Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 May 12;66(Pt 6):o1313–o1314. doi: 10.1107/S1600536810016296

9-(4-Bromo­phenoxy­carbon­yl)-10-methyl­acridinium trifluoro­methane­sulfonate

Damian Trzybiński a, Karol Krzymiński a, Artur Sikorski a, Jerzy Błażejowski a,*
PMCID: PMC2979630  PMID: 21579407

Abstract

In the crystal structure of the title compound, C21H15BrNO2 +·CF3SO3 , the cations form inversion dimers through π–π inter­actions between the acridine ring systems. These dimers are further linked by C—H⋯π and C—Br⋯π inter­actions. The cations and anions are connected by multidirectional C—H⋯O and C—F⋯π inter­actions. The acridine and benzene ring systems are oriented at 10.8 (1)°. The carboxyl group is twisted at an angle of 85.2 (1)° relative to the acridine skeleton. The mean planes of adjacent acridine units are parallel or almost parallel [inclined at an angle of 1.4 (1)°] in the crystal structure.

Related literature

For background to the chemiluminogenic properties of 9-phenoxy­carbonyl-10-methyl­acridinium trifluoro­methane­sulf­onates, see: Adamczyk & Mattingly (2002); King et al. (2007); Rak et al. (1999); Roda et al. (2003); Zomer & Jacquemijns (2001). For related structures, see: Sikorski et al. (2005a ,b ). For inter­molecular inter­actions, see: Bianchi et al. (2004); Dorn et al. (2005); Hunter et al. (2001); Novoa et al. (2006); Seo et al. (2009); Takahashi et al. (2001). For the synthesis, see: Sato (1996); Sikorski et al. (2005a ,b ).graphic file with name e-66-o1313-scheme1.jpg

Experimental

Crystal data

  • C21H15BrNO2 +·CF3O3S

  • M r = 542.32

  • Monoclinic, Inline graphic

  • a = 9.5755 (2) Å

  • b = 20.4912 (7) Å

  • c = 11.6241 (5) Å

  • β = 104.011 (3)°

  • V = 2212.95 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.01 mm−1

  • T = 295 K

  • 0.37 × 0.15 × 0.05 mm

Data collection

  • Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) T min = 0.77, T max = 0.92

  • 50472 measured reflections

  • 3910 independent reflections

  • 2200 reflections with I > 2σ(I)

  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.112

  • S = 0.98

  • 3910 reflections

  • 299 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.62 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810016296/om2334sup1.cif

e-66-o1313-sup1.cif (21.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810016296/om2334Isup2.hkl

e-66-o1313-Isup2.hkl (191.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg4 is the centroid of the C18–C23 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O27i 0.93 2.59 3.361 (5) 141
C4—H4⋯O28ii 0.93 2.50 3.365 (4) 155
C20—H20⋯O27 0.93 2.50 3.176 (4) 130
C25—H25ACg4iii 0.96 2.81 3.569 (4) 136
C25—H25B⋯O28ii 0.96 2.53 3.472 (5) 167

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Table 2. C–Br⋯π and C–F⋯π inter­actions (Å,°).

Cg1, Cg3 and Cg4 are the centroids of the C9/N10/C11–C14, C5–C8/C13/C14 and C18–C23 rings, respectively.

X I J IJ XJ XIJ
C21 Br24 Cg1iv 3.958 (2) 4.158 (3) 82.3 (1)
C21 Br24 Cg3iv 3.937 (2) 4.235 (4) 85.4 (2)
C30 F31 Cg4v 3.212 (4) 4.305 (5) 137.5 (3)

Symmetry codes: (iv) Inline graphic; (v) Inline graphic.

Table 3. π–π inter­actions (Å,°).

Cg1 and Cg2 are the centroids of the C9/N10/C11–C14 and C1–C4/C11/C12 rings, respectively. CgICgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and perpendicular projection of CgJ on ring I.

I J CgICgJ Dihedral angle CgI_Perp CgI_Offset
1 2vi 3.650 (2) 2.82 (16) 3.623 (2) 0.444 (2)

Symmetry code: (vi) Inline graphic.

Acknowledgments

This study was financed by the State Funds for Scientific Research (grant No. N204 123 32/3143, contract No. 3143/H03/2007/32, of the Polish Ministry of Research and Higher Education) for the period 2007–2010.

supplementary crystallographic information

Comment

The cations of 9-(phenoxycarbonyl)-10-methylacridinium salts react efficiently with H2O2 in alkaline media producing light (Zomer & Jacquemijns, 2001; Adamczyk & Mattingly, 2002). This effect means that the compounds can serve as chemiluminescent indicators or as chemiluminogenic fragments of chemiluminescent labels in assays of biologically and environmentally important entities such as antigens, antibodies, enzymes or DNA fragments (Zomer & Jacquemijns, 2001; Adamczyk & Mattingly, 2002; Roda et al. , 2003; King et al., 2007). The chemiluminogenic features of the compounds depend on the structure of the cations, particularly the phenoxycarbonyl fragment which is removed during their oxidation leading to electronically excited 10-methyl-9-acridinone molecules (Rak et al., 1999; Zomer & Jacquemijns, 2001). It has been found that the efficiency of chemiluminescence – crucial for analytical applications – is influenced by the constitution of the phenyl fragment (Zomer & Jacquemijns, 2001). This prompted us to synthesize and investigate derivatives substituted in this latter fragment. In this paper, a continuation of a series on bromo-substituted derivatives (Sikorski et al., 2005a), we present the structure of the title compound.

In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Sikorski et al., 2005a,b). With respective average deviations from planarity of 0.0442 (3) Å and 0.0046 (3) Å, the acridine and benzene ring systems are oriented at 10.8 (1)°. The carboxyl group is twisted at an angle of 85.2 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel (remain at an angle of 0.0 (1)°) or almost parallel (remain at an angle of 1.4 (1)°) in the lattice.

In the crystal structure, the inversely oriented cations form dimers through π–π interactions involving acridine moieties (Table 3, Fig. 2). These dimers are further linked by C–H···π (Table 1, Fig. 2) and C–Br···π (Table 2, Fig. 2) interactions. The cations and anions are connected by multidirectional C–H···O (Table 1, Fig. 2) and C–F···π (Table 2, Fig. 2) interactions. The C–H···O interactions are of the hydrogen bond type (Bianchi et al., 2004; Novoa et al., 2006). The C–H···π interactions should be of an attractive nature (Takahashi et al., 2001), like the C–F···π (Dorn et al., 2005) and π–π (Hunter et al., 2001) interactions. The C–Br···π interactions have been reported by others (Seo et al., 2009). The crystal structure is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between ions.

Experimental

The title compound was obtained by treating 4-bromophenyl acridine-9-carboxylate [synthesized by heating acridine-9-carboxylic acid with a tenfold molar excess of thionyl chloride and reacting the product thus obtained with an equimolar amount of 4-bromophenol (Sato, 1996; Sikorski et al., 2005b)] with a fivefold molar excess of methyl trifluoromethanesulfonate dissolved in dichloromethane (Sikorski et al., 2005a). The crude 9-(4-bromophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate was dissolved in a small amount of ethanol, filtered and precipitated with a 25 v/v excess of diethyl ether. Yellow crystals suitable for X-ray investigations were grown from anhydrous ethanol (m.p. 504 - 505 K).

Refinement

H atoms were positioned geometrically, with C—H = 0.93 Å and 0.96 Å for the aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic and x = 1.5 for the methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. Cg1, Cg2, Cg3 and Cg4 denote the ring centroids. The C–H···O hydrogen bond is represented by a dashed line.

Fig. 2.

Fig. 2.

The arrangement of the ions in the crystal structure. The C–H···O interactions are represented by dashed lines, the C–H···π, C–F···π, C–Br–π and π–π contacts by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) –x + 1, y – 1/2, –z + 1/2; (ii) –x, y – 1/2, –z + 1/2; (iii) x – 1, y, z; (iv) x + 1, y, z; (v) x, –y + 3/2, z – 1/2; (vi) –x, –y + 1, –z.]

Crystal data

C21H15BrNO2+·CF3O3S F(000) = 1088
Mr = 542.32 Dx = 1.628 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 14728 reflections
a = 9.5755 (2) Å θ = 3.0–29.2°
b = 20.4912 (7) Å µ = 2.01 mm1
c = 11.6241 (5) Å T = 295 K
β = 104.011 (3)° Plate, yellow
V = 2212.95 (13) Å3 0.37 × 0.15 × 0.05 mm
Z = 4

Data collection

Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer 3910 independent reflections
Radiation source: enhanced (Mo) X-ray Source 2200 reflections with I > 2σ(I)
graphite Rint = 0.048
Detector resolution: 10.4002 pixels mm-1 θmax = 25.1°, θmin = 3.0°
ω scans h = −11→11
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) k = −24→24
Tmin = 0.77, Tmax = 0.92 l = −13→13
50472 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112 H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0642P)2] where P = (Fo2 + 2Fc2)/3
3910 reflections (Δ/σ)max = 0.001
299 parameters Δρmax = 0.56 e Å3
0 restraints Δρmin = −0.62 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1494 (3) 0.43387 (19) 0.1754 (3) 0.0703 (10)
H1 0.2493 0.4359 0.1910 0.084*
C2 0.0842 (4) 0.3755 (2) 0.1601 (4) 0.0794 (11)
H2 0.1387 0.3376 0.1642 0.095*
C3 −0.0654 (4) 0.3715 (2) 0.1382 (3) 0.0787 (11)
H3 −0.1092 0.3307 0.1283 0.094*
C4 −0.1483 (3) 0.4255 (2) 0.1309 (3) 0.0684 (10)
H4 −0.2477 0.4213 0.1171 0.082*
C5 −0.1859 (4) 0.6625 (2) 0.1220 (3) 0.0773 (11)
H5 −0.2858 0.6599 0.1022 0.093*
C6 −0.1200 (4) 0.7217 (2) 0.1332 (4) 0.0902 (12)
H6 −0.1766 0.7591 0.1205 0.108*
C7 0.0303 (4) 0.7284 (2) 0.1631 (4) 0.0896 (12)
H7 0.0725 0.7696 0.1708 0.108*
C8 0.1126 (4) 0.67394 (19) 0.1808 (3) 0.0734 (10)
H8 0.2123 0.6781 0.2009 0.088*
C9 0.1328 (3) 0.55402 (17) 0.1829 (3) 0.0544 (8)
N10 −0.1650 (2) 0.54462 (15) 0.1304 (2) 0.0582 (7)
C11 0.0688 (3) 0.49303 (17) 0.1682 (3) 0.0574 (9)
C12 −0.0853 (3) 0.48819 (17) 0.1439 (3) 0.0553 (8)
C13 0.0508 (3) 0.61081 (17) 0.1694 (3) 0.0601 (9)
C14 −0.1030 (3) 0.60523 (18) 0.1404 (3) 0.0596 (9)
C15 0.2939 (3) 0.56004 (16) 0.2072 (3) 0.0573 (8)
O16 0.35203 (19) 0.56616 (11) 0.32302 (19) 0.0620 (6)
O17 0.3586 (2) 0.55888 (15) 0.1321 (2) 0.0855 (8)
C18 0.5032 (3) 0.57634 (17) 0.3564 (3) 0.0521 (8)
C19 0.5556 (3) 0.63811 (17) 0.3571 (3) 0.0606 (9)
H19 0.4934 0.6730 0.3332 0.073*
C20 0.7017 (3) 0.64830 (17) 0.3934 (3) 0.0647 (9)
H20 0.7396 0.6901 0.3933 0.078*
C21 0.7905 (3) 0.59614 (18) 0.4296 (3) 0.0639 (9)
C22 0.7375 (4) 0.5340 (2) 0.4306 (3) 0.0796 (11)
H22 0.7995 0.4992 0.4566 0.095*
C23 0.5906 (4) 0.52369 (18) 0.3924 (3) 0.0713 (10)
H23 0.5522 0.4819 0.3913 0.086*
Br24 0.99257 (4) 0.61111 (2) 0.48030 (5) 0.1038 (2)
C25 −0.3252 (3) 0.5406 (2) 0.1034 (3) 0.0775 (11)
H25A −0.3609 0.5716 0.1511 0.116*
H25B −0.3533 0.4974 0.1205 0.116*
H25C −0.3644 0.5501 0.0210 0.116*
S26 0.47869 (9) 0.82754 (4) 0.30872 (9) 0.0676 (3)
O27 0.6132 (3) 0.79768 (13) 0.3588 (3) 0.0980 (9)
O28 0.4780 (3) 0.89700 (12) 0.3260 (3) 0.1005 (9)
O29 0.3556 (3) 0.79269 (14) 0.3249 (3) 0.1026 (9)
C30 0.4620 (5) 0.8203 (3) 0.1534 (4) 0.1024 (14)
F31 0.5746 (4) 0.8502 (2) 0.1247 (3) 0.1619 (13)
F32 0.4639 (4) 0.75825 (19) 0.1220 (3) 0.1721 (14)
F33 0.3479 (4) 0.8468 (2) 0.0881 (3) 0.1719 (15)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0475 (17) 0.081 (3) 0.084 (3) 0.0049 (19) 0.0198 (16) 0.009 (2)
C2 0.066 (2) 0.077 (3) 0.098 (3) 0.009 (2) 0.025 (2) 0.010 (2)
C3 0.068 (2) 0.074 (3) 0.094 (3) −0.007 (2) 0.019 (2) 0.005 (2)
C4 0.0476 (17) 0.095 (3) 0.065 (2) −0.013 (2) 0.0176 (15) 0.004 (2)
C5 0.053 (2) 0.092 (3) 0.086 (3) 0.016 (2) 0.0137 (18) 0.001 (2)
C6 0.077 (3) 0.082 (3) 0.108 (3) 0.027 (2) 0.016 (2) 0.007 (3)
C7 0.073 (2) 0.074 (3) 0.121 (3) 0.004 (2) 0.023 (2) 0.002 (2)
C8 0.0522 (18) 0.075 (3) 0.093 (3) −0.0007 (19) 0.0168 (17) 0.001 (2)
C9 0.0341 (14) 0.074 (2) 0.056 (2) 0.0012 (15) 0.0129 (13) −0.0011 (16)
N10 0.0343 (12) 0.083 (2) 0.0595 (17) 0.0019 (14) 0.0148 (11) −0.0024 (14)
C11 0.0371 (16) 0.078 (3) 0.059 (2) 0.0031 (16) 0.0150 (14) 0.0038 (17)
C12 0.0378 (15) 0.078 (3) 0.051 (2) −0.0011 (16) 0.0126 (13) 0.0025 (16)
C13 0.0408 (16) 0.077 (3) 0.064 (2) −0.0013 (17) 0.0166 (14) 0.0001 (17)
C14 0.0418 (16) 0.077 (3) 0.060 (2) 0.0079 (17) 0.0122 (14) 0.0007 (17)
C15 0.0400 (16) 0.068 (2) 0.065 (2) −0.0002 (14) 0.0159 (17) 0.0015 (17)
O16 0.0393 (10) 0.0869 (17) 0.0597 (15) −0.0019 (10) 0.0119 (10) −0.0009 (12)
O17 0.0402 (12) 0.157 (3) 0.0613 (15) −0.0036 (13) 0.0155 (11) −0.0026 (15)
C18 0.0389 (15) 0.064 (2) 0.0523 (19) 0.0018 (15) 0.0094 (13) −0.0004 (16)
C19 0.0491 (18) 0.061 (2) 0.069 (2) 0.0097 (16) 0.0088 (15) 0.0051 (18)
C20 0.0501 (18) 0.060 (2) 0.079 (2) 0.0022 (16) 0.0066 (16) −0.0022 (18)
C21 0.0429 (16) 0.072 (3) 0.072 (2) 0.0043 (16) 0.0035 (15) −0.0055 (18)
C22 0.059 (2) 0.067 (3) 0.102 (3) 0.0148 (19) −0.0019 (19) 0.004 (2)
C23 0.060 (2) 0.058 (2) 0.092 (3) 0.0033 (17) 0.0100 (18) 0.0055 (19)
Br24 0.0442 (2) 0.1080 (4) 0.1442 (5) 0.00493 (19) −0.0065 (2) −0.0176 (3)
C25 0.0321 (15) 0.104 (3) 0.093 (3) 0.0019 (17) 0.0103 (15) −0.012 (2)
S26 0.0539 (5) 0.0615 (6) 0.0876 (7) 0.0009 (4) 0.0176 (4) 0.0017 (5)
O27 0.0639 (14) 0.086 (2) 0.130 (2) 0.0090 (13) −0.0052 (14) 0.0217 (16)
O28 0.0918 (18) 0.0651 (19) 0.150 (3) −0.0001 (13) 0.0394 (18) −0.0211 (16)
O29 0.0775 (16) 0.098 (2) 0.144 (3) −0.0196 (14) 0.0486 (16) 0.0098 (18)
C30 0.104 (3) 0.100 (4) 0.102 (4) −0.001 (3) 0.020 (3) −0.001 (3)
F31 0.162 (3) 0.227 (4) 0.115 (2) −0.019 (3) 0.069 (2) 0.029 (2)
F32 0.250 (4) 0.141 (3) 0.120 (2) 0.006 (3) 0.034 (2) −0.052 (2)
F33 0.139 (3) 0.201 (4) 0.134 (3) 0.005 (2) −0.048 (2) 0.047 (2)

Geometric parameters (Å, °)

C1—C2 1.342 (5) C13—C14 1.433 (4)
C1—C11 1.429 (5) C15—O17 1.187 (4)
C1—H1 0.9300 C15—O16 1.332 (4)
C2—C3 1.395 (5) O16—C18 1.421 (3)
C2—H2 0.9300 C18—C19 1.361 (4)
C3—C4 1.352 (5) C18—C23 1.367 (4)
C3—H3 0.9300 C19—C20 1.376 (4)
C4—C12 1.411 (5) C19—H19 0.9300
C4—H4 0.9300 C20—C21 1.367 (5)
C5—C6 1.359 (5) C20—H20 0.9300
C5—C14 1.403 (5) C21—C22 1.372 (5)
C5—H5 0.9300 C21—Br24 1.906 (3)
C6—C7 1.403 (5) C22—C23 1.385 (5)
C6—H6 0.9300 C22—H22 0.9300
C7—C8 1.353 (5) C23—H23 0.9300
C7—H7 0.9300 C25—H25A 0.9600
C8—C13 1.415 (5) C25—H25B 0.9600
C8—H8 0.9300 C25—H25C 0.9600
C9—C11 1.384 (4) S26—O27 1.418 (2)
C9—C13 1.391 (4) S26—O29 1.429 (2)
C9—C15 1.505 (4) S26—O28 1.438 (3)
N10—C14 1.369 (4) S26—C30 1.779 (5)
N10—C12 1.374 (4) C30—F33 1.290 (5)
N10—C25 1.491 (3) C30—F32 1.325 (5)
C11—C12 1.437 (4) C30—F31 1.350 (5)
C2—C1—C11 121.5 (3) C5—C14—C13 118.7 (3)
C2—C1—H1 119.3 O17—C15—O16 125.5 (3)
C11—C1—H1 119.3 O17—C15—C9 123.6 (3)
C1—C2—C3 120.0 (4) O16—C15—C9 110.8 (3)
C1—C2—H2 120.0 C15—O16—C18 116.0 (2)
C3—C2—H2 120.0 C19—C18—C23 122.3 (3)
C4—C3—C2 121.7 (4) C19—C18—O16 119.2 (3)
C4—C3—H3 119.1 C23—C18—O16 118.4 (3)
C2—C3—H3 119.1 C18—C19—C20 119.3 (3)
C3—C4—C12 120.6 (3) C18—C19—H19 120.4
C3—C4—H4 119.7 C20—C19—H19 120.4
C12—C4—H4 119.7 C21—C20—C19 119.1 (3)
C6—C5—C14 120.0 (3) C21—C20—H20 120.5
C6—C5—H5 120.0 C19—C20—H20 120.5
C14—C5—H5 120.0 C20—C21—C22 121.7 (3)
C5—C6—C7 122.4 (4) C20—C21—Br24 118.6 (3)
C5—C6—H6 118.8 C22—C21—Br24 119.8 (2)
C7—C6—H6 118.8 C21—C22—C23 119.2 (3)
C8—C7—C6 118.8 (4) C21—C22—H22 120.4
C8—C7—H7 120.6 C23—C22—H22 120.4
C6—C7—H7 120.6 C18—C23—C22 118.4 (3)
C7—C8—C13 121.6 (3) C18—C23—H23 120.8
C7—C8—H8 119.2 C22—C23—H23 120.8
C13—C8—H8 119.2 N10—C25—H25A 109.5
C11—C9—C13 121.4 (3) N10—C25—H25B 109.5
C11—C9—C15 120.0 (3) H25A—C25—H25B 109.5
C13—C9—C15 118.5 (3) N10—C25—H25C 109.5
C14—N10—C12 122.4 (2) H25A—C25—H25C 109.5
C14—N10—C25 118.1 (3) H25B—C25—H25C 109.5
C12—N10—C25 119.5 (3) O27—S26—O29 115.25 (18)
C9—C11—C1 122.9 (3) O27—S26—O28 113.86 (17)
C9—C11—C12 119.3 (3) O29—S26—O28 116.39 (17)
C1—C11—C12 117.9 (3) O27—S26—C30 103.3 (2)
N10—C12—C4 122.8 (3) O29—S26—C30 102.6 (2)
N10—C12—C11 118.7 (3) O28—S26—C30 102.8 (2)
C4—C12—C11 118.4 (3) F33—C30—F32 107.9 (4)
C9—C13—C8 122.8 (3) F33—C30—F31 106.0 (4)
C9—C13—C14 118.6 (3) F32—C30—F31 107.6 (5)
C8—C13—C14 118.5 (3) F33—C30—S26 114.7 (4)
N10—C14—C5 121.8 (3) F32—C30—S26 110.9 (4)
N10—C14—C13 119.5 (3) F31—C30—S26 109.4 (3)
C11—C1—C2—C3 −0.8 (6) C6—C5—C14—C13 −0.8 (5)
C1—C2—C3—C4 0.4 (6) C9—C13—C14—N10 2.0 (5)
C2—C3—C4—C12 0.8 (6) C8—C13—C14—N10 −179.2 (3)
C14—C5—C6—C7 −0.2 (6) C9—C13—C14—C5 −177.4 (3)
C5—C6—C7—C8 0.5 (7) C8—C13—C14—C5 1.4 (5)
C6—C7—C8—C13 0.2 (6) C11—C9—C15—O17 82.6 (4)
C13—C9—C11—C1 176.7 (3) C13—C9—C15—O17 −93.9 (4)
C15—C9—C11—C1 0.3 (5) C11—C9—C15—O16 −96.8 (3)
C13—C9—C11—C12 −2.9 (5) C13—C9—C15—O16 86.6 (4)
C15—C9—C11—C12 −179.4 (3) O17—C15—O16—C18 4.3 (5)
C2—C1—C11—C9 −179.7 (3) C9—C15—O16—C18 −176.2 (3)
C2—C1—C11—C12 −0.1 (5) C15—O16—C18—C19 85.8 (4)
C14—N10—C12—C4 −178.4 (3) C15—O16—C18—C23 −97.4 (3)
C25—N10—C12—C4 1.3 (4) C23—C18—C19—C20 1.0 (5)
C14—N10—C12—C11 −0.6 (4) O16—C18—C19—C20 177.7 (3)
C25—N10—C12—C11 179.1 (3) C18—C19—C20—C21 −1.0 (5)
C3—C4—C12—N10 176.1 (3) C19—C20—C21—C22 0.0 (5)
C3—C4—C12—C11 −1.7 (5) C19—C20—C21—Br24 −179.7 (3)
C9—C11—C12—N10 3.0 (4) C20—C21—C22—C23 0.9 (6)
C1—C11—C12—N10 −176.6 (3) Br24—C21—C22—C23 −179.4 (3)
C9—C11—C12—C4 −179.1 (3) C19—C18—C23—C22 −0.1 (5)
C1—C11—C12—C4 1.3 (4) O16—C18—C23—C22 −176.8 (3)
C11—C9—C13—C8 −178.3 (3) C21—C22—C23—C18 −0.9 (6)
C15—C9—C13—C8 −1.8 (5) O27—S26—C30—F33 −177.5 (4)
C11—C9—C13—C14 0.5 (5) O29—S26—C30—F33 62.4 (4)
C15—C9—C13—C14 176.9 (3) O28—S26—C30—F33 −58.8 (4)
C7—C8—C13—C9 177.7 (4) O27—S26—C30—F32 60.0 (4)
C7—C8—C13—C14 −1.1 (5) O29—S26—C30—F32 −60.2 (4)
C12—N10—C14—C5 177.5 (3) O28—S26—C30—F32 178.7 (4)
C25—N10—C14—C5 −2.2 (5) O27—S26—C30—F31 −58.5 (4)
C12—N10—C14—C13 −1.9 (5) O29—S26—C30—F31 −178.6 (3)
C25—N10—C14—C13 178.4 (3) O28—S26—C30—F31 60.2 (4)
C6—C5—C14—N10 179.8 (3)

Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C18–C23 ring.
D—H···A D—H H···A D···A D—H···A
C2—H2···O27i 0.93 2.59 3.361 (5) 141
C4—H4···O28ii 0.93 2.50 3.365 (4) 155
C20—H20···O27 0.93 2.50 3.176 (4) 130
C25—H25A···Cg4iii 0.96 2.81 3.569 (4) 136
C25—H25B···O28ii 0.96 2.53 3.472 (5) 167

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x, y−1/2, −z+1/2; (iii) x−1, y, z.

Table 2 C–Br···π and C–F···π interactions (Å,°).

X I J I···J X···J XI···J
C21 Br24 Cg1iv 3.958 (2) 4.158 (3) 82.3 (1)
C21 Br24 Cg3iv 3.937 (2) 4.235 (4) 85.4 (2)
C30 F31 Cg4v 3.212 (4) 4.305 (5) 137.5 (3)

Symmetry codes: (iv) x + 1, y, z; (v) x, –y + 3/2, z – 1/2.Notes: Cg1, Cg3 and Cg4 are the centroids of the C9/N10/C11–C14, C5–C8/C13/C14 and C18–C23 rings, respectively.

Table 3 π–π interactions (Å,°).

I J CgI···CgJ Dihedral angle CgI_Perp CgI_Offset
1 2vi 3.650 (2) 2.82 (16) 3.623 (2) 0.444 (2)
2 1vi 3.650 (2) 2.82 (16) 3.623 (2) 0.444 (2)

Symmetry code: (vi) –x, –y + 1, –z.Notes: Cg1 and Cg2 are the centroids of the C9/N10/C11–C14 and C1–C4/C11/C12 rings, respectively. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and perpendicular projection of CgJ on ring I.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2334).

References

  1. Adamczyk, M. & Mattingly, P. G. (2002). Luminescence Biotechnology Instruments and Applications, edited by K. Van Dyke, C. Van Dyke & K. Woodfork, pp. 77–105. Boca Raton, London, New York, Washington, DC: CRC Press.
  2. Bianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559–568. [DOI] [PubMed]
  3. Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633–641.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669.
  6. King, D. W., Cooper, W. J., Rusak, S. A., Peake, B. M., Kiddle, J. J., O’Sullivan, D. W., Melamed, M. L., Morgan, C. R. & Theberge, S. M. (2007). Anal. Chem.79, 4169–4176. [DOI] [PubMed]
  7. Novoa, J. J., Mota, F. & D’Oria, E. (2006). Hydrogen Bonding – New Insights, edited by S. Grabowski, pp. 193–244. The Netherlands: Springer.
  8. Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  9. Rak, J., Skurski, P. & Błażejowski, J. (1999). J. Org. Chem.64, 3002–3008. [DOI] [PubMed]
  10. Roda, A., Guardigli, M., Michelini, E., Mirasoli, M. & Pasini, P. (2003). Anal. Chem.A75, 462–470. [PubMed]
  11. Sato, N. (1996). Tetrahedron Lett.37, 8519–8522.
  12. Seo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o2302. [DOI] [PMC free article] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Sikorski, A., Krzymiński, K., Konitz, A. & Błażejowski, J. (2005a). Acta Cryst. E61, o2131–o2133. [DOI] [PubMed]
  15. Sikorski, A., Krzymiński, K., Konitz, A. & Błażejowski, J. (2005b). Acta Cryst. E61, o3112–o3114. [DOI] [PubMed]
  16. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  17. Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430.
  18. Zomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529–549. New York: Marcel Dekker.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810016296/om2334sup1.cif

e-66-o1313-sup1.cif (21.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810016296/om2334Isup2.hkl

e-66-o1313-Isup2.hkl (191.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES