Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 May 29;66(Pt 6):o1503. doi: 10.1107/S1600536810019525

4,5,8a-Triphenyl­perhydro­pyrimido[4,5-d]pyrimidine-2,7-dione monohydrate

Yulin Zhu a,*, Wanhong Qiu a, Fufen Yang a, Guichan Li a
PMCID: PMC2979643  PMID: 21579563

Abstract

The title compound, C24H22N4O2·H2O, was synthesized by the trimethyl­chloro­silane-catalysed reaction between urea, benzaldehyde and acetophenone. The organic mol­ecule comprises two fused tetra­hydro­pyrimidinone rings with phenyl substituents at the 4- and 5-positions on the tetra­hydro­pyrimidinone rings and a third phenyl substituent at the ring junction 8-position. The 4- and 5-substituted phenyl rings are inclined at a dihedral angle of 22.72 (11)° to one another and make angles of 47.95 (7) and 65.76 (7)° with the third phenyl substituent. In the crystal structure, inter­molecular N—H⋯O contacts link pyrimido[4,5-d]pyrimidine mol­ecules into centrosymmetric dimers. Additional N—H⋯O and O—H⋯O hydrogen bonds involving the water mol­ecule generate a three-dimensional network.

Related literature

For the therapeutic and pharmacological properties of pyrimidopyrimidines, see: Agarwal et al. (2005); Gangjee et al. (2005). For the synthesis of related compounds, see: Shi et al. (2007); Zhu et al. (2005). For reference bond-length data, see Allen et al. (1987).graphic file with name e-66-o1503-scheme1.jpg

Experimental

Crystal data

  • C24H22N4O2·H2O

  • M r = 416.47

  • Monoclinic, Inline graphic

  • a = 11.3150 (2) Å

  • b = 17.4935 (3) Å

  • c = 10.5794 (2) Å

  • β = 94.731 (1)°

  • V = 2086.94 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.30 × 0.15 × 0.15 mm

Data collection

  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.977, T max = 0.981

  • 18167 measured reflections

  • 3768 independent reflections

  • 2835 reflections with I > 2σ(I)

  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.110

  • S = 1.04

  • 3768 reflections

  • 305 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810019525/sj2783sup1.cif

e-66-o1503-sup1.cif (23.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810019525/sj2783Isup2.hkl

e-66-o1503-Isup2.hkl (184.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H5⋯O1i 0.87 (2) 2.05 (2) 2.9098 (19) 169.5 (18)
N2—H24⋯O2ii 0.862 (19) 2.16 (2) 2.9774 (19) 157.9 (16)
N3—H4⋯O3ii 0.93 (2) 1.87 (2) 2.787 (2) 168.1 (18)
O3—H1⋯O1iii 0.94 (3) 1.88 (3) 2.747 (2) 152 (3)
O3—H2⋯O2 0.87 (3) 1.99 (3) 2.751 (2) 146 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank South China Normal University for financial support (grants SCNU033038 and SCNU524002).

supplementary crystallographic information

Comment

Pyrimidopyrimidine compounds have recently been paid much attention because of their therapeutic and pharmacological properties (Agarwal et al., 2005; Gangjee et al., 2005). As a part of our studies on the synthesis of the Biginelli-type compounds (Zhu et al., 2005), the title compound was synthesized by a one-pot three-component reaction between acetophenone, urea and benzaldehyde in presence of trimethylchlorosilane as a catalyst in a yield of 86% (Fig. 1) (Shi et al., 2007).

The bond lengths and angles in the molecule are normal (Allen et al., 1987). The asymmetric unit contains a pyrimidopyrimidine molecule and a solvate water molecule (Fig. 2). The organic molecule comprises two fused tetrahydropyrimidinone rings with phenyl substituents at the 4, and 5 positions on the tetrahydropyrimidinone rings and a third phenyl substituent at the ring junction 8 position. The 4- and 5- substituted phenyl rings are inclined at a dihedral angle of 22.72 (0.11) to one another and make angles of 47.95(0.07) and 65.76(0.07) with the third phenyl substituent.The molecules in the structure are linked via intermolecular N1—H5···O1 and N2—H24···O2 hydrogen bonds. In addition, the molecule is connected to the water molecule by N3—H4···O3, O3—H1···O1 and O3—H2···O2 hydrogen bonds which generate a three dimensional network (Fig. 3).

Experimental

Acetophenone (0.6 g, 5.0 mmol), urea (0.39 g, 6.5 mmol), benzaldehyde (0.53 g, 5.0 mmol), dimethyl sulfoxide (2.5 ml) and acetonitrile (5.0 ml) were mixed in a 25 ml flask and trimethylchlorosilane (0.54 g, 5.0 mmol) was added dropwise at room temperature (Fig. 1). Then the reaction mixture was stirred under 80°C for 5-6 h while a white precipitate was developing. The product was isolated by filtration through a Büchner funnel and washed first with water, then ethanol. The product was then dried to give a crystalline powder. Colourless, block-shaped single crystals of the title compound were obtained by slow evaporation from ethanol at room temperature.

Refinement

The H atoms bound to C were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.98 Å and Uiso =1.2 or 1.5Ueq(parent atom). H atoms bound to the N and water O atoms were found in a difference map and refined freely with isotropic displacement parameters.

Figures

Fig. 1.

Fig. 1.

Trimethylchlorosilane (TMSCl) catalyzed synthesis of the title compound.

Fig. 2.

Fig. 2.

View of the title compound showing the atom–labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.

Fig. 3.

Fig. 3.

The crystal packing of the title compound (I).

Crystal data

C24H22N4O2·H2O F(000) = 880.0
Mr = 416.47 Dx = 1.326 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5618 reflections
a = 11.3150 (2) Å θ = 2.3–23.5°
b = 17.4935 (3) Å µ = 0.09 mm1
c = 10.5794 (2) Å T = 298 K
β = 94.731 (1)° Block, colourless
V = 2086.94 (6) Å3 0.30 × 0.15 × 0.15 mm
Z = 4

Data collection

Bruker APEXII area-detector diffractometer 3768 independent reflections
Radiation source: fine-focus sealed tube 2835 reflections with I > 2σ(I)
graphite Rint = 0.035
φ and ω scans θmax = 25.2°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −13→10
Tmin = 0.977, Tmax = 0.981 k = −20→20
18167 measured reflections l = −12→12

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0452P)2 + 0.5316P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
3768 reflections Δρmax = 0.25 e Å3
305 parameters Δρmin = −0.20 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0066 (11)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.36015 (14) 0.01198 (9) 0.26268 (15) 0.0391 (4)
H7 0.4045 0.0419 0.3291 0.047*
C2 0.23967 (14) 0.12916 (9) 0.20681 (14) 0.0373 (4)
C3 0.39979 (15) 0.08608 (9) 0.07274 (15) 0.0425 (4)
C4 0.23326 (14) 0.04423 (9) 0.24437 (14) 0.0372 (4)
H8 0.1903 0.0165 0.1743 0.045*
C5 0.16508 (15) 0.03406 (9) 0.36401 (14) 0.0419 (4)
H6 0.1853 −0.0169 0.3975 0.050*
C6 0.26422 (15) 0.15513 (10) 0.43883 (15) 0.0436 (4)
C7 0.05756 (18) 0.12622 (12) 0.05276 (18) 0.0632 (6)
H19 0.0897 0.0833 0.0166 0.076*
C8 −0.0509 (2) 0.15353 (16) 0.0041 (2) 0.0809 (7)
H20 −0.0919 0.1286 −0.0637 0.097*
C9 −0.0985 (2) 0.21711 (15) 0.0550 (2) 0.0752 (7)
H21 −0.1719 0.2354 0.0225 0.090*
C10 −0.03787 (19) 0.25315 (12) 0.1531 (2) 0.0709 (6)
H22 −0.0697 0.2968 0.1871 0.085*
C11 0.07081 (17) 0.22610 (10) 0.20371 (19) 0.0544 (5)
H23 0.1112 0.2516 0.2713 0.065*
C12 0.11932 (15) 0.16153 (9) 0.15439 (14) 0.0401 (4)
C13 0.36784 (14) −0.07141 (9) 0.30018 (16) 0.0411 (4)
C14 0.33752 (17) −0.12905 (10) 0.2150 (2) 0.0562 (5)
H9 0.3092 −0.1171 0.1324 0.067*
C15 0.3491 (2) −0.20481 (12) 0.2519 (3) 0.0792 (7)
H12 0.3274 −0.2433 0.1940 0.095*
C16 0.3920 (2) −0.22366 (14) 0.3727 (3) 0.0882 (9)
H13 0.4006 −0.2747 0.3964 0.106*
C17 0.42204 (19) −0.16715 (15) 0.4581 (3) 0.0788 (7)
H11 0.4512 −0.1795 0.5403 0.095*
C18 0.40914 (17) −0.09161 (12) 0.42245 (19) 0.0594 (5)
H10 0.4286 −0.0534 0.4817 0.071*
C19 −0.0248 (2) −0.02385 (13) 0.26918 (19) 0.0676 (6)
H14 0.0207 −0.0640 0.2423 0.081*
C20 0.03073 (16) 0.03569 (10) 0.33765 (15) 0.0461 (4)
C21 −0.03979 (18) 0.09298 (11) 0.38007 (19) 0.0597 (5)
H18 −0.0056 0.1327 0.4288 0.072*
C22 −0.1615 (2) 0.09177 (16) 0.3504 (3) 0.0835 (8)
H17 −0.2078 0.1310 0.3792 0.100*
C23 −0.2142 (2) 0.0342 (2) 0.2799 (3) 0.0919 (9)
H16 −0.2956 0.0347 0.2589 0.110*
C24 −0.1464 (2) −0.02467 (18) 0.2401 (2) 0.0863 (8)
H15 −0.1819 −0.0650 0.1939 0.104*
N1 0.41552 (14) 0.02324 (9) 0.14448 (14) 0.0510 (4)
N2 0.32026 (12) 0.13779 (8) 0.10666 (13) 0.0413 (4)
N3 0.28885 (13) 0.17073 (8) 0.31879 (12) 0.0438 (4)
N4 0.20999 (14) 0.08804 (9) 0.45970 (14) 0.0523 (4)
O1 0.45673 (11) 0.09641 (7) −0.02172 (11) 0.0588 (4)
O2 0.29450 (12) 0.19940 (7) 0.52711 (11) 0.0574 (4)
O3 0.33428 (16) 0.17446 (9) 0.78386 (16) 0.0704 (4)
H4 0.3149 (17) 0.2203 (12) 0.3069 (18) 0.065 (6)*
H24 0.3154 (16) 0.1796 (11) 0.0634 (17) 0.053 (5)*
H5 0.4604 (17) −0.0120 (11) 0.1161 (18) 0.059 (6)*
H3 0.1959 (18) 0.0816 (12) 0.538 (2) 0.068 (6)*
H2 0.348 (2) 0.1705 (15) 0.705 (3) 0.105 (10)*
H1 0.396 (3) 0.1510 (18) 0.834 (3) 0.134 (12)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0430 (10) 0.0364 (9) 0.0385 (8) 0.0023 (7) 0.0078 (7) 0.0025 (7)
C2 0.0451 (10) 0.0350 (9) 0.0329 (8) 0.0041 (7) 0.0102 (7) −0.0003 (7)
C3 0.0454 (10) 0.0415 (10) 0.0419 (9) 0.0079 (8) 0.0128 (8) 0.0058 (7)
C4 0.0441 (10) 0.0349 (9) 0.0337 (8) 0.0029 (7) 0.0087 (7) −0.0011 (7)
C5 0.0520 (11) 0.0367 (9) 0.0385 (9) 0.0022 (8) 0.0129 (8) 0.0026 (7)
C6 0.0462 (10) 0.0479 (10) 0.0366 (9) 0.0083 (8) 0.0032 (7) −0.0050 (8)
C7 0.0619 (13) 0.0773 (14) 0.0495 (11) 0.0218 (11) −0.0001 (10) −0.0104 (10)
C8 0.0638 (15) 0.112 (2) 0.0636 (13) 0.0229 (14) −0.0117 (11) −0.0120 (13)
C9 0.0529 (13) 0.0919 (17) 0.0806 (15) 0.0226 (12) 0.0045 (12) 0.0150 (14)
C10 0.0604 (14) 0.0555 (13) 0.0983 (17) 0.0202 (11) 0.0158 (12) 0.0005 (12)
C11 0.0513 (11) 0.0439 (10) 0.0688 (12) 0.0075 (9) 0.0096 (9) −0.0036 (9)
C12 0.0429 (10) 0.0420 (9) 0.0368 (8) 0.0048 (7) 0.0118 (7) 0.0049 (7)
C13 0.0367 (9) 0.0379 (9) 0.0501 (10) 0.0040 (7) 0.0120 (7) 0.0069 (8)
C14 0.0589 (12) 0.0446 (11) 0.0673 (12) −0.0003 (9) 0.0175 (10) −0.0022 (9)
C15 0.0836 (17) 0.0423 (12) 0.117 (2) −0.0061 (11) 0.0391 (15) −0.0081 (13)
C16 0.0692 (16) 0.0487 (14) 0.153 (3) 0.0128 (12) 0.0479 (17) 0.0400 (17)
C17 0.0558 (14) 0.0805 (17) 0.1011 (18) 0.0085 (12) 0.0119 (12) 0.0540 (15)
C18 0.0563 (12) 0.0601 (12) 0.0611 (12) −0.0037 (10) 0.0009 (10) 0.0207 (10)
C19 0.0715 (15) 0.0681 (14) 0.0666 (13) −0.0176 (11) 0.0253 (11) −0.0107 (11)
C20 0.0529 (11) 0.0454 (10) 0.0422 (9) −0.0032 (8) 0.0172 (8) 0.0054 (8)
C21 0.0588 (13) 0.0535 (12) 0.0699 (12) 0.0029 (10) 0.0246 (10) 0.0060 (10)
C22 0.0590 (15) 0.0851 (18) 0.111 (2) 0.0151 (13) 0.0339 (14) 0.0259 (16)
C23 0.0548 (15) 0.132 (3) 0.0900 (18) −0.0157 (17) 0.0133 (14) 0.0343 (18)
C24 0.0707 (17) 0.120 (2) 0.0700 (15) −0.0420 (16) 0.0173 (13) −0.0067 (14)
N1 0.0580 (10) 0.0447 (9) 0.0541 (9) 0.0191 (8) 0.0274 (8) 0.0148 (7)
N2 0.0495 (9) 0.0351 (8) 0.0415 (8) 0.0091 (7) 0.0166 (6) 0.0092 (6)
N3 0.0564 (9) 0.0365 (8) 0.0389 (8) −0.0015 (7) 0.0056 (6) −0.0019 (6)
N4 0.0663 (11) 0.0598 (10) 0.0321 (8) −0.0081 (8) 0.0121 (7) −0.0015 (7)
O1 0.0683 (9) 0.0564 (8) 0.0566 (8) 0.0213 (6) 0.0352 (7) 0.0193 (6)
O2 0.0704 (9) 0.0578 (8) 0.0431 (7) 0.0036 (7) −0.0007 (6) −0.0156 (6)
O3 0.0936 (12) 0.0656 (10) 0.0516 (9) 0.0181 (8) 0.0030 (8) 0.0027 (7)

Geometric parameters (Å, °)

C1—N1 1.458 (2) C11—H23 0.9300
C1—C13 1.512 (2) C13—C14 1.377 (2)
C1—C4 1.540 (2) C13—C18 1.384 (2)
C1—H7 0.9800 C14—C15 1.385 (3)
C2—N3 1.461 (2) C14—H9 0.9300
C2—N2 1.462 (2) C15—C16 1.370 (4)
C2—C12 1.536 (2) C15—H12 0.9300
C2—C4 1.541 (2) C16—C17 1.363 (4)
C3—O1 1.2460 (18) C16—H13 0.9300
C3—N1 1.339 (2) C17—C18 1.379 (3)
C3—N2 1.345 (2) C17—H11 0.9300
C4—C5 1.546 (2) C18—H10 0.9300
C4—H8 0.9800 C19—C24 1.385 (3)
C5—N4 1.446 (2) C19—C20 1.389 (3)
C5—C20 1.523 (2) C19—H14 0.9300
C5—H6 0.9800 C20—C21 1.379 (3)
C6—O2 1.2397 (19) C21—C22 1.387 (3)
C6—N3 1.350 (2) C21—H18 0.9300
C6—N4 1.351 (2) C22—C23 1.362 (4)
C7—C8 1.376 (3) C22—H17 0.9300
C7—C12 1.379 (2) C23—C24 1.370 (4)
C7—H19 0.9300 C23—H16 0.9300
C8—C9 1.366 (3) C24—H15 0.9300
C8—H20 0.9300 N1—H5 0.87 (2)
C9—C10 1.351 (3) N2—H24 0.862 (19)
C9—H21 0.9300 N3—H4 0.93 (2)
C10—C11 1.384 (3) N4—H3 0.86 (2)
C10—H22 0.9300 O3—H2 0.87 (3)
C11—C12 1.377 (2) O3—H1 0.94 (3)
N1—C1—C13 109.63 (13) C14—C13—C1 121.94 (16)
N1—C1—C4 107.75 (12) C18—C13—C1 119.93 (16)
C13—C1—C4 114.79 (13) C13—C14—C15 120.3 (2)
N1—C1—H7 108.2 C13—C14—H9 119.9
C13—C1—H7 108.2 C15—C14—H9 119.9
C4—C1—H7 108.2 C16—C15—C14 120.8 (2)
N3—C2—N2 108.53 (13) C16—C15—H12 119.6
N3—C2—C12 112.11 (12) C14—C15—H12 119.6
N2—C2—C12 106.73 (12) C17—C16—C15 119.6 (2)
N3—C2—C4 107.08 (12) C17—C16—H13 120.2
N2—C2—C4 109.39 (12) C15—C16—H13 120.2
C12—C2—C4 112.92 (13) C16—C17—C18 119.9 (2)
O1—C3—N1 121.35 (15) C16—C17—H11 120.0
O1—C3—N2 121.18 (15) C18—C17—H11 120.0
N1—C3—N2 117.47 (14) C17—C18—C13 121.4 (2)
C1—C4—C2 108.80 (13) C17—C18—H10 119.3
C1—C4—C5 112.20 (12) C13—C18—H10 119.3
C2—C4—C5 111.06 (12) C24—C19—C20 121.4 (2)
C1—C4—H8 108.2 C24—C19—H14 119.3
C2—C4—H8 108.2 C20—C19—H14 119.3
C5—C4—H8 108.2 C21—C20—C19 117.78 (19)
N4—C5—C20 113.82 (14) C21—C20—C5 123.35 (17)
N4—C5—C4 109.13 (13) C19—C20—C5 118.87 (17)
C20—C5—C4 113.95 (13) C20—C21—C22 120.4 (2)
N4—C5—H6 106.5 C20—C21—H18 119.8
C20—C5—H6 106.5 C22—C21—H18 119.8
C4—C5—H6 106.5 C23—C22—C21 121.2 (2)
O2—C6—N3 121.10 (17) C23—C22—H17 119.4
O2—C6—N4 121.38 (15) C21—C22—H17 119.4
N3—C6—N4 117.46 (15) C22—C23—C24 119.5 (2)
C8—C7—C12 121.00 (19) C22—C23—H16 120.2
C8—C7—H19 119.5 C24—C23—H16 120.2
C12—C7—H19 119.5 C23—C24—C19 119.7 (2)
C9—C8—C7 120.2 (2) C23—C24—H15 120.2
C9—C8—H20 119.9 C19—C24—H15 120.2
C7—C8—H20 119.9 C3—N1—C1 123.42 (14)
C10—C9—C8 119.4 (2) C3—N1—H5 116.2 (13)
C10—C9—H21 120.3 C1—N1—H5 120.4 (13)
C8—C9—H21 120.3 C3—N2—C2 126.51 (14)
C9—C10—C11 121.1 (2) C3—N2—H24 116.3 (12)
C9—C10—H22 119.5 C2—N2—H24 117.1 (12)
C11—C10—H22 119.5 C6—N3—C2 124.60 (15)
C12—C11—C10 120.20 (19) C6—N3—H4 114.1 (12)
C12—C11—H23 119.9 C2—N3—H4 117.4 (12)
C10—C11—H23 119.9 C6—N4—C5 126.24 (14)
C11—C12—C7 118.07 (17) C6—N4—H3 113.2 (14)
C11—C12—C2 122.34 (15) C5—N4—H3 120.2 (14)
C7—C12—C2 119.58 (15) H2—O3—H1 109 (3)
C14—C13—C18 118.12 (17)
N1—C1—C4—C2 −57.64 (16) C14—C15—C16—C17 1.0 (3)
C13—C1—C4—C2 179.93 (13) C15—C16—C17—C18 −0.1 (3)
N1—C1—C4—C5 179.05 (13) C16—C17—C18—C13 −1.1 (3)
C13—C1—C4—C5 56.63 (18) C14—C13—C18—C17 1.3 (3)
N3—C2—C4—C1 −70.43 (15) C1—C13—C18—C17 −177.18 (17)
N2—C2—C4—C1 47.01 (16) C24—C19—C20—C21 2.3 (3)
C12—C2—C4—C1 165.70 (12) C24—C19—C20—C5 −178.68 (18)
N3—C2—C4—C5 53.55 (17) N4—C5—C20—C21 12.8 (2)
N2—C2—C4—C5 170.99 (13) C4—C5—C20—C21 −113.21 (18)
C12—C2—C4—C5 −70.32 (16) N4—C5—C20—C19 −166.15 (15)
C1—C4—C5—N4 73.88 (17) C4—C5—C20—C19 67.8 (2)
C2—C4—C5—N4 −48.15 (18) C19—C20—C21—C22 −2.4 (3)
C1—C4—C5—C20 −157.68 (14) C5—C20—C21—C22 178.66 (17)
C2—C4—C5—C20 80.30 (17) C20—C21—C22—C23 0.4 (3)
C12—C7—C8—C9 0.9 (4) C21—C22—C23—C24 1.6 (4)
C7—C8—C9—C10 0.4 (4) C22—C23—C24—C19 −1.7 (4)
C8—C9—C10—C11 −0.9 (4) C20—C19—C24—C23 −0.3 (3)
C9—C10—C11—C12 0.1 (3) O1—C3—N1—C1 173.66 (17)
C10—C11—C12—C7 1.2 (3) N2—C3—N1—C1 −6.2 (3)
C10—C11—C12—C2 179.89 (17) C13—C1—N1—C3 164.44 (16)
C8—C7—C12—C11 −1.7 (3) C4—C1—N1—C3 38.9 (2)
C8—C7—C12—C2 179.58 (19) O1—C3—N2—C2 173.39 (16)
N3—C2—C12—C11 4.8 (2) N1—C3—N2—C2 −6.7 (3)
N2—C2—C12—C11 −113.91 (17) N3—C2—N2—C3 100.86 (18)
C4—C2—C12—C11 125.86 (16) C12—C2—N2—C3 −138.12 (16)
N3—C2—C12—C7 −176.50 (16) C4—C2—N2—C3 −15.7 (2)
N2—C2—C12—C7 64.79 (19) O2—C6—N3—C2 −169.06 (15)
C4—C2—C12—C7 −55.4 (2) N4—C6—N3—C2 13.7 (2)
N1—C1—C13—C14 −47.6 (2) N2—C2—N3—C6 −155.76 (15)
C4—C1—C13—C14 73.77 (19) C12—C2—N3—C6 86.60 (19)
N1—C1—C13—C18 130.74 (17) C4—C2—N3—C6 −37.8 (2)
C4—C1—C13—C18 −107.85 (18) O2—C6—N4—C5 176.39 (16)
C18—C13—C14—C15 −0.3 (3) N3—C6—N4—C5 −6.4 (3)
C1—C13—C14—C15 178.08 (17) C20—C5—N4—C6 −103.71 (19)
C13—C14—C15—C16 −0.8 (3) C4—C5—N4—C6 24.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H5···O1i 0.87 (2) 2.05 (2) 2.9098 (19) 169.5 (18)
N2—H24···O2ii 0.862 (19) 2.16 (2) 2.9774 (19) 157.9 (16)
N3—H4···O3ii 0.93 (2) 1.87 (2) 2.787 (2) 168.1 (18)
O3—H1···O1iii 0.94 (3) 1.88 (3) 2.747 (2) 152 (3)
O3—H2···O2 0.87 (3) 1.99 (3) 2.751 (2) 146 (2)

Symmetry codes: (i) −x+1, −y, −z; (ii) x, −y+1/2, z−1/2; (iii) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2783).

References

  1. Agarwal, A., Srivastava, K., Puri, S. K., Sinha, S. & Chauhan, P. M. S. (2005). Bioorg. Med. Chem. Lett.15, 5218–5221. [DOI] [PubMed]
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Bruker (2004). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Gangjee, A., Zeng, Y., McGuire, J. J. & Kisliuk, R. L. (2005). J. Med. Chem.48, 5329–5336. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Shi, F., Jia, R., Zhang, X., Tu, S., Yan, S., Zhang, Y., Jiang, B., Zhang, J. & Yao, C. (2007). Synthesis, pp. 2782–2791.
  7. Zhu, Y., Huang, S. & Pan, Y. (2005). Eur. J. Org. Chem. pp. 2354–2367.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810019525/sj2783sup1.cif

e-66-o1503-sup1.cif (23.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810019525/sj2783Isup2.hkl

e-66-o1503-Isup2.hkl (184.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES