Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 May 15;66(Pt 6):o1350–o1351. doi: 10.1107/S1600536810017149

2-(2-Nitro­anilino)-5,6,7,8-tetra­hydro-4H-cyclo­hepta­[b]thio­phene-3-carbonitrile

Maria do Carmo A de Lima a, Francisco J B Mendonça Junior b, Suely L Galdino a, Ivan R Pitta a, Carlos A de Simone c,*
PMCID: PMC2979624  PMID: 21579437

Abstract

The title compound, C16H15N3O2S, was synthesized by the reaction of 2-amino-5,6,7,8-tetra­hydro-4H-cyclo­hepta­[b]thio­phene-3-carbonitrile and o-fluoro­nitro­benzene. The thio­phene and nitro­phenyl rings and amino and carbonitrile groups are coplanar with a maximum deviation of 0.046 (2) Å and a dihedral angle of 0.92 (6)° between the rings. The cyclo­hepta ring adopts a chair conformation. Intra­molecular N—H⋯O and C—H⋯S inter­actions occur. In the crystal, the mol­ecules form layers that are linked by π–π stacking inter­actions between the thio­phene and benzene rings [centroid–centroid distances = 3.7089 (12) and 3.6170 (12) Å].

Related literature

For background to 2-substituted thio­phenes, see: Campaigne (1984); Kleemann et al. (2006). For the biological activity of 2-amino thio­phene derivatives, see: Chakrabarti et al. (1982); Calligaro et al. (1997); Nikolakopoulos et al. (2006). For the synthesis of 2-amino thio­phenes, see: Gewald (1965); Gewald et al. (1966); Sridhar et al. (2007). For related structures, see: Stephenson et al. (1995); Yu (2002); Chen et al. (2005). For bond-length data, see: Allen et al. (1987). For puckering parameters, see: Cremer & Pople (1975).graphic file with name e-66-o1350-scheme1.jpg

Experimental

Crystal data

  • C16H15N3O2S

  • M r = 313.37

  • Monoclinic, Inline graphic

  • a = 7.0273 (3) Å

  • b = 14.4569 (6) Å

  • c = 14.8867 (7) Å

  • β = 97.571 (2)°

  • V = 1499.18 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 295 K

  • 0.35 × 0.32 × 0.27 mm

Data collection

  • Nonius KappaCCD diffractometer

  • 9360 measured reflections

  • 3147 independent reflections

  • 2452 reflections with I > 2σ(I)

  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.162

  • S = 1.07

  • 3147 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: COLLECT (Nonius, 1997); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810017149/dn2562sup1.cif

e-66-o1350-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810017149/dn2562Isup2.hkl

e-66-o1350-Isup2.hkl (148.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 1.89 2.593 (2) 138
C15—H15⋯S1 0.93 2.44 3.171 (2) 135

Acknowledgments

This work has received partial support from CNPq, CAPES, FACEPE and FINEP.

supplementary crystallographic information

Comment

The various uses of 2-substituted thiophenes have been well documented (Campaigne, 1984; Kleemann et al., 2006). Amongst these appplications, are neuroleptics activities, as found for a series of thienobenzodiazepines (Chakrabarti et al., 1982; Calligaro et al., 1997; Nikolakopoulos et al., 2006). In this work, we report the structure of the title compound prepared by the reaction of 2-amino-5,6,7, 8-tetrahydro-4H-ciclohepta[b]thiophene-3- carbonitrile and o-fluoro- nitrobenzene.

As indicated in the literature, compounds that presents o-nitrophenyl group linked to 2-amino-thiophene ring have great potential to produce crystalline structures, as found in 5-methyl-2-[(2-nitrophenyl)-amino]- thiophene-3-carbonitrile (ROY), that presents seven polymorphs coexisting at room temperature (Stephenson et al., 1995; Yu, 2002; Chen et al., 2005).

In the title compound,the least squares plane passing through all atoms of thiophene and nitrophenyl rings, and amino and carbonitrile groups, show planarity with maximum deviation of [0.046 (2) Å] for atom N3 (Fig.1). Bond lengths and angles are in good agreement with the expected values reported in the literature (Allen et al., 1987). The cyclohepta ring adopts a chair conformation and the calculated puckering parameters are: q2 = 0.175 (9) Å, q3 = 0.619 (9) Å, QT = 0.643 (9) Å, θ = 15.8 (9)° , φ2 = 56.1 (8)° and φ3 = 78.4 (8)° (Cremer & Pople, 1975).

In the molecule there are, intramolecular N–H··· O, C—H··· O and C—H··· S interactions that are responsible for the roughly planar arrangement (Table 1). In the packing molecules form layers that extends along a direction parallel to the (100) plane, and are linked by π-π stacking interactions between thiophene [Cg1] and benzene [Cg2] rings(Table 2, Fig. 2).

Experimental

To a stirred suspension mixture of dry THF (20 ml) and NaH (0,105 mol) at 0 °C under nitrogen was added dropwise a solution of 2-amino-5,6,7,8- tetrahydro-4H-ciclohepta[b]thiophene-3-carbonitrile (0,07 mol), o-fluoro-nitrobenzene (0,07 mol) in 80 ml of dry THF. The reaction mixture was stirred under room temperature for 22 h. The resulting mixture was adjusted to pH = 5 with hydroclorid acid 2 N and them extracted with CHCl3. The extracted was washed with aqueous Na2CO3, water, dried (CaCl2) and evaporated under reduced pression. The dark red solid obtained was purified by recrystallization from absolute ethanol, affording the title compound as red crystals (21.4 g, (98%), m.p. 100-102 °C)(Gewald, 1965; Gewald et al., 1966; Sridhar et al., 2007). Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation at room temperature of a solution of the pure title compound in ethanol/dichloromethane (1:1).

NMR 1H (200 MHz, CDCl3) δ : 1.60-1.70 (m, 4H), 1.80-1.90 (m, 2H), 2,70-2,80 (m, 4H), 6.90 (dt, 1H, J = 8.6, 1.6 Hz), 7.20 (dd, 1H, J = 8.6, 0.8 Hz), 7.5 (dt, 1H, J = 8.6, 8.2 Hz), 8.2 (dd, 1H, J = 8.4, 1.6 Hz), 9.6 (s, 1H).

NMR 13C (200 MHz, CDCl3) δ : 27.2-31.9 (5 CH2), 107.7, 113.9, 116.1, 119.5, 126.6, 133.9, 135.7, 136.1, 139.0, 141.4, 145.3.

Refinement

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.97 Å (methylene) and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C or N).The maximum and minimum residual electron density peaks were located 1.10 and 0.78 Å, from the H4A and S1 atoms respectively.

Figures

Fig. 1.

Fig. 1.

Molecular view of C16H15N3O2S, showing the atom labelling scheme. Ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

View showing π- π stacking interactions between the molecules. For the sake of clarity, H atoms have been omitted.

Crystal data

C16H15N3O2S F(000) = 656
Mr = 313.37 Dx = 1.388 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 6392 reflections
a = 7.0273 (3) Å θ = 2.9–26.7°
b = 14.4569 (6) Å µ = 0.23 mm1
c = 14.8867 (7) Å T = 295 K
β = 97.571 (2)° Prism, colorless
V = 1499.18 (11) Å3 0.35 × 0.32 × 0.27 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer 2452 reflections with I > 2σ(I)
Radiation source: Enraf Nonius FR590 Rint = 0.046
horizonally mounted graphite crystal θmax = 26.6°, θmin = 3.1°
Detector resolution: 9 pixels mm-1 h = −8→8
CCD rotation images,thick slices scans k = −15→18
9360 measured reflections l = −18→18
3147 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1026P)2 + 0.1476P] where P = (Fo2 + 2Fc2)/3
3147 reflections (Δ/σ)max = 0.001
200 parameters Δρmax = 0.29 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.29875 (7) 0.33887 (3) 0.05524 (3) 0.0529 (2)
O1 0.1864 (3) 0.64817 (11) −0.14472 (10) 0.0763 (5)
O2 0.1729 (3) 0.78484 (12) −0.09126 (12) 0.0887 (6)
N1 0.2433 (2) 0.50661 (11) −0.03762 (10) 0.0531 (4)
H1 0.2277 0.5305 −0.0910 0.064*
N2 0.1906 (2) 0.70191 (13) −0.07994 (12) 0.0594 (4)
N3 0.2128 (4) 0.44432 (17) −0.26828 (13) 0.0871 (7)
C1 0.2620 (2) 0.41167 (13) −0.03697 (12) 0.0474 (4)
C2 0.2544 (3) 0.36042 (14) −0.11578 (12) 0.0501 (4)
C3 0.2772 (3) 0.26261 (14) −0.10156 (13) 0.0527 (5)
C4 0.2731 (4) 0.19525 (16) −0.17935 (14) 0.0673 (6)
H4A 0.4041 0.1775 −0.1850 0.081*
H4B 0.2221 0.2269 −0.2348 0.081*
C5 0.1554 (3) 0.10721 (16) −0.17147 (15) 0.0688 (6)
H5A 0.0271 0.1251 −0.1609 0.083*
H5B 0.1438 0.0750 −0.2291 0.083*
C6 0.2345 (4) 0.04019 (15) −0.09784 (16) 0.0707 (6)
H6A 0.3688 0.0293 −0.1031 0.085*
H6B 0.1677 −0.0183 −0.1086 0.085*
C7 0.2190 (4) 0.07060 (16) −0.00136 (16) 0.0710 (6)
H7A 0.0872 0.0888 0.0021 0.085*
H7B 0.2471 0.0179 0.0385 0.085*
C8 0.3487 (4) 0.14916 (15) 0.03367 (16) 0.0669 (6)
H8A 0.4798 0.1324 0.0270 0.080*
H8B 0.3418 0.1564 0.0979 0.080*
C9 0.3044 (3) 0.24118 (14) −0.01205 (13) 0.0551 (5)
C10 0.2447 (2) 0.57016 (13) 0.03089 (12) 0.0473 (4)
C11 0.2192 (3) 0.66561 (13) 0.01206 (13) 0.0491 (4)
C12 0.2185 (3) 0.73041 (15) 0.08074 (14) 0.0587 (5)
H12 0.2012 0.7927 0.0663 0.070*
C13 0.2430 (3) 0.70360 (16) 0.16918 (15) 0.0635 (5)
H13 0.2427 0.7472 0.2151 0.076*
C14 0.2683 (3) 0.61106 (16) 0.18993 (14) 0.0636 (5)
H14 0.2845 0.5924 0.2503 0.076*
C15 0.2700 (3) 0.54584 (15) 0.12264 (13) 0.0594 (5)
H15 0.2884 0.4840 0.1386 0.071*
C16 0.2285 (3) 0.40474 (15) −0.20159 (13) 0.0594 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0672 (3) 0.0504 (3) 0.0413 (3) −0.00605 (19) 0.0074 (2) 0.00132 (18)
O1 0.1190 (14) 0.0599 (10) 0.0478 (8) −0.0002 (8) 0.0034 (8) 0.0025 (7)
O2 0.1394 (16) 0.0503 (10) 0.0753 (11) 0.0042 (9) 0.0103 (10) 0.0123 (8)
N1 0.0707 (10) 0.0480 (9) 0.0407 (8) −0.0010 (7) 0.0077 (7) 0.0000 (7)
N2 0.0684 (10) 0.0538 (10) 0.0558 (10) −0.0019 (7) 0.0072 (8) 0.0042 (8)
N3 0.1274 (18) 0.0861 (15) 0.0481 (11) 0.0209 (13) 0.0123 (10) 0.0112 (10)
C1 0.0508 (9) 0.0485 (10) 0.0427 (9) −0.0040 (7) 0.0061 (7) 0.0005 (7)
C2 0.0563 (10) 0.0523 (10) 0.0422 (9) −0.0028 (8) 0.0078 (7) 0.0000 (8)
C3 0.0604 (10) 0.0505 (10) 0.0475 (10) −0.0033 (8) 0.0084 (8) −0.0032 (8)
C4 0.0929 (15) 0.0587 (12) 0.0513 (11) −0.0070 (11) 0.0131 (10) −0.0077 (10)
C5 0.0836 (14) 0.0569 (12) 0.0647 (13) 0.0012 (10) 0.0048 (11) −0.0140 (10)
C6 0.0909 (16) 0.0494 (12) 0.0705 (14) −0.0006 (11) 0.0057 (11) −0.0047 (10)
C7 0.0915 (15) 0.0502 (12) 0.0715 (14) −0.0034 (10) 0.0116 (11) 0.0040 (11)
C8 0.0859 (14) 0.0559 (13) 0.0566 (12) −0.0038 (10) 0.0010 (10) 0.0049 (9)
C9 0.0650 (11) 0.0505 (11) 0.0497 (10) −0.0063 (8) 0.0069 (8) −0.0009 (8)
C10 0.0481 (9) 0.0511 (10) 0.0432 (9) −0.0042 (7) 0.0081 (7) −0.0011 (8)
C11 0.0493 (9) 0.0508 (11) 0.0474 (10) −0.0045 (7) 0.0071 (7) 0.0001 (7)
C12 0.0653 (11) 0.0520 (11) 0.0597 (12) 0.0000 (9) 0.0120 (9) −0.0070 (9)
C13 0.0725 (13) 0.0632 (13) 0.0569 (11) −0.0048 (10) 0.0169 (9) −0.0144 (10)
C14 0.0811 (13) 0.0665 (13) 0.0448 (11) −0.0042 (10) 0.0147 (9) −0.0043 (9)
C15 0.0786 (13) 0.0532 (11) 0.0478 (11) −0.0023 (10) 0.0134 (9) 0.0008 (9)
C16 0.0750 (12) 0.0587 (12) 0.0442 (10) 0.0058 (9) 0.0066 (8) −0.0043 (9)

Geometric parameters (Å, °)

S1—C1 1.7220 (18) C6—C7 1.520 (3)
S1—C9 1.735 (2) C6—H6A 0.9700
O1—N2 1.236 (2) C6—H6B 0.9700
O2—N2 1.215 (2) C7—C8 1.506 (3)
N1—C10 1.372 (2) C7—H7A 0.9700
N1—C1 1.379 (2) C7—H7B 0.9700
N1—H1 0.8600 C8—C9 1.508 (3)
N2—C11 1.456 (2) C8—H8A 0.9700
N3—C16 1.139 (3) C8—H8B 0.9700
C1—C2 1.383 (2) C10—C15 1.399 (3)
C2—C16 1.419 (3) C10—C11 1.415 (3)
C2—C3 1.436 (3) C11—C12 1.387 (3)
C3—C9 1.357 (3) C12—C13 1.361 (3)
C3—C4 1.510 (3) C12—H12 0.9300
C4—C5 1.531 (3) C13—C14 1.379 (3)
C4—H4A 0.9700 C13—H13 0.9300
C4—H4B 0.9700 C14—C15 1.377 (3)
C5—C6 1.513 (3) C14—H14 0.9300
C5—H5A 0.9700 C15—H15 0.9300
C5—H5B 0.9700
C1—S1—C9 92.84 (9) C8—C7—C6 115.5 (2)
C10—N1—C1 132.09 (16) C8—C7—H7A 108.4
C10—N1—H1 114.0 C6—C7—H7A 108.4
C1—N1—H1 114.0 C8—C7—H7B 108.4
O2—N2—O1 121.38 (19) C6—C7—H7B 108.4
O2—N2—C11 119.03 (18) H7A—C7—H7B 107.5
O1—N2—C11 119.59 (17) C7—C8—C9 115.43 (19)
N1—C1—C2 122.32 (17) C7—C8—H8A 108.4
N1—C1—S1 128.18 (14) C9—C8—H8A 108.4
C2—C1—S1 109.50 (14) C7—C8—H8B 108.4
C1—C2—C16 120.52 (18) C9—C8—H8B 108.4
C1—C2—C3 114.31 (17) H8A—C8—H8B 107.5
C16—C2—C3 125.17 (18) C3—C9—C8 129.69 (19)
C9—C3—C2 111.61 (17) C3—C9—S1 111.73 (15)
C9—C3—C4 126.28 (19) C8—C9—S1 118.46 (15)
C2—C3—C4 122.11 (18) N1—C10—C15 123.03 (18)
C3—C4—C5 115.66 (17) N1—C10—C11 121.17 (16)
C3—C4—H4A 108.4 C15—C10—C11 115.79 (17)
C5—C4—H4A 108.4 C12—C11—C10 121.68 (18)
C3—C4—H4B 108.4 C12—C11—N2 115.89 (18)
C5—C4—H4B 108.4 C10—C11—N2 122.43 (16)
H4A—C4—H4B 107.4 C13—C12—C11 120.6 (2)
C6—C5—C4 115.93 (19) C13—C12—H12 119.7
C6—C5—H5A 108.3 C11—C12—H12 119.7
C4—C5—H5A 108.3 C12—C13—C14 119.26 (19)
C6—C5—H5B 108.3 C12—C13—H13 120.4
C4—C5—H5B 108.3 C14—C13—H13 120.4
H5A—C5—H5B 107.4 C15—C14—C13 120.97 (19)
C5—C6—C7 115.73 (19) C15—C14—H14 119.5
C5—C6—H6A 108.3 C13—C14—H14 119.5
C7—C6—H6A 108.3 C14—C15—C10 121.7 (2)
C5—C6—H6B 108.3 C14—C15—H15 119.1
C7—C6—H6B 108.3 C10—C15—H15 119.1
H6A—C6—H6B 107.4 N3—C16—C2 176.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1 0.86 1.89 2.593 (2) 138
C12—H12···O2 0.93 2.33 2.657 (3) 100
C15—H15···S1 0.93 2.44 3.171 (2) 135

Table 2 π–π stacking interactions (Å, °) between the thiophene (Cg1) and benzene (Cg2) rings.

Cg1···Cg2 Cg1 to plane 2 Cg2 to plane 1 Offset
Cg1···Cg2i 3.7089 (12) -3.5039 (9) -3.5021 (9) 19.4
Cg1···Cg2ii 3.6170 (12) 3.4761 (9) 3.4878 (9) 16.0

Symmetry codes: (i) -x, 1-y, -z; (ii) 1-x, 1-y, -z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2562).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. J. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19
  2. Calligaro, D. O., Fairhurst, J., Hotten, T. M., Moore, N. A. & Tupper, D. E. (1997). Bioorg. Med. Chem. Lett.7, 25–30.
  3. Campaigne, E. (1984). Comprehensive Heterocyclic Chemistry, Vol. 4, edited by A. R. Katritzky & C. W. Rees, pp. 863–934. Oxford: Pergamon.
  4. Chakrabarti, J. K., Hotten, T. M., Morgan, S. E., Pullar, I. A., Rackham, D. M., Risius, F. C., Wedley, S., Chaney, M. & Jones, N. D. (1982). J. Med. Chem.25, 1133–1140. [DOI] [PubMed]
  5. Chen, S., Guzei, I. A. & Yu, L. (2005). J. Am. Chem. Soc.127, 9881–9885. [DOI] [PubMed]
  6. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  7. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  8. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  9. Gewald, K. (1965). Chem. Ber.98, 3571–3577.
  10. Gewald, K., Schinke, E. & Bottcher, H. (1966). Chem. Ber.99, 99–100.
  11. Kleemann, A., Engel, J. B., Kutscher, B. & Reichert, D. (2006). Pharmaceutical Substances New York, Stuttgart: Georg Thieme Verlag.
  12. Nikolakopoulos, G., Figler, H., Linden, J. & Scammells, P. J. (2006). Bioorg. Med. Chem.14, 2358–2365. [DOI] [PubMed]
  13. Nonius (1997). COLLECT Nonius BV, Delft, The Netherlands.
  14. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Sridhar, M., Rao, R. M., Baba, N. H. K. & Kumbhare, R. M. (2007). Tetrahedron Lett.48, 3171–3172.
  17. Stephenson, G. A., Borchardt, T. B., Byrn, S. R., Bowyer, J., Bunnell, C. A., Snorek, S. V. & Yu, L. (1995). J. Pharm. Sci.84, 1385–1386. [DOI] [PubMed]
  18. Yu, L. (2002). J. Phys. Chem. A, 106, 544–550.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810017149/dn2562sup1.cif

e-66-o1350-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810017149/dn2562Isup2.hkl

e-66-o1350-Isup2.hkl (148.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES