—C1 −125.4 (3)
N1—C1—C12—C13 −138.6 (3) C4—C5—N1—C1 0.7 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2A···O1i 0.97 2.56 3.458 (6) 154
C13—H13···O1i 0.93 2.51 3.404 (5) 161

Symmetry codes: (i) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5275).

References

  1. Aridoss, G., Balasubramanian, S., Parthiban, P., Ramachandran, R. & Kabilan, S. (2007). Med. Chem. Res 16, 188–204.
  2. Aridoss, G., Gayathri, D., Velmurugan, D., Kim, M. S. & Jeong, Y. T. (2009a). Acta Cryst. E65, o1994–o1995. [DOI] [PMC free article] [PubMed]
  3. Aridoss, G., Gayathri, D., Velmurugan, D., Kim, M. S. & Jeong, Y. T. (2009b). Acta Cryst. E65, o2276–o2277. [DOI] [PMC free article] [PubMed]
  4. Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  6. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  7. Mukhtar, T. A. & Wright, G. D. (2005). Chem. Rev 105, 529–542. [DOI] [PubMed]
  8. Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  9. Richardo, G. J., Juan, B. C., Mario, R. A., Roldan, M. & Peinado, C. R. (1979). Fernando Spen.47, 168–172.
  10. Schneider, M. J. (1996). In Alkaloids: Chemical and Biological Perspectives, Vol. 10, edited by S. W. Pelletier, pp. 155–157. Oxford: Pergamon.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Winkler, D. A. & Holan, G. J. (1989). J. Med. Chem 32, 2084–2089. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681001901X/bt5275sup1.cif

e-66-o1479-sup1.cif (20.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681001901X/bt5275Isup2.hkl

e-66-o1479-Isup2.hkl (211.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES