Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 May 26;66(Pt 6):o1460. doi: 10.1107/S1600536810018672

2-(2,2-Dimethyl-2,3-dihydro-1-benzofuran-7-yl­oxy)-N-(o-tol­yl)acetamide

Wen-Sheng Li a, Xian-Fu Luo a, Yu Wang b, Ai-Xi Hu a,*
PMCID: PMC2979639  PMID: 21579528

Abstract

In the title compound, C19H21NO3, the dihedral angle between the mean planes of the two benzene rings is 38.13 (12)°. The furan ring adopts an envelope-like conformation with the C atom bonded to the dimethyl groups displaced by 0.356 (2) Å from the plane through the other four atoms. In the crystal, mol­ecules are linked into inversion dimers by weak C—H⋯O inter­molecular inter­actions.

Related literature

The title compound is a derivative of Carbofuran, a popular carbamate insecticide, see: Tomlin (1994). For related structures, see: Xu et al. (2005); Li et al. (2009). For bond-length data, see: Allen et al. (1987).graphic file with name e-66-o1460-scheme1.jpg

Experimental

Crystal data

  • C19H21NO3

  • M r = 311.37

  • Monoclinic, Inline graphic

  • a = 9.0868 (18) Å

  • b = 8.9708 (18) Å

  • c = 20.230 (4) Å

  • β = 92.18 (3)°

  • V = 1647.9 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.32 × 0.28 × 0.21 mm

Data collection

  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.985, T max = 0.991

  • 8246 measured reflections

  • 2961 independent reflections

  • 1649 reflections with I > 2σ(I)

  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.130

  • S = 1.00

  • 2961 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810018672/jj2028sup1.cif

e-66-o1460-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810018672/jj2028Isup2.hkl

e-66-o1460-Isup2.hkl (145.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯O3i 0.97 2.60 3.561 (3) 174

Symmetry code: (i) Inline graphic.

Acknowledgments

We would like to thank the National High Technology Research and Development Program of China (No. 2006 A A03Z460) for financial suppport.

supplementary crystallographic information

Comment

The title compound, (I), C19H21NO3, is a derivative of the commercial compound Carbofuran (Tomlin, 1994), which is a popular carbamate insecticide. The dihedral angle between the mean planes of the two aromatic rings is 38.13 (12)° (Fig. 1). The five-membered furan ring adopts an envelope-like conformation. All bond lengths (Allen et al. 1987) and angles are within normal ranges. The atom C1 deviates from the C1—C7/O1 plane with a distance of 0.356 (2) Å. Molecules are linked into dimers by weak C—H···O intermolecular interactions which helps stabilize crystal packing(Fig 2).

Experimental

0.10 mol of 2,2-dimethy-2,3-dihydrobenzofuran-7-ol , 0.12 mol chloroacetic acid, 0.25 mol sodium hydrate and 70 ml distilled water were stirred and heated under reflux for 3 h. The reaction mixture was then cooled to 283.15 K and 15 ml concentrated hydrochloric acid was added to give 2-(2,2-dimethyl-2,3-dihydrobenzofuran-7-yloxy)acetic acid as an amber solid of 21.91 g, yield 98.5%. Subsequently, 0.10 mol of dry 2-(2,2-dimethyl-2,3-dihydrobenzofuran-7-yloxy)acetic acid, 0.25 mol thionyl chloride and 80 ml anhydrous was stirred and heated at 353.15 K for 6h. The excess thionyl chloride was then removed under reduced pressure. The residue was cooled to 273.15 K, after which 0.10 mol o-toluidine and 0.20 mol triethylamine was added dropwise. After stirring for an additional 3 h, the reaction mixture was washed with water (3× 40 ml), and the excess toluene removed in vacuo. The residue was purified by recrystallization from a saturated ethanol solution, giving the title compound as a colourless crystalline solid. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate solution at room temperature over a period of nine days. The identity of the title compound was confirmed by NMR and LC—MS spectroscopy.

Refinement

Methyl H atoms were placed in calculated positions, with C–H = 0.96 Å, and torsion angles were refined, with Uiso(H) = 1.5Ueq(C). Other H atoms were placed in geometrically idealized positions and refined as a riding model, with a N–H distance of 0.86 Å, C–H distances of 0.98Å (C3—H3), 0.93Å (aromatic H atoms) and 0.97Å (methylene H atoms). The constraint Uiso(H) = 1.2Ueq(carrier) was applied.

Figures

Fig. 1.

Fig. 1.

The structure of the title compound showing 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

A packing diagram for the title compound. H atoms bonded to C atoms have been omitted for clarity. Dashed lines indicate weak C—H···O intermolecular interactions forminng dimers.

Crystal data

C19H21NO3 F(000) = 664
Mr = 311.37 Dx = 1.255 Mg m3
Monoclinic, P21/n Melting point: 363.75 K
Hall symbol: -P 2yn Mo Kα radiation, λ = 0.71073 Å
a = 9.0868 (18) Å Cell parameters from 3600 reflections
b = 8.9708 (18) Å θ = 1.4–28°
c = 20.230 (4) Å µ = 0.09 mm1
β = 92.18 (3)° T = 293 K
V = 1647.9 (6) Å3 Block, colourless
Z = 4 0.32 × 0.28 × 0.21 mm

Data collection

Bruker APEXII area-detector diffractometer 2961 independent reflections
Radiation source: fine-focus sealed tube 1649 reflections with I > 2σ(I)
graphite Rint = 0.047
φ and ω scan θmax = 25.2°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −8→10
Tmin = 0.985, Tmax = 0.991 k = −10→9
8246 measured reflections l = −19→24

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0561P)2] where P = (Fo2 + 2Fc2)/3
2961 reflections (Δ/σ)max = 0.001
211 parameters Δρmax = 0.16 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Experimental. 1H NMR in CDCl3 (300 MHz), delta: 1.49(s,6H,2CH3), 2.72(s,3H, ArCH3), 3.06(s,2H,CH2), 4.72 (s,2H, OCH2), 6.76~7.99(m,7H,C6H3,C6H4), 8.53(s,1H, NH). MS: 312.2(M+1)
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C7 0.4155 (3) 0.3064 (3) 0.23529 (11) 0.0590 (7)
H7A 0.3140 0.2780 0.2254 0.071*
H7B 0.4243 0.3430 0.2804 0.071*
C1 0.6148 (2) 0.4224 (2) 0.09104 (10) 0.0478 (6)
C2 0.5545 (2) 0.3488 (2) 0.14345 (10) 0.0452 (6)
C3 0.4665 (2) 0.4205 (3) 0.18741 (10) 0.0508 (6)
C6 0.5867 (3) 0.5737 (3) 0.08464 (11) 0.0625 (7)
H6 0.6271 0.6269 0.0503 0.075*
C8 0.5210 (3) 0.1749 (2) 0.22464 (10) 0.0534 (6)
C5 0.4988 (3) 0.6465 (3) 0.12900 (12) 0.0697 (7)
H5 0.4804 0.7479 0.1239 0.084*
C4 0.4384 (3) 0.5705 (3) 0.18046 (12) 0.0661 (7)
H4 0.3795 0.6198 0.2101 0.079*
C10 0.6543 (3) 0.1807 (3) 0.27130 (12) 0.0741 (8)
H10A 0.7220 0.1034 0.2601 0.111*
H10B 0.6243 0.1664 0.3159 0.111*
H10C 0.7014 0.2759 0.2677 0.111*
C9 0.4475 (3) 0.0248 (3) 0.22421 (12) 0.0761 (8)
H9A 0.3673 0.0243 0.1919 0.114*
H9B 0.4107 0.0046 0.2672 0.114*
H9C 0.5177 −0.0505 0.2133 0.114*
O1 0.57451 (16) 0.20069 (15) 0.15680 (7) 0.0515 (4)
O2 0.69720 (17) 0.34027 (15) 0.04836 (7) 0.0554 (5)
N1 0.83327 (19) 0.16952 (19) −0.03274 (8) 0.0500 (5)
H1 0.7740 0.1490 −0.0019 0.060*
C11 0.8592 (3) 0.3146 (3) −0.04218 (11) 0.0540 (6)
O3 0.9383 (2) 0.36591 (19) −0.08343 (9) 0.0889 (7)
C12 0.7796 (3) 0.4201 (2) 0.00151 (11) 0.0569 (6)
H12A 0.8503 0.4844 0.0246 0.068*
H12B 0.7138 0.4823 −0.0254 0.068*
C13 0.8900 (3) 0.0448 (2) −0.06653 (10) 0.0499 (6)
C14 0.8094 (3) −0.0865 (3) −0.06628 (11) 0.0611 (7)
C17 1.0776 (4) −0.0718 (4) −0.12804 (13) 0.0943 (11)
H17 1.1673 −0.0671 −0.1486 0.113*
C19 0.6654 (3) −0.0952 (3) −0.03299 (13) 0.0822 (8)
H19A 0.6813 −0.0796 0.0137 0.123*
H19B 0.6224 −0.1918 −0.0405 0.123*
H19C 0.6001 −0.0199 −0.0508 0.123*
C15 0.8674 (4) −0.2095 (3) −0.09801 (14) 0.0891 (10)
H15 0.8155 −0.2989 −0.0985 0.107*
C16 0.9987 (5) −0.2025 (4) −0.12855 (15) 0.1031 (13)
H16 1.0347 −0.2863 −0.1497 0.124*
C18 1.0232 (3) 0.0530 (3) −0.09684 (10) 0.0664 (7)
H18 1.0761 0.1417 −0.0963 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C7 0.0495 (15) 0.0799 (17) 0.0482 (14) 0.0056 (13) 0.0113 (11) −0.0089 (12)
C1 0.0495 (14) 0.0487 (14) 0.0452 (13) 0.0017 (11) 0.0031 (11) −0.0074 (10)
C2 0.0489 (14) 0.0448 (13) 0.0419 (13) 0.0012 (11) 0.0030 (11) −0.0075 (10)
C3 0.0457 (14) 0.0594 (15) 0.0475 (14) 0.0022 (12) 0.0034 (11) −0.0117 (11)
C6 0.0803 (19) 0.0517 (15) 0.0558 (15) 0.0002 (13) 0.0053 (14) −0.0017 (11)
C8 0.0530 (15) 0.0674 (15) 0.0406 (13) 0.0041 (12) 0.0144 (11) 0.0004 (11)
C5 0.089 (2) 0.0528 (14) 0.0672 (17) 0.0128 (14) 0.0046 (15) −0.0085 (13)
C4 0.0663 (18) 0.0676 (17) 0.0647 (17) 0.0142 (14) 0.0053 (14) −0.0208 (13)
C10 0.0674 (18) 0.103 (2) 0.0522 (16) 0.0144 (15) 0.0057 (14) 0.0012 (14)
C9 0.090 (2) 0.0737 (18) 0.0664 (17) −0.0086 (16) 0.0263 (15) 0.0080 (14)
O1 0.0605 (10) 0.0524 (9) 0.0426 (9) 0.0055 (8) 0.0167 (7) −0.0009 (7)
O2 0.0686 (11) 0.0503 (9) 0.0489 (9) 0.0012 (8) 0.0242 (8) 0.0000 (7)
N1 0.0551 (12) 0.0523 (12) 0.0438 (11) −0.0020 (9) 0.0175 (9) 0.0037 (8)
C11 0.0602 (16) 0.0583 (16) 0.0444 (14) −0.0096 (12) 0.0129 (12) 0.0007 (11)
O3 0.1140 (16) 0.0713 (12) 0.0856 (13) −0.0173 (11) 0.0584 (12) 0.0004 (9)
C12 0.0635 (16) 0.0550 (14) 0.0536 (14) −0.0072 (12) 0.0190 (12) −0.0003 (11)
C13 0.0599 (16) 0.0579 (15) 0.0319 (12) 0.0128 (12) 0.0023 (11) 0.0017 (10)
C14 0.0787 (19) 0.0548 (15) 0.0485 (14) 0.0045 (14) −0.0137 (13) −0.0024 (12)
C17 0.106 (3) 0.128 (3) 0.0505 (17) 0.059 (2) 0.0147 (17) 0.0032 (18)
C19 0.088 (2) 0.0724 (18) 0.085 (2) −0.0193 (16) −0.0079 (17) 0.0098 (15)
C15 0.134 (3) 0.0651 (19) 0.0653 (19) 0.020 (2) −0.029 (2) −0.0111 (15)
C16 0.149 (4) 0.100 (3) 0.058 (2) 0.063 (3) −0.014 (2) −0.0204 (19)
C18 0.0742 (18) 0.0837 (18) 0.0421 (14) 0.0215 (15) 0.0121 (13) 0.0088 (13)

Geometric parameters (Å, °)

C7—C3 1.495 (3) C9—H9C 0.9600
C7—C8 1.540 (3) O2—C12 1.423 (2)
C7—H7A 0.9700 N1—C11 1.337 (3)
C7—H7B 0.9700 N1—C13 1.418 (3)
C1—O2 1.378 (2) N1—H1 0.8600
C1—C2 1.380 (3) C11—O3 1.213 (2)
C1—C6 1.386 (3) C11—C12 1.500 (3)
C2—O1 1.367 (2) C12—H12A 0.9700
C2—C3 1.378 (3) C12—H12B 0.9700
C3—C4 1.376 (3) C13—C18 1.380 (3)
C6—C5 1.387 (3) C13—C14 1.387 (3)
C6—H6 0.9300 C14—C15 1.390 (4)
C8—O1 1.492 (2) C14—C19 1.497 (3)
C8—C9 1.503 (3) C17—C16 1.374 (4)
C8—C10 1.508 (3) C17—C18 1.386 (3)
C5—C4 1.376 (3) C17—H17 0.9300
C5—H5 0.9300 C19—H19A 0.9600
C4—H4 0.9300 C19—H19B 0.9600
C10—H10A 0.9600 C19—H19C 0.9600
C10—H10B 0.9600 C15—C16 1.366 (4)
C10—H10C 0.9600 C15—H15 0.9300
C9—H9A 0.9600 C16—H16 0.9300
C9—H9B 0.9600 C18—H18 0.9300
C3—C7—C8 102.93 (17) H9A—C9—H9C 109.5
C3—C7—H7A 111.2 H9B—C9—H9C 109.5
C8—C7—H7A 111.2 C2—O1—C8 106.68 (14)
C3—C7—H7B 111.2 C1—O2—C12 117.43 (16)
C8—C7—H7B 111.2 C11—N1—C13 129.02 (18)
H7A—C7—H7B 109.1 C11—N1—H1 115.5
O2—C1—C2 117.83 (18) C13—N1—H1 115.5
O2—C1—C6 124.60 (19) O3—C11—N1 125.5 (2)
C2—C1—C6 117.56 (19) O3—C11—C12 118.5 (2)
O1—C2—C3 113.71 (19) N1—C11—C12 116.00 (18)
O1—C2—C1 124.27 (18) O2—C12—C11 110.67 (18)
C3—C2—C1 122.0 (2) O2—C12—H12A 109.5
C4—C3—C2 120.0 (2) C11—C12—H12A 109.5
C4—C3—C7 132.5 (2) O2—C12—H12B 109.5
C2—C3—C7 107.51 (19) C11—C12—H12B 109.5
C1—C6—C5 120.6 (2) H12A—C12—H12B 108.1
C1—C6—H6 119.7 C18—C13—C14 121.3 (2)
C5—C6—H6 119.7 C18—C13—N1 120.9 (2)
O1—C8—C9 107.10 (17) C14—C13—N1 117.8 (2)
O1—C8—C10 106.75 (18) C13—C14—C15 117.6 (3)
C9—C8—C10 112.3 (2) C13—C14—C19 121.1 (2)
O1—C8—C7 103.68 (16) C15—C14—C19 121.3 (3)
C9—C8—C7 114.1 (2) C16—C17—C18 119.9 (3)
C10—C8—C7 112.06 (19) C16—C17—H17 120.1
C4—C5—C6 120.8 (2) C18—C17—H17 120.1
C4—C5—H5 119.6 C14—C19—H19A 109.5
C6—C5—H5 119.6 C14—C19—H19B 109.5
C5—C4—C3 119.0 (2) H19A—C19—H19B 109.5
C5—C4—H4 120.5 C14—C19—H19C 109.5
C3—C4—H4 120.5 H19A—C19—H19C 109.5
C8—C10—H10A 109.5 H19B—C19—H19C 109.5
C8—C10—H10B 109.5 C16—C15—C14 121.7 (3)
H10A—C10—H10B 109.5 C16—C15—H15 119.2
C8—C10—H10C 109.5 C14—C15—H15 119.2
H10A—C10—H10C 109.5 C15—C16—C17 120.0 (3)
H10B—C10—H10C 109.5 C15—C16—H16 120.0
C8—C9—H9A 109.5 C17—C16—H16 120.0
C8—C9—H9B 109.5 C13—C18—C17 119.6 (3)
H9A—C9—H9B 109.5 C13—C18—H18 120.2
C8—C9—H9C 109.5 C17—C18—H18 120.2

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C12—H12A···O3i 0.97 2.60 3.561 (3) 174

Symmetry codes: (i) −x+2, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2028).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Li, W.-S., Li, L. & Li, J.-S. (2009). Acta Cryst. E65, o2829–o2838. [DOI] [PMC free article] [PubMed]
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Tomlin, C. (1994). The Pesticide Manual. A World Compendium, 10th ed., pp 152-153. Bath: The British Crop Protection Council, The Bath Press.
  7. Xu, L.-Z., Yu, G.-P. & Yang, S.-H. (2005). Acta Cryst. E61, o1924–o1926.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810018672/jj2028sup1.cif

e-66-o1460-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810018672/jj2028Isup2.hkl

e-66-o1460-Isup2.hkl (145.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES